JPH0445520A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPH0445520A
JPH0445520A JP15426590A JP15426590A JPH0445520A JP H0445520 A JPH0445520 A JP H0445520A JP 15426590 A JP15426590 A JP 15426590A JP 15426590 A JP15426590 A JP 15426590A JP H0445520 A JPH0445520 A JP H0445520A
Authority
JP
Japan
Prior art keywords
raw material
container
pressure
reduced
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15426590A
Other languages
Japanese (ja)
Inventor
Michio Takahashi
道生 高橋
Hisashi Koaizawa
久 小相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP15426590A priority Critical patent/JPH0445520A/en
Publication of JPH0445520A publication Critical patent/JPH0445520A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently grow a thin film in a state where the speed and remaining element concentration in a concentration boundary layer are reduced in a moment and the occurrence of surface roughening is prevented by tentatively reducing the pressure in a reactive container when the raw material gas fed to the container is switched to another. CONSTITUTION:When an AlGaAs layer is formed on a GaAs layer, the AlGaAs layer is formed by successively supplying each raw material gas of trimethyl aluminum, trimethyl gallium, and arsine from each raw material container 5-7 after pressure control is made by means of a rotary pump 13 and pressure regulating valve 14 so that the growing pressure in a reactive container 1 can become 100Torr. When the raw material gases are supplied, a valve 14 is fully opened and the pressure in the container 1 is reduced to 50Torr. Since the pressure in the container 1 is reduced to 50Torr and returned to the 100Torr immediately before the next raw material is supplied in such way, the thickness of the boundary surface between both layers can be reduced to about 3Angstrom from about 16Angstrom in a several seconds of growth stopping time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、原料ガスを送って基板の表面に薄膜を形成す
る気相成長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vapor phase growth method for forming a thin film on the surface of a substrate by sending a source gas.

[従来の技術] 気相成長方法では、一般に、反応容器内で加熱されてい
る基板に原料ガスをキャリアガスと共に供給し、該基板
上に薄膜を成長させている。気相成長方法は、反応容器
の形状や原料ガスの供給方法により横型、縦型、チムニ
−型などに分類されている。
[Prior Art] In a vapor phase growth method, a thin film is generally grown on the substrate by supplying a raw material gas together with a carrier gas to a substrate that is heated within a reaction vessel. The vapor phase growth method is classified into horizontal, vertical, chimney, etc. depending on the shape of the reaction vessel and the method of supplying raw material gas.

第1図は、横型の気相成長装置の例を示したものである
FIG. 1 shows an example of a horizontal vapor phase growth apparatus.

図において、1は横向きに設置されている反応容器、2
は反応容器1内に設置されているサセプタ、3はサセプ
タ2上に支持されている基板、4はサセプタ2と共に基
板3を加熱する加熱コイル、5〜7はガス供給管8を経
て反応容器1に原料ガスを送る原料容器、9〜11は原
料ガスの供給の切換えを行う切換え弁、12は反応容器
1から排気を行う排気管、13は排気管12に接続され
ているロータリーポンプ、14は排気管12に接続され
ている圧力コントロール弁、15は排気管12に接続さ
れている圧力計である。
In the figure, 1 is a reaction vessel installed horizontally, 2
3 is a susceptor installed in the reaction vessel 1, 3 is a substrate supported on the susceptor 2, 4 is a heating coil that heats the substrate 3 together with the susceptor 2, and 5 to 7 are connected to the reaction vessel 1 through gas supply pipes 8. 9 to 11 are switching valves for switching the supply of raw material gas, 12 is an exhaust pipe for exhausting air from the reaction vessel 1, 13 is a rotary pump connected to the exhaust pipe 12, and 14 is a rotary pump connected to the exhaust pipe 12; A pressure control valve 15 is connected to the exhaust pipe 12, and a pressure gauge 15 is connected to the exhaust pipe 12.

このような気相成長装置では、加熱コイル4で反応容器
1内の基板3を加熱し、かかる状態の反応容器1内に原
料容器5〜7から切換え弁9〜11を経て原料ガスを供
給し、基板3の表面に半導体の薄膜を成長させる。
In such a vapor phase growth apparatus, the substrate 3 in the reaction vessel 1 is heated by the heating coil 4, and the raw material gas is supplied into the reaction vessel 1 in this state from the raw material vessels 5 to 7 via the switching valves 9 to 11. , a semiconductor thin film is grown on the surface of the substrate 3.

一般に、半導体の薄膜は、その用途によって組成の違う
複数の層で形成される。そのため原料容器は複数個あり
、各層を形成するのに必要な原料ガスが切換え弁9〜1
1の切換えによって反応容器1に供給される。
Generally, a semiconductor thin film is formed of a plurality of layers having different compositions depending on its use. Therefore, there are multiple raw material containers, and the raw material gas necessary to form each layer is supplied to the switching valves 9 to 1.
1 is supplied to the reaction vessel 1.

この場合、サセプタ2の表面には、第2図に示すように
、原料ガスにより速度及び濃度境界層16とよばれるガ
ス層が存在し、原料ガスはこの速度及び濃度境界層16
の上方を流れる。この時、原料ガス分子は速度及び濃度
境界層16の中を拡散して基板3に達し、該基板3上に
薄膜を形成する。
In this case, a gas layer called a velocity and concentration boundary layer 16 exists on the surface of the susceptor 2 due to the raw material gas, as shown in FIG.
flows above. At this time, the source gas molecules diffuse through the velocity and concentration boundary layer 16 to reach the substrate 3 and form a thin film on the substrate 3.

ここで組成の違う薄膜の層を続けて製造しようとする場
合、この速度及び濃度境界層16中の残留元素が問題と
なる。即ち、如何に迅速に切換え弁9〜11を切換えて
違った種類の原料ガスを反応容器1内に供給したとして
も、速度及び濃度境界層16中の残留原料分子はすぐに
は切換わらず、通常その切換えに10秒から数十秒を要
する。その間は、残留元素と新たに供給された元素との
混合した薄膜が形成されることになる。つまり、両層の
界面は両元素の交り合ったはっきりとしないものとなっ
てしまう。
If layers of thin films with different compositions are to be produced successively, this speed and the remaining elements in the concentration boundary layer 16 become a problem. That is, no matter how quickly the switching valves 9 to 11 are switched to supply a different type of raw material gas into the reaction vessel 1, the remaining raw material molecules in the velocity and concentration boundary layer 16 are not switched immediately. Normally, the switching takes 10 seconds to several tens of seconds. During this time, a thin film containing a mixture of residual elements and newly supplied elements is formed. In other words, the interface between the two layers becomes unclear, with the two elements intermingling.

この現象は、とりわけ発光・受光素子を製造する場合に
、寿命や信頼性の面で問題となる。
This phenomenon poses a problem in terms of lifespan and reliability, especially when manufacturing light emitting/light receiving elements.

これを防ぐため、従来は薄膜層の組成を変えるときに数
分間にわたって原料ガスの供給を止める方法をとってい
た。
To prevent this, conventional methods have been used to stop the supply of raw material gas for several minutes when changing the composition of the thin film layer.

[発明が解決しようとする課題] しかしながら、このような原料ガスの供給を止める方法
では、揮発性の高い原料を含む場合に、その元素が解離
して薄膜に表面荒れが発生する問題点があった。また、
この方法では原料ガスの切換え毎に長い休み時間を取ら
なければならないので、作業能率が悪い問題点があった
[Problems to be Solved by the Invention] However, with this method of stopping the supply of raw material gas, there is a problem that when a highly volatile raw material is included, the element dissociates and the surface of the thin film becomes rough. Ta. Also,
This method has the problem of poor work efficiency because it requires a long rest time each time the source gas is switched.

本発明の目的は、表面荒れを発生せず、且つ能率よく薄
膜を成長させることができる気相成長方法を提供するこ
とにある。
An object of the present invention is to provide a vapor phase growth method that does not cause surface roughness and can efficiently grow a thin film.

[課題を解決するための手段] 上記の目的を達成するための本発明の詳細な説明すると
、本発明は反応容器内に原料ガスを送って該反応容器内
でサセプタに支持されている基板に薄膜を形成する気相
成長方法において、前記反応容器内に送る前記原料ガス
の種類を切換える際に、該反応容器内を一旦減圧し、し
かる後火の原料ガスを送ることを特徴とする。
[Means for Solving the Problems] To explain in detail the present invention for achieving the above-mentioned object, the present invention supplies a raw material gas into a reaction vessel to a substrate supported by a susceptor within the reaction vessel. The vapor phase growth method for forming a thin film is characterized in that when switching the type of the source gas to be sent into the reaction vessel, the pressure inside the reaction vessel is once reduced, and then the heated source gas is sent.

[作用] このように反応容器内に送る原料ガスの切換え時に、該
反応容器内を一旦減圧すると、速度及び濃度境界層はガ
スの流れの状態に敏感であり、このため該速度及び濃度
境界層の厚さが激減する。
[Function] When switching the raw material gas to be sent into the reaction vessel, once the pressure inside the reaction vessel is reduced, the velocity and concentration boundary layer are sensitive to the gas flow conditions, and therefore the velocity and concentration boundary layer are The thickness of the material decreases dramatically.

この方法によれば、速度及び濃度境界層中の残留元素濃
度を瞬時に低減できる。
According to this method, the velocity and concentration of residual elements in the concentration boundary layer can be instantly reduced.

しかる後、次の原料ガスを反応容器内に供給すると、薄
膜の界面層を薄くすることができる。
Thereafter, by supplying the next raw material gas into the reaction vessel, the interface layer of the thin film can be made thinner.

[実施例] 以下、本発明の実施例を第1図及び第2図を参照して詳
細に説明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to FIGS. 1 and 2.

本発明者等は、薄膜の界面の急峻性が速度及び濃度境界
層中の残留元素の量に依存していることに着目し、その
量を減らす方法を検討していた。
The present inventors have focused on the fact that the steepness of the interface of a thin film depends on the velocity and the amount of residual elements in the concentration boundary layer, and have been studying methods to reduce the amount.

その結果、反応容器1内の圧力を減少させると、速度及
び濃度境界層16の厚さが激減することが判明した。こ
の方法によれば、速度及び濃度境界層16中の残留元素
濃度を瞬時に低減できる。
As a result, it was found that when the pressure inside the reaction vessel 1 is reduced, the velocity and the thickness of the concentration boundary layer 16 are drastically reduced. According to this method, the residual element concentration in the velocity and concentration boundary layer 16 can be instantly reduced.

次に、従来の方法と本発明の方法による薄膜の界面の厚
さの比較について説明する。例えば、GaAs系の薄膜
を製造する場合、原料容器5からトリメチルアルミニウ
ム(TMA)を供給し、原料容器6からトリメチルガリ
ウム(TMG)を供給し、原料容器7からアルシン(A
 s H3)を供給する。
Next, a comparison of the thickness of the thin film interface between the conventional method and the method of the present invention will be described. For example, when manufacturing a GaAs-based thin film, trimethylaluminum (TMA) is supplied from raw material container 5, trimethyl gallium (TMG) is supplied from raw material container 6, and arsine (A) is supplied from raw material container 7.
s H3).

ここで、GaAs層上にAJ2GaAS層を形成する場
合、従来方法では、反応容器1内の成長圧力が100T
orrになるようにロータリーポンプ13と圧力コント
ロール弁14で圧力調整を行い、原料容器5〜7から各
原料ガスを切換え弁9〜11の単なる切換えでそれぞれ
1Occ/分、  20cc/分。
Here, when forming the AJ2GaAS layer on the GaAs layer, in the conventional method, the growth pressure in the reaction vessel 1 is 100T.
The pressure is adjusted using the rotary pump 13 and the pressure control valve 14 so that the flow rate is 10cc/min and 20cc/min, respectively, by simply switching the switching valves 9-11 to feed each raw material gas from the raw material containers 5-7.

100cc/分供給し、AβGaAs層を形成した。It was supplied at 100 cc/min to form an AβGaAs layer.

この場合、従来方法では、GaAs層とAJ2GaAs
層との界面の厚さは、約16人であった。
In this case, in the conventional method, the GaAs layer and the AJ2GaAs
The thickness of the interface with the layer was approximately 16 mm.

これに対し、本発明の方法では、切換え弁の切換えで次
の原料ガスを供給する直前に、圧力コントロール弁14
を全開とし、反応容器1内の圧力を50Torrに減圧
し、しかる後100Torrに戻してから次の原料ガス
の供給を行った。
In contrast, in the method of the present invention, immediately before supplying the next raw material gas by switching the switching valve, the pressure control valve 14
was fully opened, the pressure inside the reaction vessel 1 was reduced to 50 Torr, and then returned to 100 Torr before the next raw material gas was supplied.

このようにしてA、ffGaAs層の形成を行った場合
のGaAs層とA、gGaAs層の界面の厚さは約3人
であった。但し、この場合は解離圧の高いアルシンの飛
散を防ぐためアルシンガスは流し続けた。また、圧力変
更のための成長停止時間は、数秒程度であった。
When the A, ffGaAs layer was formed in this manner, the thickness of the interface between the GaAs layer and the A, gGaAs layer was about 3 layers. However, in this case, arsine gas was kept flowing to prevent arsine, which has a high dissociation pressure, from scattering. Further, the growth stop time for changing the pressure was about several seconds.

なお、本発明の方法は、横型以外の方法にも同様に適用
できるものである。
Note that the method of the present invention can be similarly applied to methods other than the horizontal method.

[発明の効果コ 以上説明したように本発明に係る気相成長方法では、反
応容器に供給する原料ガスの切換えを行う際に、該反応
容器内を一旦減圧するので、速度及び濃度境界層の厚さ
を激減させ、該速度及び濃度境界層中の残留元素濃度を
瞬時に低減させることができる。従って、本発明によれ
ば、簡単な方法で薄膜の界面を充分な急峻性で制御する
ことができる。特に本発明の方法では、減圧時間は短く
てよいので、作業能率を低下させずに、薄膜界面の充分
な急峻性が得られる利点がある。
[Effects of the Invention] As explained above, in the vapor phase growth method according to the present invention, when switching the raw material gas supplied to the reaction vessel, the pressure inside the reaction vessel is temporarily reduced, so that the speed and the concentration boundary layer are reduced. The thickness can be drastically reduced, and the residual element concentration in the velocity and concentration boundary layer can be instantly reduced. Therefore, according to the present invention, the interface of the thin film can be controlled with sufficient steepness using a simple method. In particular, the method of the present invention has the advantage that sufficient steepness of the thin film interface can be obtained without reducing work efficiency, since the decompression time may be short.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る気相成長方法を実施する装置の一
例の概略構成を示す縦断面図、第2図は反応容器内の断
面図である。 1・・・反応容器、2・・・サセプタ、3・・・基板、
4・・・加熱コイル、5〜7・・・原料容器、8・・・
ガス供給管、9〜11・・・切換え弁、12・・・排気
管、13・・・ロータリーポンプ、14・・・圧力コン
トロール弁、15・・・圧力計、16・・・速度及び濃
度境界層。
FIG. 1 is a vertical sectional view showing a schematic configuration of an example of an apparatus for carrying out the vapor phase growth method according to the present invention, and FIG. 2 is a sectional view of the inside of a reaction vessel. 1... Reaction container, 2... Susceptor, 3... Substrate,
4... Heating coil, 5-7... Raw material container, 8...
Gas supply pipe, 9-11...Switching valve, 12...Exhaust pipe, 13...Rotary pump, 14...Pressure control valve, 15...Pressure gauge, 16...Speed and concentration boundary layer.

Claims (1)

【特許請求の範囲】[Claims]  反応容器内に原料ガスを送って該反応容器内でサセプ
タに支持されている基板に薄膜を形成する気相成長方法
において、前記反応容器内に送る前記原料ガスの種類を
切換える際に、該反応容器内を一旦減圧し、しかる後次
の原料ガスを送ることを特徴とする気相成長方法。
In a vapor phase growth method that sends a raw material gas into a reaction vessel to form a thin film on a substrate supported by a susceptor within the reaction vessel, when switching the type of the raw material gas sent into the reaction vessel, the reaction A vapor phase growth method characterized by first reducing the pressure inside the container and then sending the next raw material gas.
JP15426590A 1990-06-13 1990-06-13 Vapor growth method Pending JPH0445520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15426590A JPH0445520A (en) 1990-06-13 1990-06-13 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15426590A JPH0445520A (en) 1990-06-13 1990-06-13 Vapor growth method

Publications (1)

Publication Number Publication Date
JPH0445520A true JPH0445520A (en) 1992-02-14

Family

ID=15580399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15426590A Pending JPH0445520A (en) 1990-06-13 1990-06-13 Vapor growth method

Country Status (1)

Country Link
JP (1) JPH0445520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100272146B1 (en) * 1996-04-03 2000-12-01 니시무로 타이죠 Method of manafacturing semiconductor device, apparatus of manufacturing the same, and method of cleaning the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100272146B1 (en) * 1996-04-03 2000-12-01 니시무로 타이죠 Method of manafacturing semiconductor device, apparatus of manufacturing the same, and method of cleaning the same

Similar Documents

Publication Publication Date Title
US5483919A (en) Atomic layer epitaxy method and apparatus
JP2797233B2 (en) Thin film growth equipment
JPH01296613A (en) Method of vapor growth of iii-v compound semiconductor
JP2015015429A (en) Vapor phase growth apparatus and vapor phase growth method
JPH0445520A (en) Vapor growth method
EP0196170B1 (en) Organic metallic compound pyrolysis vapor growth apparatus
JP2008218760A (en) Manufacturing method for semiconductor device, and manufacturing apparatus for semiconductor device
JPH01130519A (en) Mocvd crystal growing apparatus
JPH05206033A (en) Cvd film deposition method and apparatus
JPH0574724A (en) Method for growth of atomic layer of aluminum compound
US20130295283A1 (en) Chemical vapor deposition apparatus with multiple inlets for controlling film thickness and uniformity
JP2004363456A (en) Method and apparatus for manufacturing semiconductor device
JPH02129913A (en) Manufacture of semiconductor device
JP2773849B2 (en) Vapor phase growth method and photoexcited vapor phase epitaxy apparatus
US10501849B2 (en) Film forming apparatus and film forming method
JPH04240198A (en) Vapor phase growth method for thin film
JPS593099A (en) Growth method of compound semiconductor crystal
JPH02230720A (en) Vapor growth method and apparatus for compound semiconductor
JPH10223536A (en) Chemical vapor deposition device
JPS60131968A (en) Vapor growth deposition device
JP2002313731A (en) Organic metal vapor growth equipment
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JPH09246194A (en) Container of organic metal compound material and its composite container, and organic metal chemical gas phase growing device
JPH01313390A (en) Vertical vapor growth device for organometallic compound
JPS63257216A (en) Apparatus for manufacturing semiconductor crystal