JPS62278485A - Nuclear reactor structure - Google Patents

Nuclear reactor structure

Info

Publication number
JPS62278485A
JPS62278485A JP61121088A JP12108886A JPS62278485A JP S62278485 A JPS62278485 A JP S62278485A JP 61121088 A JP61121088 A JP 61121088A JP 12108886 A JP12108886 A JP 12108886A JP S62278485 A JPS62278485 A JP S62278485A
Authority
JP
Japan
Prior art keywords
reactor
core
sodium
reactor vessel
liquid sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61121088A
Other languages
Japanese (ja)
Inventor
榎田 義勝
池内 壽昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61121088A priority Critical patent/JPS62278485A/en
Publication of JPS62278485A publication Critical patent/JPS62278485A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、高速増殖炉原子炉容器に係り、特に。[Detailed description of the invention] 3. Detailed description of the invention [Industrial application field] The present invention relates to fast breeder reactor vessels, and more particularly to fast breeder reactor vessels.

原子炉容器の建設費低減に好適な原子炉構造に関する。The present invention relates to a nuclear reactor structure suitable for reducing the construction cost of a nuclear reactor vessel.

〔従来の技術〕[Conventional technology]

従来の原子炉構造は、特開昭60−80788号公報に
記載の様な構造である。第2図に示す様に。
A conventional nuclear reactor structure is the one described in Japanese Patent Application Laid-Open No. 60-80788. As shown in Figure 2.

高速増殖炉原子炉容器のうち炉心と熱交換設備をもつ原
子炉容器では、炉心1を通過した一次側高温液体ナトリ
ウムはホットプレナム26KAl)。
In a fast breeder reactor vessel that has a reactor core and heat exchange equipment, the primary high temperature liquid sodium that has passed through the reactor core 1 is in the hot plenum (26KAl).

全周に設置されたヘリカルコイル式伝熱管24内を流れ
る二次im液体ナトリウムと熱交換を行なって冷却され
、コールドプレナム27に集まる。この低温となった一
次側ナトリウムは機械式循環ポンプ23によシ加圧され
、炉心配f25を通って炉心下部の高圧部に到シ、再び
炉心1を通過して高温となる。
It exchanges heat with the secondary im liquid sodium flowing in the helical coil type heat exchanger tubes 24 installed around the entire circumference, is cooled, and collects in the cold plenum 27. This low-temperature primary sodium is pressurized by the mechanical circulation pump 23, passes through the reactor core f25, reaches the high-pressure part in the lower part of the reactor core, and passes through the reactor core 1 again to reach a high temperature.

又、従来の原子炉構造として第3図に示すものがある。Furthermore, there is a conventional nuclear reactor structure shown in FIG.

炉心lを通過した一次側高温液体す) IJウムは中間
熱交換器28内を通過し、下部にある電磁ポンプ29に
よシ加圧され炉内配管25を通過して炉心下部の高圧部
に到り、再び、炉心lを通過して高温となる。
The primary high-temperature liquid (IJ) that has passed through the reactor core passes through the intermediate heat exchanger 28, is pressurized by the electromagnetic pump 29 at the bottom, passes through the in-core piping 25, and enters the high-pressure section at the bottom of the core. Once there, it passes through the core 1 again and reaches a high temperature.

また、特開昭57−84391号公報では、第4図に示
すように伝熱管をユニットタイプにした原子炉構造であ
る。
Furthermore, Japanese Patent Application Laid-open No. 57-84391 discloses a nuclear reactor structure in which heat exchanger tubes are of unit type, as shown in FIG.

上記の三つの例とも、炉心のまろシに機械式ポンプ、又
は、中間熱交換器を数個円周上に配置したものでろシ、
原子デ径寸法がかなシ大きなものとなっていた。
In all three examples above, a mechanical pump or several intermediate heat exchangers are arranged around the circumference of the reactor core.
The atomic diameter was quite large.

従って、原子炉径寸法を小さくして原子炉容器の小型化
、現地作業の短縮化、構造の簡略化については、考慮さ
れていなかった。
Therefore, no consideration was given to downsizing the reactor vessel, shortening on-site work, and simplifying the structure by reducing the diameter of the reactor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、建設費の低減の観点から、原子炉容器
の小型化、現地作業の短縮化、構造の簡単化について考
慮されておらず、従って、下記のような問題がめった。
The above-mentioned conventional technology does not take into account miniaturization of the reactor vessel, shortening of on-site work, and simplification of the structure from the viewpoint of reducing construction costs, and therefore, the following problems occur frequently.

原子炉容器の小型化ができないので、容器全体としての
物量が多くなシ、建設コストがかさむ。
Since it is not possible to downsize the reactor vessel, the total volume of the vessel is large, which increases construction costs.

容器が大きいため、耐震性が悪くなシ各部の肉厚を大き
くすることや、各所に耐震ナポートを設ける必要があシ
、熱応力の発生の点から好ましくない。
Since the container is large, its earthquake resistance is poor, and it is necessary to increase the wall thickness of each part and provide earthquake-resistant ports at various locations, which is undesirable from the viewpoint of generating thermal stress.

又、現地作業でも、大きい丸めに、一度に運搬できず、
現地で全体組立をする必要がろシ、現地据付時の溶接作
業1組立作業、及び、それらの足場作)等多くの効率の
悪い現地作業があ)現地の作業工程が多くかかった。
Also, when working on-site, it is not possible to transport large pieces all at once.
There was a lot of inefficient on-site work such as the need to assemble the entire product on-site, welding work during on-site installation, assembly work, and scaffolding work.

更に、構造においても、原子炉容器内部に循環ポンプに
よシ加圧された液体ナトリウムをP心に送シ込む流路を
形成する必要から炉内配管を設けておル、この機械式循
環ポンプの個数や中間熱交換器下部にある電磁ポンプの
個数によシ炉内配管の個数や耐震テボートの構成が決定
され、原子炉容器内部を複雑にしている。
Furthermore, regarding the structure, internal piping is provided inside the reactor vessel to form a flow path for pumping pressurized liquid sodium into the P core by a circulation pump. The number of piping inside the reactor and the configuration of the seismic support port are determined by the number of pipes inside the reactor and the number of electromagnetic pumps located at the bottom of the intermediate heat exchanger, making the inside of the reactor vessel complex.

本発明の目的は、この様な問題を解決し建設費の低減を
図ることができる原子炉構造を提供することにある。
An object of the present invention is to provide a nuclear reactor structure that can solve these problems and reduce construction costs.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は以下の方法によ殴達成した。 The above objectives were achieved in the following manner.

すなわち。Namely.

(υ −次側液体ナトリウムの流路における循環ポンプ
として炉心の下部に、数個のアニユラスリー″6インダ
クシヨンポンプタイプの電磁ボ/プを設置した。この電
磁ポンプはコールドプレナムにsb、f心下部において
高圧プレナムを形成させる。
(υ - Several annual three"6 induction pump type electromagnetic pumps were installed at the bottom of the core as circulation pumps in the downstream liquid sodium flow path. These electromagnetic pumps were installed in the cold plenum at the bottom of the sb and f core. A high pressure plenum is formed at the

C) 中間熱交換器の替りに、P心と平行に伝熱管のみ
を円周上に配置して一次mg体ナトリウムが伝熱管内を
流れる様にした。
C) Instead of an intermediate heat exchanger, only heat transfer tubes were arranged on the circumference in parallel with the P core so that the primary mg sodium flowed through the heat transfer tubes.

(3)二次11111液体ナトリウムが伝熱百の外周を
通過する様にし、更に、原子炉容器の外胴に低温の二次
11g液体ナトリウムのコールドプレナムを形成させる
構造とした。
(3) A structure was adopted in which the secondary 11111 liquid sodium passed through the outer circumference of the heat transfer tube, and a cold plenum containing the low-temperature secondary 11g liquid sodium was formed in the outer shell of the reactor vessel.

〔作用〕[Effect]

炉心の下部に設置された数個のアニュラスリニアインダ
クションポンプタイプの電磁ポンプは。
Several annulus linear induction pump type electromagnetic pumps are installed at the bottom of the reactor core.

−次側液体ナトリウムが炉心通過時に必要な圧力を確保
し、−久側FL体す) IJウムの炉心冷却を適切に行
なえるように、f心下部に高圧プレナムを形成させるが
、従来の機械式循環ポ/ブや中間熱交換器下部の電磁ポ
ンプとは異なシ、炉心と並行して必要としていた空間が
不要となり、原子炉容器の炉心径寸法が小さくできる。
A high-pressure plenum is formed at the bottom of the f-core in order to ensure the necessary pressure for next-side liquid sodium to pass through the core, and to properly cool the IJ-umn reactor core. Unlike a type circulation pump or an electromagnetic pump at the bottom of an intermediate heat exchanger, the space required in parallel with the reactor core is no longer required, and the core diameter of the reactor vessel can be reduced.

又、従来の数個の中間熱交換器配置の原子f容器に比べ
ても、−次側高温液体ナトリウムを伝熱管内を流れる様
にしているため、中間熱交換器を各々間隔を設けて円周
上に配置した構成の様に余分の空間を要せず、伝熱管の
占める領域を小さくすることができる。
Also, compared to the conventional atomic f-container with several intermediate heat exchangers arranged, the intermediate heat exchangers are spaced apart from each other in order to allow the high-temperature liquid sodium on the downstream side to flow through the heat transfer tubes. Unlike the configuration in which the heat exchanger tubes are arranged on the circumference, extra space is not required, and the area occupied by the heat exchanger tubes can be reduced.

従って、従来の機械式循環ポンプや中間熱交換器に対応
する空間の占める領域が小さくなり、結局、炉径寸法が
小さくな)小型化できる。
Therefore, the area occupied by the space corresponding to the conventional mechanical circulation pump and intermediate heat exchanger becomes smaller, resulting in a smaller furnace diameter.

炉径寸法が小さくできるので、原子炉容器を現地組立の
作業から工場内で裏作することが可能となシ、作業効率
が大幅に増大する。また、現地の溶接作業組立作業がな
くなシ、現地作業工程が短縮され、全体工程の把握が明
確となる。
Since the reactor diameter can be made smaller, the reactor vessel can be assembled in the factory instead of being assembled on-site, greatly increasing work efficiency. In addition, on-site welding and assembly work is eliminated, the on-site work process is shortened, and the overall process can be clearly understood.

炉内配管が不要となり、原子f容器内の構造が簡単とな
る。
Piping inside the reactor becomes unnecessary, and the structure inside the atomic f-vessel becomes simple.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図によシ説明する。 An embodiment of the present invention will be described below with reference to FIG.

原子炉容器内の一次系液体す) IJウムは、低温であ
るコールドプレナムとしての下部プレナム12から電磁
ポンプ2を通過することによシ加圧され、高圧プレナム
21に到シ、さらに、炉心lを通過する。この炉心1の
通過時に、−次系液体ナトリウムriF心lの発生熱t
”奪って高温となシ。
The primary liquid in the reactor vessel is pressurized by passing through the electromagnetic pump 2 from the lower plenum 12, which serves as a cold plenum, and reaches the high-pressure plenum 21. pass through. When passing through this reactor core 1, the generated heat t of the -order system liquid sodium riF core 1
``Take it away and make it high temperature.''

上部のホットプレナムである上部プレナム11に流れ込
む。この−次系高温の液体ナトリウムは上部管板4より
伝熱管6内を流下し、下部管板5を通過して下部にある
F部プレナム12に到る。
It flows into the upper plenum 11, which is the upper hot plenum. This high-temperature liquid sodium flows down from the upper tube plate 4 into the heat transfer tube 6, passes through the lower tube plate 5, and reaches the F section plenum 12 located at the lower part.

二次系液体ナトリウムは、二次系の蒸気発生器と熱交換
した後、低温となって配管9よ〃、原子炉容器外胴15
と内胴14の間にあるコールドプレナムでるる全周上の
側壁空間13に流入する。
After exchanging heat with the secondary steam generator, the secondary system liquid sodium becomes low temperature and is transferred to the reactor vessel outer shell 15.
It flows into the side wall space 13 on the entire circumference of the cold plenum between the inner shell 14 and the inner shell 14.

この側壁空間13の下部には、内胴141111に故箇
所の二次系入口ノズル7があり、この人口ノズル7を通
って二次系液体ナトリウムは伝熱管6の外側の領域を上
昇し、内胴14の上部に数箇所設けられた二次系出口ノ
ズル8を通過して側壁空間13の土部内側の全周領域に
あるホットプレナムでろる高温側壁空間20に流入し、
その出口配管10′に通過して二次系に戻る。
In the lower part of this side wall space 13, there is a secondary system inlet nozzle 7, which was located in the inner shell 141111, and through this artificial nozzle 7, the secondary system liquid sodium rises in the area outside the heat exchanger tube 6, and flows into the inner shell. It passes through the secondary system outlet nozzles 8 provided at several locations in the upper part of the shell 14 and flows into the high-temperature side wall space 20 where it simmers in the hot plenum located in the entire circumferential area inside the soil part of the side wall space 13.
It passes through the outlet pipe 10' and returns to the secondary system.

原子炉容器外胴15は、上部フランジ17によシ建物に
支持されておシ、内胴14内の機器及び部材は、原子炉
容器上部のガス層で、外胴15に取付いている。原子f
容器の上部にはしやへいプラグ18が設置され、中心部
には、燃料出入れ。
The reactor vessel outer shell 15 is supported on the building by an upper flange 17, and the equipment and members within the inner shell 14 are attached to the outer shell 15 in the gas layer above the reactor vessel. atom f
A shield plug 18 is installed at the top of the container, and the fuel is put in and taken out in the center.

及び制御棒駆動機構をもつ炉上部機構19が設置されて
いる。
A reactor upper mechanism 19 having a control rod drive mechanism is installed.

一次系液体ナトリウムの液面は、高温側壁空間20の内
側胴板に接している。高温側壁空間20の外側胴板と原
子炉容器の内胴14の間には断熱材22が組込1れてい
る。この内胴14+’!、上部で外胴15にガス層で取
付いている。従って、常に、原子炉容器の外胴15は低
温領域のコールドプレナムとなっている。また、上部管
板4及び高温側壁空間20の内側胴板は高温となるが、
−次系液体ナトリウムと二次系液体ナトリウムとも高温
でめシ熱応力の発生がない。下部管板5は二次系入口ノ
ズル7の二次系液体ナトリウムと同じように低温となシ
、同じく熱応力の発生がない。
The liquid surface of the primary liquid sodium is in contact with the inner body plate of the high temperature side wall space 20. A heat insulating material 22 is installed between the outer shell plate of the high temperature side wall space 20 and the inner shell 14 of the reactor vessel. This inner trunk 14+'! , is attached to the outer shell 15 at the upper part with a gas layer. Therefore, the outer shell 15 of the reactor vessel always serves as a cold plenum in a low temperature region. Furthermore, although the upper tube plate 4 and the inner body plate of the high temperature side wall space 20 become high temperature,
- There is no occurrence of thermal stress at high temperatures in both the secondary liquid sodium and the secondary liquid sodium. The lower tube plate 5 is at a low temperature like the secondary system liquid sodium at the secondary system inlet nozzle 7, and no thermal stress is generated.

炉心1及び電磁ポンプ2は、内側シュラウド3によって
保持されておシ、これは上部管板4及び下部管板5によ
って内胴14に固定されている。
The reactor core 1 and electromagnetic pump 2 are held by an inner shroud 3, which is fixed to an inner shell 14 by an upper tube sheet 4 and a lower tube sheet 5.

1磁ポンプ2の構造を第5図によ〕説明する。The structure of the 1-magnetic pump 2 will be explained with reference to FIG.

シ磁ポンプS″i、六1点のア二二うスリニアインダク
ヅヨンポンプを1列に組込み、数を増すことによって大
容量化を図っている。このアニュラスリニアインダクシ
ョンボ/プは、内・g31と円筒形の内部鉄心30の間
隙を一次系l夜体ナトリウムが通過することにより、流
速を得るものである。内管の外側には、軸方向に数列の
ブロック状の積層鉄心33が取付けらn、その中を周方
向にコイル32が巻かれている。このコイル内の電流を
操作することによシ、積層鉄心33内の磁界を調整し。
The annular linear induction pump S''i is equipped with 61 points of annular linear induction pumps in one row, and the capacity is increased by increasing the number of pumps.・Flow velocity is obtained by the primary sodium body passing through the gap between g31 and the cylindrical inner core 30. On the outside of the inner tube, there are several rows of block-shaped laminated cores 33 in the axial direction. Once installed, a coil 32 is wound circumferentially within the coil 32. By manipulating the current within this coil, the magnetic field within the laminated iron core 33 is adjusted.

更に、版本ナトリウム内の周方向’!11 a ’fc
調整し、結果として、敵本ナトリウムの流れ方向の流速
を変えることができる。内部鉄心30は、内管に内部鉄
心支持ビーム34により固定されている。この電磁ポン
プの内部は、内管31と電磁ポンプ上部板36.電磁ポ
ンプ外胴35、電磁ポンプ下部板37によシ密閉構造と
なっている。電磁ポンプの取付位置はコールドプレナム
に属するため、使用温度も300C〜400Cであり、
コイルの耐熱温度約700Cからみても十分に許容でき
る。
Furthermore, the circumferential direction within the printed version sodium! 11 a'fc
adjustment and, as a result, the streamwise flow rate of the sodium hydroxide can be varied. The inner core 30 is fixed to the inner tube by an inner core support beam 34. The inside of this electromagnetic pump includes an inner pipe 31 and an electromagnetic pump upper plate 36. The electromagnetic pump outer body 35 and the electromagnetic pump lower plate 37 form a sealed structure. Since the electromagnetic pump is installed in the cold plenum, the operating temperature is 300C to 400C.
Considering the coil's heat resistance temperature of approximately 700C, this is sufficiently permissible.

第6図に、原子f容器の詳細構造を示す。本構造で示す
ように、内側シュラウド3の上部は上部管板4と取付い
ておシ、上部管板4には一次側液体ナトリウムが通過す
る多数の伝熱管6が取付いている。また、上部管板は二
次側液体ナトリウムで満された高温側壁空間20の内側
胴板に取付きガス層で内胴14と結合し、更に、外胴1
5にY型形状で取付く構造となっている。外胴15の内
側は低温の側壁空間13でろり二次側液体す) IJウ
ムが充填しているgこの側壁空間13と高温側壁空間2
00間には断熱材22が充填されてお)、高温となった
二次側液体す) IJウムの熱流出を防いでいる。この
外胴の内側を低温領域にしていもため、原子炉容器の外
胴の設計を低温設計とすることができ、構造健全性の確
保が容易となっている。また、上部管板4を境界として
高温の一次側液体ナトリウム領域と高温の二次側液体ナ
トリウム領域が形成されるが両液体の′In度差耐重さ
いことから熱応力の発生はほとんどない。
FIG. 6 shows the detailed structure of the atomic f container. As shown in this structure, the upper part of the inner shroud 3 is attached to an upper tube plate 4, and a large number of heat transfer tubes 6 through which the primary liquid sodium passes are attached to the upper tube plate 4. Further, the upper tube plate is attached to the inner shell plate of the high temperature side wall space 20 filled with secondary liquid sodium, and is connected to the inner shell 14 through a gas layer.
5 in a Y-shape. The inside of the outer shell 15 is a low-temperature side wall space 13 filled with secondary liquid.
A heat insulating material 22 is filled between the holes to prevent the heat from flowing out of the high temperature secondary liquid. Since the inside of the outer shell is kept in a low-temperature region, the outer shell of the reactor vessel can be designed to have a low temperature, making it easy to ensure structural integrity. Further, although a high temperature primary liquid sodium region and a high temperature secondary liquid sodium region are formed with the upper tube plate 4 as a boundary, thermal stress hardly occurs because the two liquids have a higher weight resistance due to the difference in temperature.

これらの実施例によれば、循環ポンプとして、アニュラ
スリニアインダクションポンプタイプの電磁ポンプを数
個配置し、熱交換設備として伝熱管を炉心と並列に配置
しているため、従来のように循環ポンプを炉心と並列に
する必要がなくなシ、炉心1の下部に持ってくることが
できる。これにより、炉の径寸法短縮が図nる。また、
循環ループを形成するための炉内配管は不要となる。−
次系液体ナトリウムの熱交換器は伝熱管のみの設備で済
み同時に容積も小さくできる。さらに、原子f容器外胴
は低温領域となシ容器の健全性が増す。
According to these examples, several annulus linear induction pump type electromagnetic pumps are arranged as circulation pumps, and heat transfer tubes are arranged in parallel with the reactor core as heat exchange equipment, so it is not necessary to use circulation pumps as in the past. There is no need to place it in parallel with the reactor core, and it can be brought to the bottom of the reactor core 1. This results in a reduction in the diameter of the furnace. Also,
In-furnace piping to form a circulation loop becomes unnecessary. −
The secondary liquid sodium heat exchanger requires only heat transfer tubes, and the volume can be reduced at the same time. Furthermore, since the outer shell of the atomic f-container is in a low-temperature region, the integrity of the container increases.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、炉内配管をなくし原子炉容器を小製に
できるので、現地組立が不必要とな)工場における一体
裏作ができ、現地組立工数の低減と物量の低減が図れる
。これから建設費の低減が図れる。
According to the present invention, since the reactor vessel can be made smaller by eliminating piping inside the reactor, on-site assembly is not necessary, and integrated production can be performed at a factory, thereby reducing the number of on-site assembly man-hours and the amount of materials. Construction costs can now be reduced.

【図面の簡単な説明】 第1図は1本発明の一実施例の原子炉容器断面図、第2
因ないし第4図は、従来の原子炉容器の概略図、第5図
は、本発明に用いた電磁ポンプの斜視図、第6図は、本
発明の伝熱管まわシの構造組 1 刀 12.1ぢ1フルアム 23、枢しイ%Eip’>7’ 24ヘリカ1しコイ1し&(え邊些警 25−f、f’R心己管 2ろ、ボヅトブしツム 27、コー1しドブしすム 輩 3 口 25.ア醜配管 2g、frli1%炎護答 2ゾロ重不ムホ゛ン2゜ 第 5 回 b 3o、内佛411じ 31円臂 3″1.4tjIi制御丁仰J反 某 乙 ロ ア2 ti’tジ、材
[Brief Description of the Drawings] Figure 1 is a cross-sectional view of a nuclear reactor vessel according to an embodiment of the present invention;
4 are schematic diagrams of conventional reactor vessels, FIG. 5 is a perspective view of the electromagnetic pump used in the present invention, and FIG. 6 is a structural assembly of the heat exchanger tube holder of the present invention. .1《1 Fulham 23, Toshii %Eip'>7' 24 Helica 1 and Koi 1shi & (Ebebe Shoken 25-f, f'R Shinkokan 2ro, Bozutobushi Tsum 27, Ko 1shi Dobushisumu 3 Mouth 25. Ugly piping 2g, frli 1% flame protection answer 2 Zoro heavy weight hon 2゜ 5th b 3o, inner Buddha 411 ji 31 round arm 3'' 1.4 tj Ii control posture J reaction certain Otsu Roa 2 ti'tji, material

Claims (1)

【特許請求の範囲】 1、内部に炉心と熱交換設備をもつ高速増殖炉原子炉容
器において、 前記炉心の周囲に伝熱管を配置しその中を一次系ナトリ
ウムが流下して、二次系ナトリウムと熱交換を行なうも
のにおいて前記一次系ナトリウムが前記炉心の下部にあ
る電磁ポンプを通過し前記炉心に戻るルートを形成する
ことを特徴とする原子炉構造。 2、特許請求の範囲第1項において、原子炉容器壁は二
重壁であり、前記二次系ナトリウムの流入ルートとなっ
てコールドプレナムを形成することを特徴とする原子炉
構造。
[Claims] 1. In a fast breeder reactor reactor vessel having a reactor core and heat exchange equipment inside, a heat transfer tube is arranged around the core, through which the primary sodium flows down, and the secondary sodium A nuclear reactor structure in which the primary sodium passes through an electromagnetic pump located at the lower part of the reactor core and forms a route back to the reactor core. 2. A nuclear reactor structure according to claim 1, wherein the reactor vessel wall is a double wall and forms a cold plenum as an inflow route for the secondary sodium system.
JP61121088A 1986-05-28 1986-05-28 Nuclear reactor structure Pending JPS62278485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61121088A JPS62278485A (en) 1986-05-28 1986-05-28 Nuclear reactor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61121088A JPS62278485A (en) 1986-05-28 1986-05-28 Nuclear reactor structure

Publications (1)

Publication Number Publication Date
JPS62278485A true JPS62278485A (en) 1987-12-03

Family

ID=14802572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61121088A Pending JPS62278485A (en) 1986-05-28 1986-05-28 Nuclear reactor structure

Country Status (1)

Country Link
JP (1) JPS62278485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6944255B2 (en) * 2001-07-10 2005-09-13 Central Research Institute Of Electric Power Industry Nuclear reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6944255B2 (en) * 2001-07-10 2005-09-13 Central Research Institute Of Electric Power Industry Nuclear reactor

Similar Documents

Publication Publication Date Title
US11145424B2 (en) Direct heat exchanger for molten chloride fast reactor
US4235284A (en) Heat exchanger with auxiliary cooling system
JPH0585040B2 (en)
JPS62278485A (en) Nuclear reactor structure
JPH1130686A (en) Steam generator and cooling system for liquid-metal cooled reactor
JP4660125B2 (en) Intermediate heat exchanger with built-in electromagnetic pump
JP2539405B2 (en) Liquid metal cooling heat exchanger
JPH07260994A (en) Intermediate heat exchanger with built-in electromagnetic pump
JPS6057290A (en) Tank type fast breeder reactor
JPS6080788A (en) Fbr nuclear reactor structure
JP2022060701A (en) Atomic reactor
JPS62186101A (en) Steam generator
JPS62170891A (en) Steam generator
JPS6381294A (en) Tank type fast breeder reactor
JPS63193092A (en) Cooling device for liquid-metal cooling type reactor
JPH02128192A (en) Decentralized nuclear reactor
JPS62119301A (en) Steam generator
Salmon Parallel tube heat exchanger
JPS6078201A (en) Steam generating plant
JPH01217192A (en) Intermediate heat exchanger
GB2088545A (en) Parallel tube heat exchanger
JPH0666991A (en) Intermediate heat exchanger for fast breeder
JPH04268495A (en) Removing equipment for core decay heat
JPS5963590A (en) Tank type fast breeder
JPH07119901A (en) Steam generator