JPH0274531A - Mold for molding optical elements - Google Patents

Mold for molding optical elements

Info

Publication number
JPH0274531A
JPH0274531A JP22506188A JP22506188A JPH0274531A JP H0274531 A JPH0274531 A JP H0274531A JP 22506188 A JP22506188 A JP 22506188A JP 22506188 A JP22506188 A JP 22506188A JP H0274531 A JPH0274531 A JP H0274531A
Authority
JP
Japan
Prior art keywords
mold
molding
layer
optical element
optical elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22506188A
Other languages
Japanese (ja)
Other versions
JPH0445458B2 (en
Inventor
Masahiro Katashiro
雅浩 片白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP22506188A priority Critical patent/JPH0274531A/en
Publication of JPH0274531A publication Critical patent/JPH0274531A/en
Publication of JPH0445458B2 publication Critical patent/JPH0445458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/20Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To provide molds for molding optical elements without seizing for a long period of time by heating the molding molds which are made of a material containing Cr and N as major components on their molding surface, in an oxidative atmosphere, to form Cr2O3 on the uppermost layer. CONSTITUTION:At least the uppermost layer in the molding faces is made of a material mainly containing Cr and N such as CrN layer or the like in the mold for molding optical elements. The molds are heated in an electric furnace in an oxidative atmosphere such as air to form Cr2O3 on the uppermost layer. Thus, the releasability of the molded products becomes good even when the products have a large diameter and the removal of gas components with hydrofluoric acid is facilitated. The Cr2O3 layer has good adhesion and causes no seizing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学素子成形用型に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a mold for molding an optical element.

〔従来の技術〕[Conventional technology]

一般に、光学ガラスを加熱プレスにより成形して所望の
光学素子を得ることが広く行われている。
Generally, it is widely practiced to mold optical glass by hot pressing to obtain a desired optical element.

ところで、この加熱プレス手段による場合は、成形用型
の離型性の良いことが非常に重要で、通常、離型性は型
表面の材料に対するガラス濡れ性に大きく依存している
By the way, when using this hot press means, it is very important that the mold has good mold releasability, and the mold releasability usually depends largely on the wettability of the glass to the material on the mold surface.

従来、例えば特開昭62−87423号公報に開示され
るように、少なくとも成形面を窒化クロムにより形成し
た光学素子成形用型が知られている。この光学素子成形
用型は、ガラスが濡れにくいために良好な離型性を有し
、実際に5000ショット以上の成形を経ても初期性能
を維持している。
Conventionally, as disclosed in, for example, Japanese Unexamined Patent Publication No. 62-87423, a mold for molding an optical element is known in which at least the molding surface is formed of chromium nitride. This mold for molding optical elements has good mold releasability because the glass is hard to wet, and actually maintains its initial performance even after molding over 5,000 shots.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来の光学素子成形用型は、径が10−程
度までの小径の光学素子を得る場合には適当であるが、
さらに大径の光学素子を得る場合には問題が生じてしま
った。すなわち、大径の光学素子を加熱プレスにより成
形する場合、ガラスの加熱中の変形を防止するために、
小径の光学素子を得る場合のようには加熱温度を上げる
ことができず、粘度の大きい領域で成形しなければなら
ない。このために、プレス時には、プレス圧力や型温度
によってより大きなエネルギーをガラスに与えなければ
ならない。したがって、ガラスを構成する化合物の結合
が切れてしまい、成形用型へ付着し易くなる。これがシ
ョット毎に繰り返されると、ついには焼付きという現象
が生じてしまっ本発明は、かかる従来の問題点に鑑みて
なされたものであって、大径の光学素子を加熱プレスに
より成形する場合であっても、長期間焼付きを生じない
光学素子成形用型を提供することを目的とする。
However, although the above-mentioned conventional optical element molding molds are suitable for obtaining optical elements with a small diameter of up to about 10 mm,
Problems arose when obtaining an optical element with an even larger diameter. In other words, when molding a large-diameter optical element using a hot press, in order to prevent the glass from deforming during heating,
It is not possible to raise the heating temperature as in the case of obtaining a small-diameter optical element, and molding must be performed in a region with high viscosity. For this reason, during pressing, greater energy must be applied to the glass through press pressure and mold temperature. Therefore, the bond between the compounds constituting the glass is broken, and the glass tends to adhere to the mold. If this is repeated for each shot, a phenomenon called burn-in will eventually occur.The present invention was made in view of this conventional problem. An object of the present invention is to provide a mold for molding an optical element that does not cause seizure for a long period of time.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、少なくとも成形
面の最表層がクロム(Cr)および窒素(N)を主成分
とした材料からなる光学素子成形用型を酸化可能な雰囲
気中で加熱することにより、前記最表層に二酸化ニクロ
ム(Crz Oz )を形成して光学素子成形用型を構
成した。
In order to achieve the above object, the present invention heats an optical element mold in which at least the outermost layer of the molding surface is made of a material mainly composed of chromium (Cr) and nitrogen (N) in an oxidizing atmosphere. As a result, nichrome dioxide (CrzOz) was formed on the outermost layer to form a mold for molding an optical element.

ガラスが濡れにくい材料の条件としては、第一に熱力学
的に安定で不活性でなければならない。
The first requirement for a material that does not easily wet glass is that it must be thermodynamically stable and inert.

熱力学的に安定か否かは、標準生成Giddsエネルギ
ーにより判断できる。また、第二に型最表面の原子のイ
オン性が小さい方が良い。イオン性が大きければ、それ
だけ活性であり、ガラスが付着し易くなるからである。
Whether or not it is thermodynamically stable can be determined based on the standard Gidds energy of formation. Secondly, it is better that the atoms on the outermost surface of the mold have a smaller ionicity. This is because the greater the ionicity, the more active it is, and the easier it is for glass to adhere to it.

イオン性は、金属酸化物の場合、分極が大きい方(金属
のイオン半径が小さい方)が小さくなる。さらに、成形
用型として満足できるためには、硬さや密着性の点でも
良好でなければならない。
In the case of metal oxides, the ionicity is smaller as the polarization is larger (the ionic radius of the metal is smaller). Furthermore, in order to be satisfactory as a mold, it must have good hardness and adhesion.

表1に6種の物質の標準生成G 1ddsエネルギー(
ΔG)を示し、表2に3種のイオンのイオン半径を示す
Table 1 shows the standard production G 1dds energy (
ΔG), and Table 2 shows the ionic radius of the three types of ions.

表1 標準生成G 1ddsエネルギー(ΔG)T=2
98に 表2 イオン半径 表1から判るように、窒化物よりも酸化物の方がΔGが
小さいので熱力学的に安定である。酸化物では、ANz
O3,CrzO:+ 、TtOzの順でΔGが小さく、
熱力学的に安定である。また、表2から判るように、イ
オン性はA21゛が最も小さく、Ti”、Cr”は同程
度であり、Alコ゛、Ti”Cr”順で不活性である。
Table 1 Standard generation G 1dds energy (ΔG) T=2
98, Table 2 Ion Radius As can be seen from Table 1, oxides have a smaller ΔG than nitrides, so they are thermodynamically more stable. In oxides, ANz
ΔG is smaller in the order of O3, CrzO:+, TtOz,
Thermodynamically stable. Further, as can be seen from Table 2, the ionicity of A21' is the lowest, Ti'' and Cr'' are about the same, and Alco, Ti'' and Cr'' are inert in that order.

以上の観点からすれば、Affi、O,が成形用型の最
表層材料として好ましいようであるが、ここに硬さや密
着性の点についても考慮しなければならない、すなわち
、成形用型の成形面は、取扱上の傷を防止するために、
非常に大きな硬さを必要とする。また、加熱冷却のサイ
クルを多数回繰り返すために、密着性も良くなければな
らない。
From the above point of view, Affi, O, seems to be preferable as the outermost layer material of the mold, but the hardness and adhesion must also be considered. To prevent damage from handling,
Requires great hardness. In addition, since the heating and cooling cycle is repeated many times, adhesion must also be good.

A l z O3の場合には、それ自体あまり硬くない
ので、AI!、Nの最表層を酸化させてAI!、よOl
を形成したとしてもAIN自体も硬度が低いために傷が
付き易いという欠点を有する。一方、十分な硬度を有す
る他の材料の上にA f ! Off層を真空蒸着等で
形成したとしても、異種の物質量での接着であるために
、密着性が低いという欠点を存する。
In the case of Al z O3, it is not very hard itself, so AI! , oxidize the outermost layer of N to create AI! , yo ol
Even if it is formed, AIN itself has the disadvantage of being easily scratched due to its low hardness. On the other hand, on other materials with sufficient hardness A f ! Even if the Off layer is formed by vacuum evaporation or the like, there is a drawback that the adhesion is low because the adhesion is performed using different amounts of substances.

すなわち、A2□0.を成形用型の最表層材料に用いる
ことは、ガラスとの濡れ性の点では良好であるが、硬さ
や密着性の点で満足できない。
That is, A2□0. Using this as the outermost layer material of a mold is good in terms of wettability with glass, but unsatisfactory in terms of hardness and adhesion.

これに対し、Cr zoi、 T i O□については
、CrN、TiNを酸化させて成形用型の最表層にCr
zO3,TiO□層を形成することにより、ガラスとの
濡れ性、硬さおよび密着性の点で総合的に優れたものと
なる。特に、Cr、O,は、熱力学的にもより安定で、
またフッ酸に対して不溶であるため、万一ガラスが付着
したとしてもそのガラス成分を簡単に除去できるという
利点を有している。
On the other hand, for Cr zoi and T i O□, CrN and TiN are oxidized to form Cr on the outermost layer of the mold.
By forming the zO3, TiO□ layer, it becomes excellent overall in terms of wettability, hardness, and adhesion with glass. In particular, Cr, O, are thermodynamically more stable,
Furthermore, since it is insoluble in hydrofluoric acid, it has the advantage that even if glass should adhere, the glass component can be easily removed.

以上のような知見に基づいて、本発明は、CrおよびN
を主成分とした材料を酸化させて少なくとも成形面の最
表層にCr、O,を形成することとした。ここに、Cr
およびNを主成分とした材料は、窒化クロム(Cr N
 、 Cr t N )が代表的であり、その他Cr−
CrNまたはCr、N−CrN系化合物等が用いられる
。一方、CrzOxの形成法としては、いわゆるPVD
やCVD等による薄膜形成法も考えられるが、これらの
形成法は加熱酸化に比較して密着性が劣ってしまう。ま
た、プラズマやイオンビームを照射して酸化を行うとい
う方法も考えられるが、反応が非平衡的であるために、
機械的な歪みが膜中に残り、クランクや剥離の原因とな
ってしまう。
Based on the above findings, the present invention provides Cr and N
It was decided to oxidize a material mainly composed of Cr and O to form Cr and O on at least the outermost layer of the molding surface. Here, Cr
and N-based materials include chromium nitride (CrN
, Cr t N ) are typical, and others Cr-
CrN or Cr, N-CrN based compounds, etc. are used. On the other hand, the so-called PVD method is used to form CrzOx.
Although thin film formation methods such as CVD and the like are also considered, these formation methods have poorer adhesion than thermal oxidation. Another option is to perform oxidation by irradiating plasma or ion beams, but since the reaction is non-equilibrium,
Mechanical distortion remains in the film, causing cracking and peeling.

さらに、離型性の低下やフッ酸の侵入を防ぐために、最
表層は完全にCrzOsに変化している必要がある。そ
のためには、Crt03Nが所定値以上の厚さを有して
いなければならず、その値は経験的に50人程変である
Furthermore, in order to prevent deterioration of mold releasability and intrusion of hydrofluoric acid, the outermost layer must be completely converted to CrzOs. For this purpose, Crt03N must have a thickness equal to or greater than a predetermined value, and this value differs from experience by about 50 people.

〔作用〕[Effect]

上記構成の本発明の光学素子成形用型においては、少な
くとも成形面の最表層が、CrN等を酸化してなるC 
r 203により形成されているので、大径の光学素子
を得る場合でも長期間焼付きを生しることがない。
In the mold for molding an optical element of the present invention having the above configuration, at least the outermost layer of the molding surface is formed by oxidizing CrN or the like.
Since it is formed of R203, it will not cause burn-in for a long period of time even when obtaining a large diameter optical element.

〔実施例〕〔Example〕

(第1実施例) 超硬合金により型基材を形成し、径14−1R46に鏡
面加工した成形面にCrN[をスパッタ法により形成し
た。そのCrN層の膜厚は5000人であった。次に、
その型を電気炉に入れ、大気中600°Cで2時間加熱
し、CrN層の最表層を酸化させてCrzOsNとした
。このようにして得られた光学素子成形用型を第1図に
示す。第1図において、lは型基材、2は成形面、3は
CrN層、4はCr t 03層である。また、第2図
にはこの光学素子成形用型のX線回折結果を示す。第2
図から判るように、Cr層0.が生成されている。さら
に、オージェ電子分光の深さ方向分析の結果、Cr、O
(First Example) A mold base material was formed of cemented carbide, and CrN was formed on the mirror-finished molding surface to a diameter of 14-1R46 by sputtering. The thickness of the CrN layer was 5000. next,
The mold was placed in an electric furnace and heated in the atmosphere at 600°C for 2 hours to oxidize the outermost layer of the CrN layer to form CrzOsN. The mold for molding an optical element thus obtained is shown in FIG. In FIG. 1, l is a mold base material, 2 is a molding surface, 3 is a CrN layer, and 4 is a Cr t 03 layer. Furthermore, FIG. 2 shows the results of X-ray diffraction of this mold for molding an optical element. Second
As can be seen from the figure, the Cr layer is 0. is being generated. Furthermore, as a result of depth direction analysis of Auger electron spectroscopy, Cr, O
.

層4の厚さは約120人であった。The thickness of layer 4 was approximately 120 people.

なお、本実施例の光学素子成形用型を用いて光学ガラス
を成形したところ、5000シヨツト以上経過しても良
好な離型性を示し、ガラスの焼付きは発生しなかった。
When optical glass was molded using the mold for molding an optical element of this example, good mold releasability was exhibited even after 5,000 shots or more, and no seizure of the glass occurred.

また、5000シヨツトの間に、フッ酸をCr2O,層
4の表面に接触させる試験を行ったが、何ら表面の劣化
は認められなかった。
Further, a test was conducted in which the surface of the Cr2O layer 4 was brought into contact with hydrofluoric acid during 5,000 shots, but no surface deterioration was observed.

(第2実施例) 超硬合金により型基材を形成し、径14圓、R46に鏡
面加工した成形面にCr層をイオンビームスパック法に
より形成した。次に、そのCr層の上にCrN層をイオ
ンビームスパック法により形成した。Cr層とCrN層
とを合わせた膜厚は5000人であった。ここに、Cr
層を形成したのは、型基材とCrN層との密着性を向上
させるためである。
(Second Example) A mold base material was formed of cemented carbide, and a Cr layer was formed on the molding surface mirror-finished to have a diameter of 14 circles and R46 by an ion beam spacing method. Next, a CrN layer was formed on the Cr layer by an ion beam spacing method. The combined thickness of the Cr layer and CrN layer was 5,000 layers. Here, Cr
The reason for forming the layer was to improve the adhesion between the mold base material and the CrN layer.

その後、上記型を電気炉に入れ、Ntガス雰囲気中60
0°Cで4時間加熱し、CrN層の最表層を酸化させて
Cr、O,層とした。このCr−03層の厚さは約60
人であった。本実施例においては、N2ガス雰囲気中で
加熱を行うが、N2ガス雰囲気であっても水分が含まれ
ているため、その水分が酸化剤となってCrzO=層を
形成することができる。
After that, the above mold was placed in an electric furnace and heated to 60°C in an Nt gas atmosphere.
It was heated at 0°C for 4 hours to oxidize the outermost layer of the CrN layer to form a Cr, O, layer. The thickness of this Cr-03 layer is about 60
It was a person. In this example, heating is performed in an N2 gas atmosphere, but since moisture is contained even in the N2 gas atmosphere, the moisture acts as an oxidizing agent and can form a CrzO layer.

なお、本実施例の光学素子成形用型を用いて光学ガラス
を成形したところ、第1実施例のものと同様に、良好な
離型性を有し、ガラスの焼付きは生しなかった。また、
第1実施例の場合と同様にフッ酸試験を行ったが、何ら
表面劣化は認められなかった。
Note that when optical glass was molded using the mold for molding an optical element of this example, it had good mold releasability and no seizure occurred in the glass, similar to that of the first example. Also,
A hydrofluoric acid test was conducted in the same manner as in the first example, but no surface deterioration was observed.

(第3実施例) SiC焼結体により型基材を形成し、径18mm、R1
20に鏡面加工した成形面にCrNi1をイオンブレー
ティング法により形成した。そのCrN層の膜厚は70
00人であった9次に、その型を電気炉に入れ、Arガ
ス雰囲気中700°Cで2時間加熱し、CrN層の最表
層を酸化させてCr、O,層とした。
(Third Example) A mold base material was formed from a SiC sintered body, and the diameter was 18 mm and R1
CrNi1 was formed on the mirror-finished molded surface of No. 20 by an ion-blating method. The thickness of the CrN layer is 70
Next, the mold was placed in an electric furnace and heated at 700° C. for 2 hours in an Ar gas atmosphere to oxidize the outermost layer of the CrN layer to form a Cr, O, layer.

このCr、03層の厚さは約150人であった。本実施
例においては、Arガス雰囲気中で加熱を行うが、N2
ガスの場合と同様に水分が存在するため、Cr、O,層
を形成することができる。
The thickness of this Cr, 03 layer was about 150. In this example, heating is performed in an Ar gas atmosphere, but N2
As in the case of gas, since moisture is present, a Cr, O, layer can be formed.

なお、本実施例の光学素子成形用型のCr z Oi層
表面(成形面)における硬さを微小硬度計により測定し
たところ、Hシー1500Kgf/鴫”(25gf荷重
)であり、良好な硬さを有していた。また、光学ガラス
を成形したところ、第1実施例と同様に良好な離型性を
有しており、ガラスの焼付きは生じなかった。
In addition, when the hardness of the CrzOi layer surface (molding surface) of the mold for molding an optical element of this example was measured using a microhardness meter, it was 1500 Kgf/H Sea (25 gf load), indicating good hardness. Furthermore, when the optical glass was molded, it had good mold releasability similar to the first example, and no seizure of the glass occurred.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の光学素子成形用型によれば、少
なくとも成形面の最表層をCrおよびNを主成分とした
材料を加熱酸化してCr、O,により形成しているので
、大径の光学素子を成形する場合であっても、離型性が
良好でフッ酸によるガラス成分除去も容易に行え、また
十分な表面硬度を有するとともに密着性も良好であり、
長期間使用可能となる。
As described above, according to the mold for molding an optical element of the present invention, at least the outermost layer of the molding surface is formed of Cr, O, and the like by heating and oxidizing a material mainly composed of Cr and N. Even when molding an optical element with a diameter of
Can be used for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光学素子成形用型の第1実施例を示す
ば断面図、第2図は第1図に示す光学素子成形用型のχ
線回折結果を示すチャートである。 〕・・・型基材    2・成形面 3− CrN層   4・・Crt03層第1図 第2図
FIG. 1 is a sectional view showing a first embodiment of the mold for molding an optical element of the present invention, and FIG. 2 is a sectional view of the mold for molding an optical element shown in FIG.
It is a chart showing a line diffraction result. ]... Mold base material 2. Molding surface 3 - CrN layer 4... Crt03 layer Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも成形面の最表層がクロムおよび窒素を
主成分とした材料からなる光学素子成形用型を酸化可能
な雰囲気中で加熱することにより、前記最表層に三酸化
ニクロムを形成したことを特徴とする光学素子成形用型
(1) At least the outermost layer of the molding surface is formed by heating an optical element molding mold made of a material mainly composed of chromium and nitrogen in an oxidizing atmosphere to form dichromium trioxide on the outermost layer. Characteristic mold for molding optical elements.
JP22506188A 1988-09-08 1988-09-08 Mold for molding optical elements Granted JPH0274531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22506188A JPH0274531A (en) 1988-09-08 1988-09-08 Mold for molding optical elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22506188A JPH0274531A (en) 1988-09-08 1988-09-08 Mold for molding optical elements

Publications (2)

Publication Number Publication Date
JPH0274531A true JPH0274531A (en) 1990-03-14
JPH0445458B2 JPH0445458B2 (en) 1992-07-24

Family

ID=16823426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22506188A Granted JPH0274531A (en) 1988-09-08 1988-09-08 Mold for molding optical elements

Country Status (1)

Country Link
JP (1) JPH0274531A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199035A (en) * 1989-01-30 1990-08-07 Toshiba Tungaloy Co Ltd Molding of optical part
JPH03215324A (en) * 1990-01-22 1991-09-20 Canon Inc Mold for optical element
JP2002097029A (en) * 2000-09-22 2002-04-02 Olympus Optical Co Ltd Forming die for optical element
JP2009096682A (en) * 2007-10-18 2009-05-07 Olympus Corp Method for producing optical element molding die, method for processing optical element molding die, and optical element molding die processed thereby

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199035A (en) * 1989-01-30 1990-08-07 Toshiba Tungaloy Co Ltd Molding of optical part
JPH03215324A (en) * 1990-01-22 1991-09-20 Canon Inc Mold for optical element
JP2002097029A (en) * 2000-09-22 2002-04-02 Olympus Optical Co Ltd Forming die for optical element
JP2009096682A (en) * 2007-10-18 2009-05-07 Olympus Corp Method for producing optical element molding die, method for processing optical element molding die, and optical element molding die processed thereby

Also Published As

Publication number Publication date
JPH0445458B2 (en) 1992-07-24

Similar Documents

Publication Publication Date Title
JPH0461816B2 (en)
JPS6357392B2 (en)
US5156725A (en) Method for producing metal carbide or carbonitride coating on ceramic substrate
JPH0274531A (en) Mold for molding optical elements
JPS6250887B2 (en)
JPS6359971B2 (en)
JPH02129035A (en) Mold for molding optical element
JPH0383824A (en) Complex mold for molding of optical member
JPS6172634A (en) Mold for molding glass article
JPH04260619A (en) Method for forming optical element and forming metallic mold
EP0043644B1 (en) Method of making a magnetic recording medium and a ceramic crucible for such a method
JP2732863B2 (en) Mold for optical element molding
JP2723144B2 (en) Mold for optical element molding
JP3497212B2 (en) Method for producing sintered metal powder
SU633932A1 (en) Method of gas nitriding of articles made of refractory metals
JPH01320233A (en) Dies for press-molding glass
JPH0339468A (en) Hydroxyapatite target
JPH08217470A (en) Mold for forming optical element
JPH03131001A (en) Resistance temperature sensor
JP2746440B2 (en) Mold for optical element molding
JP2505897B2 (en) Mold for optical element molding
JPH0312377A (en) Coated structural material
JPH03164437A (en) Optical element forming die
JPS6287423A (en) Mold for forming optical element
JPH01270528A (en) Force for molding optical element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees