JPH0445458B2 - - Google Patents

Info

Publication number
JPH0445458B2
JPH0445458B2 JP22506188A JP22506188A JPH0445458B2 JP H0445458 B2 JPH0445458 B2 JP H0445458B2 JP 22506188 A JP22506188 A JP 22506188A JP 22506188 A JP22506188 A JP 22506188A JP H0445458 B2 JPH0445458 B2 JP H0445458B2
Authority
JP
Japan
Prior art keywords
mold
molding
layer
optical element
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22506188A
Other languages
Japanese (ja)
Other versions
JPH0274531A (en
Inventor
Masahiro Katashiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP22506188A priority Critical patent/JPH0274531A/en
Publication of JPH0274531A publication Critical patent/JPH0274531A/en
Publication of JPH0445458B2 publication Critical patent/JPH0445458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/20Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、光学素子成形用型に関する。 〔従来の技術〕 一般に、光学ガラスを加熱プレスにより成形し
て所望の光学素子を得ることが広く行われてい
る。ところで、この加熱プレス手段による場合
は、成形用型の離型性の良いことが非常に重要
で、通常、離型性は型表面の材料に対するガラス
濡れ性に大きく依存している。 従来、例えば特開昭62−87423号公報に開示さ
れるように、少なくとも成形面を窒化クロムによ
り形成した光学素子成形用型が知られている。こ
の光学素子成形用型は、ガラスが濡れにくいため
に良好な離型性を有し、実際には5000シヨツト以
上の成形を経ても初期性能を維持している。 〔発明が解決しようとする課題〕 しかし、上記従来の光学素子成形用型は、径が
10mm程度までの小径の光学素子を得る場合には適
当であるが、さらに大径の光学素子を得る場合に
は問題が生じてしまつた。すなわち、大径の光学
素子を加熱プレスにより成形する場合、ガラスの
加熱中の変形を防止するために、小径の光学素子
を得る場合のように加熱温度を上げることができ
ず、粘度の大きい領域で成形しなければならな
い。このために、プレス時には、プレス圧力や型
温度によつてより大きなエネルギーをガラスに与
えなければならない。したがつて、ガラスを構成
する化合物の結合が切れてしまい、成形用型へ付
着し易くなる。これがシヨツト毎に繰り返される
と、ついには焼付きという現象が生じてしまつ
た。 本発明は、かかる従来の問題点に鑑みてなされ
たものであつて、大径の光学素子を加熱プレスに
より成形する場合であつても、長期間焼付きを生
じない光学素子成形用型を提供することを目的と
する。 〔課題を解決するための手段〕 上記目的を達成するために、本発明は、少なく
とも成形面の最表層がクロム(Cr)および窒素
(N)を主成分とした材料からなる光学素子成形
用型を酸化可能な雰囲気中で加熱することによ
り、前記最表層に三酸化二クロム(Cr2O3)を形
成して光学素子成形用型を構成した。 ガラスが濡れにくい材料の条件としては、第一
に熱力学的に安定で不活性でなければならない。
熱力学的に安定か否かは、標準生成Gibbsエネル
ギーにより判断できる。また、第二に型最表面の
原子のイオン性が小さい方が良い。イオン性が大
きければ、それだけ活性であり、ガラスが付着し
易くなるからである。イオン性は、金属酸化物の
場合、分極が大きい方(金属のイオン半径が小さ
い方)が小さくなる。さらに、成形用型として満
足できるためには、硬さや密着性の点でも良好で
なければならない。 表1に6種の物質の標準生成Gibbsエネルギー
(ΔG)を示し、表2に3種のイオンのイオン半
径を示す。
[Industrial Field of Application] The present invention relates to a mold for molding an optical element. [Prior Art] In general, it is widely practiced to mold optical glass by hot pressing to obtain a desired optical element. By the way, when using this hot press means, it is very important that the mold has good mold releasability, and the mold releasability usually depends largely on the wettability of the glass to the material on the mold surface. Conventionally, as disclosed in, for example, Japanese Unexamined Patent Publication No. 62-87423, there has been known a mold for molding an optical element in which at least the molding surface is made of chromium nitride. This mold for molding optical elements has good mold releasability because the glass does not easily wet, and in fact maintains its initial performance even after more than 5,000 molding shots. [Problem to be solved by the invention] However, the conventional mold for molding optical elements described above has a diameter of
Although it is suitable for obtaining optical elements with a small diameter of up to about 10 mm, problems have arisen when obtaining optical elements with an even larger diameter. In other words, when forming a large-diameter optical element by hot pressing, in order to prevent the glass from deforming during heating, the heating temperature cannot be raised as much as when forming a small-diameter optical element, and the viscosity is high. must be molded. For this reason, during pressing, greater energy must be applied to the glass through press pressure and mold temperature. Therefore, the bonds of the compounds constituting the glass are broken, making them more likely to adhere to the mold. When this was repeated for each shot, a phenomenon called burn-in finally occurred. The present invention has been made in view of such conventional problems, and provides a mold for molding an optical element that does not cause seizure for a long period of time even when a large diameter optical element is molded by hot press. The purpose is to [Means for Solving the Problems] In order to achieve the above object, the present invention provides an optical element molding die in which at least the outermost layer of the molding surface is made of a material containing chromium (Cr) and nitrogen (N) as main components. was heated in an oxidizing atmosphere to form dichromium trioxide (Cr 2 O 3 ) on the outermost layer to form a mold for molding an optical element. The first requirement for a material that does not easily wet glass is that it must be thermodynamically stable and inert.
Whether or not it is thermodynamically stable can be determined by the standard Gibbs energy of formation. Secondly, it is better that the atoms on the outermost surface of the mold have a smaller ionicity. This is because the greater the ionicity, the more active it is, and the easier it is for glass to adhere to it. In the case of metal oxides, the ionicity is smaller as the polarization is larger (the ionic radius of the metal is smaller). Furthermore, in order to be satisfactory as a mold, it must have good hardness and adhesion. Table 1 shows the standard Gibbs energies of formation (ΔG) for six types of substances, and Table 2 shows the ionic radii of three types of ions.

【表】【table】

〔作 用〕[Effect]

上記構成の本発明の光学素子成形用型において
は、少なくとも成形面の最表層が、CrN等を酸化
してなるCr2O3により形成されているので、大径
の光学素子を得る場合でも長期間焼付きを生じる
ことがない。 〔実施例〕 (第1実施例) 超硬合金により型基材を形成し、径14mm、R46
に鏡面加工した成形面にCrN層をスパツタ法によ
り形成した。そのCrN層の膜厚は5000Åであつ
た。次に、その型を電気炉に入れ、大気中600℃
で2時間加熱し、CrN層の最表部を酸化させて
Cr2O3層とした。このようにして得られた光学素
子成形用型を第1図に示す。第1図において、1
は型基材、2は成形面、3はCrN層、4はCr2O3
層である。また、第2図にはこの光学素子成形用
型のX線回折結果を示す。第2図から判るよう
に、Cr2O3が生成されている。さらに、オージエ
電子分光の深さ方向分析の結果、Cr2O3層4の厚
さは約120Åであつた。 なお、本実施例の光学素子成形用型を用いて光
学ガラスを成形したところ、5000シヨツト以上経
過しても良好な離型性を示し、ガラスの焼付きは
発生しなかつた。また、5000シヨツトの間に、フ
ツ酸をCr2O3層4の表面に接触させる試験を行つ
たが、何ら表面の劣化は認められなかつた。 (第2実施例) 超硬合金により型基材を形成し、径14mm、R46
に鏡面加工した成形面にCr層をイオンビームス
パツタ法により形成した。次に、そのCr層の上
にCrN層をイオンビームスパツタ法により形成し
た。Cr層とCrN層とを合わせた膜厚は5000Åで
あつた。ここに、Cr層を形成したのは、型基材
とCrN層との密着性を向上させるためである。 その後、上記型を電気炉に入れ、N2ガス雰囲
気中600℃で4時間加熱し、CrN層の最表部を酸
化させてCr2O3層とした。このCr2O3層の厚さは
約60Åであつた。本実施例においては、N2ガス
雰囲気中で加熱を行うが、N2ガス雰囲気であつ
ても水分が含まれているため、その水分が酸化剤
となつてCr2O3層を形成することができる。 なお、本実施例の光学素子成形用型を用いて光
学ガラスを成形したところ、第1実施例のものと
同様に、良好な離型性を有し、ガラスの焼付きは
生じなかつた。また、第1実施例の場合と同様に
フツ酸試験を行つたが、何ら表面劣化は認められ
なかつた。 (第3実施例) SiC焼結体により型基材を形成し、径18mm、
R120に鏡面加工した成形面にCrN層をイオンプ
レーテイング法により形成した。そのCrN層の膜
厚は7000Åであつた。次に、その型を電気炉に入
れ、Arガス雰囲気中700℃で2時間加熱し、CrN
層の最表部を酸化させてCr2O3層とした。この
Cr2O3層の厚さは約150Åであつた。本実施例に
おいては、Arガス雰囲気中で加熱を行うが、N2
ガスの場合と同様に水分が存在するため、Cr2O3
層を形成することができる。 なお、本実施例の光学素子成形用型のCr2O3
表面(成形面)における硬さを微小硬度計により
測定したところ、Hv=1500Kgf/mm2(25gf荷重)
であり、良好な硬さを有していた。また、光学ガ
ラスを成形したところ、第1実施例と同様に良好
な離型性を有しており、ガラスの焼付きは生じな
かつた。 〔発明の効果〕 以上のように、本発明の光学素子成形用型によ
れば、少なくとも成形面の最表層をCrおよびN
を主成分とした材料を加熱酸化してCr2O3により
形成しているので、大径の光学素子を成形する場
合であつても、離型性が良好でフツ酸によるガラ
ス成分除去も容易に行え、また十分な表面硬度を
有するとともに密着性も良好であり、長期間使用
可能となる。
In the optical element molding mold of the present invention having the above configuration, at least the outermost layer of the molding surface is formed of Cr 2 O 3 made by oxidizing CrN etc. No burn-in occurs for a long time. [Example] (First example) The mold base material was made of cemented carbide, and the diameter was 14 mm and R46.
A CrN layer was formed on the mirror-finished molding surface by sputtering. The thickness of the CrN layer was 5000 Å. Next, the mold was placed in an electric furnace and heated to 600℃ in the atmosphere.
Heated for 2 hours to oxidize the topmost part of the CrN layer.
It was made into 3 layers of Cr 2 O. The mold for molding an optical element thus obtained is shown in FIG. In Figure 1, 1
is the mold base material, 2 is the molding surface, 3 is the CrN layer, 4 is Cr 2 O 3
It is a layer. Furthermore, FIG. 2 shows the results of X-ray diffraction of this mold for molding an optical element. As can be seen from FIG. 2, Cr 2 O 3 is produced. Further, as a result of depth direction analysis using Auger electron spectroscopy, the thickness of the Cr 2 O 3 layer 4 was approximately 120 Å. When optical glass was molded using the mold for molding an optical element of this example, good mold releasability was exhibited even after 5,000 shots or more, and no seizure of the glass occurred. Further, a test was conducted in which the surface of the Cr 2 O 3 layer 4 was brought into contact with hydrofluoric acid during 5000 shots, but no surface deterioration was observed. (Second example) The mold base material is made of cemented carbide, diameter 14 mm, R46
A Cr layer was formed on the mirror-finished molding surface by ion beam sputtering. Next, a CrN layer was formed on the Cr layer by ion beam sputtering. The combined thickness of the Cr layer and CrN layer was 5000 Å. The reason why the Cr layer was formed here was to improve the adhesion between the mold base material and the CrN layer. Thereafter, the mold was placed in an electric furnace and heated at 600° C. for 4 hours in an N 2 gas atmosphere to oxidize the outermost part of the CrN layer to form a Cr 2 O 3 layer. The thickness of this Cr 2 O 3 layer was about 60 Å. In this example, heating is performed in an N 2 gas atmosphere, but even in an N 2 gas atmosphere, water is contained, so the water becomes an oxidizing agent and forms a Cr 2 O 3 layer. I can do it. Note that when optical glass was molded using the mold for molding an optical element of this example, it had good mold releasability and no seizure occurred in the glass, similar to that of the first example. Further, a hydrofluoric acid test was conducted in the same manner as in the first example, but no surface deterioration was observed. (Third Example) A mold base material was formed from a SiC sintered body, and the diameter was 18 mm.
A CrN layer was formed on the mirror-finished R120 molding surface by ion plating. The thickness of the CrN layer was 7000 Å. Next, the mold was placed in an electric furnace and heated at 700°C for 2 hours in an Ar gas atmosphere.
The outermost part of the layer was oxidized to form three Cr 2 O layers. this
The thickness of the Cr 2 O 3 layer was approximately 150 Å. In this example, heating is performed in an Ar gas atmosphere, but N 2
As with gases, moisture is present, so Cr 2 O 3
layers can be formed. In addition, when the hardness of the Cr 2 O 3 layer surface (molding surface) of the optical element mold of this example was measured using a microhardness meter, Hv = 1500Kgf/mm 2 (25gf load)
and had good hardness. Furthermore, when the optical glass was molded, it had good mold releasability similar to the first example, and no seizure of the glass occurred. [Effects of the Invention] As described above, according to the mold for molding an optical element of the present invention, at least the outermost layer of the molding surface is made of Cr and N.
Since it is formed from Cr 2 O 3 by heating and oxidizing a material whose main component is It also has sufficient surface hardness and good adhesion, making it usable for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光学素子成形用型の第1実施
例を示す縦断面図、第2図は第1図に示す光学素
子成形用型のX線回折結果を示すチヤートであ
る。 1…型基材、2…成形面、3…CrN層、4…
Cr2O3層。
FIG. 1 is a longitudinal sectional view showing a first embodiment of the mold for molding an optical element of the present invention, and FIG. 2 is a chart showing the results of X-ray diffraction of the mold for molding an optical element shown in FIG. 1... Mold base material, 2... Molding surface, 3... CrN layer, 4...
Cr2O 3 layers.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも成形面の最表層がクロムおよび窒
素を主成分とした材料からなる光学素子成形用型
を酸化可能な雰囲気中で加熱することにより、前
記最表層に三酸化二クロムを形成したことを特徴
とする光学素子成形用型。
1. Dichromium trioxide is formed on the outermost layer by heating an optical element molding mold in which at least the outermost layer of the molding surface is made of a material mainly composed of chromium and nitrogen in an oxidizing atmosphere. A mold for molding optical elements.
JP22506188A 1988-09-08 1988-09-08 Mold for molding optical elements Granted JPH0274531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22506188A JPH0274531A (en) 1988-09-08 1988-09-08 Mold for molding optical elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22506188A JPH0274531A (en) 1988-09-08 1988-09-08 Mold for molding optical elements

Publications (2)

Publication Number Publication Date
JPH0274531A JPH0274531A (en) 1990-03-14
JPH0445458B2 true JPH0445458B2 (en) 1992-07-24

Family

ID=16823426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22506188A Granted JPH0274531A (en) 1988-09-08 1988-09-08 Mold for molding optical elements

Country Status (1)

Country Link
JP (1) JPH0274531A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199035A (en) * 1989-01-30 1990-08-07 Toshiba Tungaloy Co Ltd Molding of optical part
JP2612627B2 (en) * 1990-01-22 1997-05-21 キヤノン株式会社 Mold for optical element molding
JP2002097029A (en) * 2000-09-22 2002-04-02 Olympus Optical Co Ltd Forming die for optical element
JP5042769B2 (en) * 2007-10-18 2012-10-03 オリンパス株式会社 OPTICAL ELEMENT MOLDING MANUFACTURING METHOD AND OPTICAL ELEMENT MOLDING MOLD

Also Published As

Publication number Publication date
JPH0274531A (en) 1990-03-14

Similar Documents

Publication Publication Date Title
CA1214230A (en) High resistance film resistor and method of making the same
US4690872A (en) Ceramic heater
JPH0445458B2 (en)
JPS6357392B2 (en)
GB2047151A (en) Joining silicon nitride based bodies
US2820727A (en) Method of metallizing ceramic bodies
EP0200568A3 (en) Refractory composite material and method of producing material
JPH0684726A (en) Holder for electronic parts chip and formation of electrode of electronic parts chip using it
JPS61100476A (en) Thermal head and manufacture thereof
EP0305746B1 (en) Method for the production of mechanical parts provided with a wear- and/or corrosion-resistant coating
JP2746430B2 (en) Mold for optical element molding
JPH02129035A (en) Mold for molding optical element
JPH03259419A (en) Maufacture of magnetic disk substrate comprising titanium
JP2723144B2 (en) Mold for optical element molding
US3455023A (en) Silver-carbon brush block and method of making same
JPS58145669A (en) Method of bonding ceramics to copper
JP4010691B2 (en) Method for producing steel material with surface modified layer
JP2732863B2 (en) Mold for optical element molding
WO1996005332A2 (en) Coated material and method of its production
JPS6421062A (en) Al-cr-alloy plated metallic material having high corrosion resistance
JPH0361616B2 (en)
JPH075394B2 (en) Jig for thermal pressure welding
JPH02184577A (en) Ceramics joined member
JPS5816583B2 (en) Manufacturing method of electron emitting hot cathode
JPH03131001A (en) Resistance temperature sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees