JPH03164437A - Optical element forming die - Google Patents

Optical element forming die

Info

Publication number
JPH03164437A
JPH03164437A JP30355089A JP30355089A JPH03164437A JP H03164437 A JPH03164437 A JP H03164437A JP 30355089 A JP30355089 A JP 30355089A JP 30355089 A JP30355089 A JP 30355089A JP H03164437 A JPH03164437 A JP H03164437A
Authority
JP
Japan
Prior art keywords
optical element
mold
glass
molding
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30355089A
Other languages
Japanese (ja)
Inventor
Masahiro Katashiro
雅浩 片白
Takeshi Kawamata
川俣 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP30355089A priority Critical patent/JPH03164437A/en
Publication of JPH03164437A publication Critical patent/JPH03164437A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/20Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/34Intermediate layers, e.g. graded zone of base/top material of ceramic or cermet material, e.g. diamond-like carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To develop the optical element forming die having excellent characteristics by forming an Al-N thin film on the forming surface of the die made of SiC, etc., by PVD, CVD, etc., and heating the die to high temp. in an oxidizing atmosphere to oxidize the Al-N thin film into an alpha-Al2O3 film. CONSTITUTION:The curved surface 1a of an optical element forming die base material 1 made of SiC, WC, Si3N4, etc., is specularly finished, and an Al-N thin film 2 is formed on the surface by PVD, CVD, etc. The material is heated to a high temp. of >=1000 deg.C in an oxidizing atmosphere such as air to form an oxide film 4 of alpha-Al2O3 on the surface of the thin film 2. The product is used as the forming die, and optical glass is heated and pressed to produce an optical element. An optical element forming die free of the burning of glass, without the film 4 being released and withstanding long use is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学素子戒形用型に関する.〔従来の技術〕 一般に、光学ガラスを加熱プレスにより或形して所望の
光学素子を得ることが広く行われている.かかる加熱プ
レス手段による場合、光学素子戒形用型の成形而は、大
きな熱衝撃と圧力とを高温に加熱された光学ガラスから
受ける.ここに、光字素子を安価に製造するには、長期
間に亘る繰り返しの戒形において成形河が耐えられるも
のでなければならない. 従来、酸化アルミニウム(A N !03)が熱的に安
定な物質であることに着目して、光学素子成形用型の最
表面をAltosにより形成したものが知られている.
g4えば特開昭59−123630号公報には、A l
t .0.の単結晶であるサファイアにより光学素子戒
形用型を形成したものが開示されている.また、特公昭
61−10407号公報には、戒形面に炭化チタン(T
iC)、窒化チタン(TiN)、炭窒化チタン(丁i 
CN)の蒸着中間層を介してA f gosの蒸着被覆
層を形成したものが開示されている.〔発明が解決しよ
うとする!!’題) しかし、サファイアにより光学素子成形用型を形戒する
場合、サファイア自体を製造することが非常に難しい.
すなわち、所定の大きさのAf.O,単結晶を育威する
には、長時間を要するために高価で、しかも品質を安定
させることが難しい.また、^l zOs単結晶を所望
の曲面にしてしかも粗さを小さく加工することは、結晶
の方位を無視して削ること6こなるため、微小なクラノ
クや欠けが生し2易く、再現性の点で問題がある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mold for forming an optical element. [Prior Art] Generally, it is widely practiced to shape optical glass using a hot press to obtain a desired optical element. When using such hot press means, the mold for forming the optical element is subjected to large thermal shock and pressure from the optical glass heated to a high temperature. In order to manufacture optical elements at low cost, the molding material must be able to withstand repeated training over a long period of time. Conventionally, it has been known that the outermost surface of a mold for molding an optical element is made of Altos, taking note of the fact that aluminum oxide (AN!03) is a thermally stable substance.
g4 For example, in Japanese Patent Application Laid-open No. 123630/1983, A l
t. 0. A mold for forming an optical element is disclosed using sapphire, which is a single crystal. In addition, in Japanese Patent Publication No. 10407/1987, titanium carbide (T
iC), titanium nitride (TiN), titanium carbonitride (TiN)
A vapor-deposited coating layer of A f gos is formed through a vapor-deposited intermediate layer of CN). [Invention tries to solve! ! However, when using sapphire to form a mold for molding optical elements, it is extremely difficult to manufacture the sapphire itself.
That is, Af. It takes a long time to grow a single crystal, making it expensive and difficult to stabilize the quality. In addition, processing a zOs single crystal into a desired curved surface with a small roughness requires cutting while ignoring the orientation of the crystal, which tends to cause minute cracks and chips, resulting in poor reproducibility. There is a problem with this.

この点、上記茎着中間層を介して^p,01の茅着被覆
層を形成したちの14L、予め加工容易な型基材を所望
の曲面に加工した後、薄膜(蒸着被覆層)を形代するた
めC.:、比較的安価にして安定した品百を保つことが
できるゆ しかし、、f着中間騎を介してAp.z(hの蒸着被覆
層を形成した光学素子成形用型であっても、種々の光学
ガラスと力ll熱ブトスする場合には問題があった。す
なわち、例えば軟化点が高く、しかも粘性の低い温度領
域が狭い光学ガラスを加熱プレスする場合、戒形用型を
非常な高.gkに加熱さ已るとともに、大きな圧力を加
えてガラスを変形させろ必要がある。このため、汰着中
間層のTi(:+TiNTiCNが酸化により変實して
しまい、痕着中間層と衷4彼3層との間で1、リ離が生
jJてしまった。ずなわら、た着中間層のT+C.T+
〜,丁iCNは、それぞれ使用温度が5 0 0 ’C
程度までは良好な耐酸化姓を有′3−る物質である。と
ころが、5 0 0 ’Cを越えると急激1こ酸化が進
行してTie.やT:*Od7:酸化してしまう。した
がって、成形用型が戒形に際して高温に晒されると、蒸
着中間層の酸化が進行して蒸着被jt[のA lzos
との結合が切れてしまい、結果としてヱ11離が住ずる
のである。
In this regard, 14L, after forming the mowing coating layer of ^p,01 through the above-mentioned stem-coating intermediate layer, a thin film (vapor-deposited coating layer) was applied after processing the mold base material, which is easy to process, into a desired curved surface. C. :、However, it is possible to keep a stable product at a relatively low price,、、Ap. Even with molds for molding optical elements that have a vapor-deposited coating layer of When hot pressing optical glass with a narrow temperature range, it is necessary to heat the mold to a very high gk and apply a large amount of pressure to deform the glass. Ti(:+TiNTiCN) was changed due to oxidation, and a separation of 1% occurred between the traced intermediate layer and the lining 3 layer.Naturally, T+C.T+ of the deposited intermediate layer
~, DingiCN has a working temperature of 500'C.
It is a substance that has good oxidation resistance to a certain extent. However, when the temperature exceeds 500'C, monooxidation proceeds rapidly and Tie. and T: *Od7: Oxidizes. Therefore, when the mold is exposed to high temperatures during molding, the oxidation of the vapor-deposited intermediate layer progresses, and the
The connection between the two is severed, and as a result, E11-ri resides there.

−・方、A P. F03は、或形温度によって種々の
結晶形となる物質であり、その結晶形に応して比表面積
が変化する。ここに、或形温度が高い程比表面積は小さ
く (原子間距離が小さく)なり、1200℃程度でα
型の1.03(α−わ! ZOX)になったときに最小
となる。σ−Aj’!,0.は,、2種の原子間距離A
1−0がI.89大(3個) 、1.93大(3個)で
、格子欠陥のあるスビネル型構造のγ型のAE20rよ
りも結晶性に優れている。
-・Ko, A.P. F03 is a substance that forms various crystal forms depending on a certain temperature, and the specific surface area changes depending on the crystal form. Here, the higher the temperature, the smaller the specific surface area (the smaller the interatomic distance), and at about 1200℃, α
It becomes minimum when it reaches 1.03 (α-wa! ZOX) of the type. σ−Aj'! ,0. is the distance A between two types of atoms
1-0 is I. The crystallinity is 89 (3 pieces) and 1.93 (3 pieces), which is superior to the γ-type AE20r having a Subinel structure with lattice defects.

ところが、−aにスパンタリング法やイオンプレーティ
ング法等のPVDでA N 20,薄膜を形或する場合
、その生戒温度(基板温度)は高々600゛C程度と低
いため、比表面積は比較的大きくなってしまう。したが
って、AlzozR膜にガラスを構成する分子が吸着さ
れ易くなり、高い型温度でがつ大きな圧力が)Jnわる
ど、結渠としてガラスの焼き付きを生してしまった。
However, when forming a thin film on A by PVD such as sputtering or ion plating, the operating temperature (substrate temperature) is as low as 600°C, so the specific surface area is comparatively low. The target becomes too large. Therefore, the molecules constituting the glass were easily adsorbed to the AlzozR film, and the large pressure generated at high mold temperatures caused condensation and seizure of the glass.

一方、CVDでA N zOx薄膜を形成する場合、P
VDに比べて基板温度が約1 0 0 0 ’Cと高い
ために比表面積は小さくできるが、キャリアガスとして
用いる水素(H2)がA 7!zos薄膜中に残ってし
まう。したがって、戒形される光学ガラスがhOを吸収
しているために、これがAl.0,薄膜の表面にあるI
1と水素結合をしてしまい、やはり高い型温度でかつ大
きな圧力が加わるとガラスの焼き付きを生してしまった
On the other hand, when forming an A N zOx thin film by CVD, P
Compared to VD, the substrate temperature is about 1000'C higher, so the specific surface area can be made smaller, but the hydrogen (H2) used as the carrier gas is A7! It remains in the ZOS thin film. Therefore, since the optical glass to be formed absorbs hO, it becomes Al. 0, I on the surface of the thin film
This resulted in hydrogen bonding with 1, which caused the glass to seize when high mold temperatures and large pressures were applied.

本発明は、かかる従来の問題点に鑑みてなされたもので
、安価で安定した品質を有し、しかも種々の光学ガラス
、特に軟化点が高くかつ粘性の低い温度領域が狭い光学
ガラスを戊形する場合にもガラスの焼き伺きや膜2リ離
を発生しない光学素子成形川型を提供することを目的と
する。
The present invention has been made in view of these conventional problems, and is inexpensive and has stable quality, and is capable of molding various optical glasses, especially optical glasses with a high softening point and a narrow temperature range with low viscosity. It is an object of the present invention to provide a mold for molding an optical element that does not cause burning of the glass or separation of the film even when the glass is heated.

(課題を解決するための手段〕 上記目的を達戒するために、本発明は、少なくとも成形
面の最表層がアルミニウムCA j’! )および窒素
(N)をt或分とした{A料からなる光学素子形用型の
基礎型を、酸化性雰囲気中で加熱することにより、前記
最表層にα一A / .0,を形成して光学素子戒形用
型を横威した。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides that at least the outermost layer of the molding surface contains aluminum (CA j'!) and nitrogen (N) in a certain amount {from A material By heating the base mold for an optical element mold in an oxidizing atmosphere, α-A/. 0, and used it as a mold for optical elements.

〔作 用] このような構成の本発明の光学素子戒形用型において、
α−A 1 .0,からなるQ表層は、fl#.−Mを
非常に高温(例えば1000゜C以上)に加熱して形成
される,  糾−Nは非常に良好な耐酸化性を有してお
り、6 0 0 ’C程度の温度では全く酸化されない
からである. また、最表層のα−AI<zosはi−N層を熱酸化し
て形成したので、両者間には明確な界面が存在しない。
[Function] In the optical element precept type of the present invention having such a configuration,
α-A 1 . 0, the Q surface layer consists of fl#. Formed by heating -M to very high temperatures (e.g. over 1000°C), -N has very good oxidation resistance and is not oxidized at all at temperatures around 600°C. It is from. Further, since the outermost layer α-AI<zos was formed by thermally oxidizing the i-N layer, there is no clear interface between the two.

したがって、熱応力などのひずみが発生しにくいため、
α−^1! tOs層は大きな耐剥離性を有する.さら
に、α−A1.03は前述のように比表面積が最小であ
るので、ガラスを構成する分子が吸着しに《い。そして
、たとえAN−N層がキャリアガスの118を不純物と
して含んでいたとしても、熱酸化の過程でガス化してし
まい、α一A l zo3層にはHが存在しない.した
がって、高い型温度でかつ大きな圧力が加わる使用環境
下であってもガラスの焼き付きは非常に発生しにくい。
Therefore, distortions such as thermal stress are less likely to occur.
α-^1! The tOs layer has great peeling resistance. Furthermore, since α-A1.03 has the smallest specific surface area as described above, molecules constituting the glass are difficult to adsorb. Even if the AN-N layer contains carrier gas 118 as an impurity, it gasifies during the thermal oxidation process, and H is not present in the α-Al zo3 layer. Therefore, even in a usage environment where the mold temperature is high and a large pressure is applied, seizure of the glass is extremely unlikely to occur.

〔実施例〕〔Example〕

(第1実施例) 第2図に示すように、径14mの円柱状の炭化ケイ素(
SiC)を型基材lとし、この型基材1の一方の端面を
曲率半径45mの球面に鏡面加工を施し、成形基礎面1
aとした.そして、その戒形基礎面1aに対してスパン
タリング法によりAl−N薄膜2を形成し、戒形而とし
た.スパッタリングの条件は、^l単体をターゲットと
し、^rガスをI X 1 0−’Torrまで導入し
た後、N!ガスを全圧5X 1 0−’Torrまで導
入し、、投入電力500W、基板温度s o o ’c
として、膜厚が1μ一となるようにした. 次に、このようにして得られた光学素子成形用型の基礎
型3を、大気中で昇温速度100℃/hrとしてl20
0゜Cまで加熱し、1200゜Cを保持したまま2時間
加熱した後、自然冷却を行って光学素子戒形用型とした
.この光学素子成形用型は、第1図に示すように、上記
酸化性雰囲気中での加熱により、成形而の^IN薄膜2
の最表層がα−^l寡O,層4となっている. 本実施例の光学素子戒形用型の戒形而をESCA(光電
子分光)により深さ方向の分析を行ったところ、第3図
に示すような結果を得た.なお、エッチグレートは40
人/sinとした.第3図は、横軸にエッチング時間(
sin)、縦軸に原子数比(at一%)をとったもので
、第3図中、実線5は酸素(0)を示し、実線6はAl
を示し、実線7は炭素(C)を示している.第3図から
判るように、最表層から500人は完全に酸化している
ことが確認できた.また、本実施例の光学素子戒形用型
の戒形而をXvA回折したところ、第4図に示すような
結果を得た.第4図から判るように、α一Affixe
sの生戒を示すピークを確認できた.なお、本実施例の
光学素子戒形用型を用いて、軟化点が高くかつ粘性の低
い温度領域が狭い光学ガラスであるBaSFO8を戒形
したところ、ガラスの焼き付きや膜剥離は全く発生せず
、10000ショット以上の寿命を得ることができた.
(第2実施例) 径IO一の円柱状の炭化タングステン(WC)を型基材
とし、この型基材の一方の端面を曲率半径100−の球
面に鏡面加工を施し、成形基礎面とした。そして、WC
は、酸化の始まる温度が低いのでそれを防ぐ目的で型基
材全面に、イオンビームスバンクリング法によりAIN
IMを形成した.この条件は、AIN焼結体をターゲッ
トとし、N2ガスをI X l O−’Torrまで導
入し、加速電圧1kVとして、膜厚が2μ−となるよう
にした.次に、このようにして得られた光学素子成形用
型の基礎型を、大気中で昇温速度100℃/hrとして
1 0 0 0 ’Cまで加熱し、1000℃を保持し
たまま10時間加熱した後、自然冷却を行って光学素子
成形用型とした. このようにして得られた本実施例の光学素子戒形用型を
、ESCAおよびX腺回折により分析したところ、第1
実施例と同様に、最表層にα一A j! zOsが生戒
されていることが確認できた。
(First Example) As shown in Fig. 2, a cylindrical silicon carbide (
SiC) was used as the mold base material 1, one end surface of this mold base material 1 was mirror-finished into a spherical surface with a radius of curvature of 45 m, and the mold base surface 1 was
It was set as a. Then, an Al--N thin film 2 was formed on the basic surface 1a by the sputtering method to form the basic surface 1a. The sputtering conditions were as follows: ^l alone was used as the target, ^r gas was introduced to I X 1 0-' Torr, and then N! Introducing gas to a total pressure of 5X 10-'Torr, input power of 500W, and substrate temperature of
The film thickness was set to 1μ. Next, the base mold 3 of the mold for molding an optical element obtained in this way was heated in the atmosphere at a heating rate of 100° C./hr to 120° C.
The mold was heated to 0°C, maintained at 1200°C for 2 hours, and then allowed to cool naturally to form a mold for forming an optical element. As shown in FIG. 1, this mold for molding an optical element is heated in the oxidizing atmosphere to form the ^IN thin film 2.
The outermost layer of is α-^l-O, layer 4. When the optical element of this example was analyzed in the depth direction by ESCA (photoelectron spectroscopy), the results shown in Figure 3 were obtained. Furthermore, the etch rate is 40.
Person/sin. In Figure 3, the horizontal axis shows the etching time (
sin), and the atomic ratio (at 1%) is plotted on the vertical axis. In Fig. 3, the solid line 5 indicates oxygen (0), and the solid line 6 indicates Al
, and the solid line 7 indicates carbon (C). As can be seen from Figure 3, it was confirmed that the top 500 people were completely oxidized. Furthermore, when the optical element of this example was subjected to XvA diffraction, the results shown in FIG. 4 were obtained. As can be seen from Figure 4, α-Affixe
We were able to confirm a peak indicating the safety of s. In addition, when BaSFO8, which is an optical glass with a high softening point and low viscosity and a narrow temperature range, was molded using the mold for molding an optical element of this example, no burning of the glass or film peeling occurred. , we were able to obtain a lifespan of over 10,000 shots.
(Second Example) A cylindrical tungsten carbide (WC) with a diameter of IO 1 was used as a mold base material, and one end surface of this mold base material was mirror-finished into a spherical surface with a radius of curvature of 100-, and was used as a molding base surface. . And W.C.
Since the temperature at which oxidation begins is low, the entire surface of the mold base material is coated with AIN using the ion beam bank ring method.
IM was formed. The conditions were such that an AIN sintered body was targeted, N2 gas was introduced to IXlO-'Torr, the acceleration voltage was 1 kV, and the film thickness was 2 .mu.-. Next, the base mold for the optical element mold thus obtained was heated to 1000'C in the air at a heating rate of 100°C/hr, and heated for 10 hours while maintaining the temperature at 1000°C. After that, it was naturally cooled and used as a mold for molding optical elements. The thus obtained optical element mold of this example was analyzed by ESCA and X-ray diffraction, and it was found that the first
As in the example, α1A j! is applied to the outermost layer. We were able to confirm that zOs was under strict supervision.

また、本実施例の光学素子戒形用型を用いて、軟化点が
高くかつ粘性の低い温度領域が狭い光学ガラスであるS
KIIを戒形したところ、ガラスの焼き付きや膜剥離は
全く発生せず、10000ショット以上の寿命を得るこ
とができた.(第3実施例) 径15l@の円柱状の窒化ケイ素(SiJ4)を型基材
とし、この型基材の一方の端面を曲率半径30閣の球面
に鏡面加工を施し、成形基礎面とした.そして、その成
形基礎面に対してCVDにより^ffi−Nl膜を形成
した,CVDの条件は、基板温度を1000℃とし、膜
厚が2μ請となるようにした. 次に、このようにして得られた光学素子戒形用型の基礎
面を、大気中で昇温速度100゜C/hrとして120
0℃まで加熱し、1200″Cを保持したまま5時間加
熱した. このようにして得られた本実施例の光学素子成形用型を
ESCAおよびX線回折により分析したところ、第1実
施例と同様に、最1にぽか生成されている、ことが確認
できた。
In addition, using the optical element molding mold of this example, S
When KII was used, no glass burning or film peeling occurred, and the product had a lifespan of more than 10,000 shots. (Third Example) A cylindrical silicon nitride (SiJ4) with a diameter of 15 l was used as a mold base material, and one end surface of this mold base material was mirror-finished to a spherical surface with a radius of curvature of 30 degrees, and was used as a molding base surface. .. Then, a ffi-Nl film was formed on the molded base surface by CVD.The CVD conditions were such that the substrate temperature was 1000°C and the film thickness was 2μ. Next, the base surface of the optical element molding mold obtained in this way was heated to 120 °C in the atmosphere at a heating rate of 100 °C/hr.
It was heated to 0°C and heated for 5 hours while maintaining the temperature at 1200''C. When the thus obtained optical element mold of this example was analyzed by ESCA and X-ray diffraction, it was found that it was the same as that of the first example. Similarly, it was confirmed that a large amount of light was generated at the very beginning.

また、本実施例の光学素子成形用型を用いて、軟化点が
高くか一つ粘性の低い温度領域が狭い光学ガラスである
LLF6を或形したところ、ガラλの焼き付きや膜剥M
14゛全く発生氾ず、+0000シゴノト以−LのノF
 Iff t得ることがーごきた。
In addition, when LLF6, which is an optical glass with a high softening point and a narrow temperature range with one lower viscosity, was formed using the mold for molding an optical element of this example, it was found that the glass λ burn-in and film peeling M
14゛No outbreak at all, +0000 Shigonoto -L no F
If you want to get it, it's good.

(発明の効果] 以上のように、本発明の光学素子成形用型によれば、少
くとも成形面の最表層がAf!およびNを主成分とした
材料からなる光学素子戒形用塾の基礎1′,!を、酸化
性雰囲気中で加2t.Lこどにより、111記最表層に
α−i.0,を形成したので、単結晶である」Jファイ
アを用いるのに比べて安価で、安定した品質が得られる
上に、成形に用いた場合にガラスの焼き7・1きや膜1
ノ1離なしδこ長期間z.:亘って使用できる。特に、
軟化点が高くか一つ粘性の低い温度領域が狭い光学ガラ
スを或形ずる場合にもガl%e ZO:1 ラスの焼き付きや膜剥離なしに長期間使用するこどがで
きる。
(Effects of the Invention) As described above, according to the mold for molding an optical element of the present invention, at least the outermost layer of the molding surface is made of a material mainly containing Af! and N. 1',! in an oxidizing atmosphere for 2t.L children to form α-i.0, on the outermost layer of 111, which is cheaper than using a single crystal J-fire. , stable quality can be obtained, and when used for molding, glass baking 7.1 hardening film 1
ノ1 No separation δ This long period z. : Can be used across the board. especially,
Even when an optical glass with a high softening point or a narrow temperature range with one lower viscosity is to be molded, it can be used for a long period of time without burning or peeling of the glass.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光学素子戒形用型の第1実施例を示す
縦断面図、第2図は本発明の第l実施例におUる光学素
子戒形用型の基礎型を示す縦断面図、第3間は本発明の
第1実施例の光学素子戒形用型の戒形面に゛ついてES
CAを行った結果を示すグラフ、第4閾は本発明の第1
実施例の光学素子成形用型の成形面についてのX線回折
結果を示すグラフである。 1・・型基材 2・・・Ap.−N簿膜 3・・・基礎型 4・・・α一A l .0,層 特許出別人 オ リンバス光学工業株式会社 第 1 図 第 2 図 第 3 図 エ7チング時間(min) 第 4 図 5000 2θ( degree )
FIG. 1 is a vertical cross-sectional view showing a first embodiment of a mold for forming an optical element according to the present invention, and FIG. 2 shows a basic mold of a mold for forming an optical element according to the first embodiment of the present invention. In the vertical cross-sectional view, the third space shows the ES of the shape surface of the optical element shape mold of the first embodiment of the present invention.
Graph showing the results of CA, the fourth threshold is the first threshold of the present invention.
It is a graph which shows the X-ray diffraction result about the molding surface of the optical element mold of an Example. 1... Mold base material 2... Ap. -N membrane 3...Basic type 4...α-A l. 0, layer patent Debetsujin Olympus Optical Co., Ltd. Fig. 1 Fig. 2 Fig. 3 Fig. 7 Etching time (min) Fig. 4 5000 2θ (degree)

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも成形面の最表層がアルミニウムおよび
窒素を主成分とした材料からなる光学素子成形用型型の
基礎型を、酸化性雰囲気中で加熱することにより、前記
最表層にα型の酸化アルミニウムを形成したことを特徴
とする光学素子成形用型。
(1) At least the outermost layer of the molding surface is made of a material mainly composed of aluminum and nitrogen. By heating the base mold of an optical element molding die in an oxidizing atmosphere, the outermost layer is oxidized with α-type. A mold for molding an optical element characterized by being made of aluminum.
JP30355089A 1989-11-22 1989-11-22 Optical element forming die Pending JPH03164437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30355089A JPH03164437A (en) 1989-11-22 1989-11-22 Optical element forming die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30355089A JPH03164437A (en) 1989-11-22 1989-11-22 Optical element forming die

Publications (1)

Publication Number Publication Date
JPH03164437A true JPH03164437A (en) 1991-07-16

Family

ID=17922357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30355089A Pending JPH03164437A (en) 1989-11-22 1989-11-22 Optical element forming die

Country Status (1)

Country Link
JP (1) JPH03164437A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215324A (en) * 1990-01-22 1991-09-20 Canon Inc Mold for optical element
WO2014124411A1 (en) * 2013-02-11 2014-08-14 Corning Incorporated Coatings for glass-shaping molds and glass shaping molds comprising the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215324A (en) * 1990-01-22 1991-09-20 Canon Inc Mold for optical element
WO2014124411A1 (en) * 2013-02-11 2014-08-14 Corning Incorporated Coatings for glass-shaping molds and glass shaping molds comprising the same
JP2016507463A (en) * 2013-02-11 2016-03-10 コーニング インコーポレイテッド Coating for glass molding mold and glass molding mold having this coating
CN105705670A (en) * 2013-02-11 2016-06-22 康宁股份有限公司 Coatings for glass-shaping molds and glass shaping molds comprising the same

Similar Documents

Publication Publication Date Title
JPS6169116A (en) Susceptor for continuous cvd coating on silicon wafer
JPH0461816B2 (en)
JP7440508B2 (en) Heat resistant carbon coating
JPH03164437A (en) Optical element forming die
JPH0772104B2 (en) Polycrystalline ceramics
JPH0688866B2 (en) Boron nitride coated crucible and method of manufacturing the same
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPH0789776A (en) Production of boron nitride coated carbon material
JPH0361616B2 (en)
JPH0429612B2 (en)
JP2997357B2 (en) Glass optical element molding die and manufacturing method thereof
JP2915750B2 (en) Ceramic heater with electrostatic chuck
JPH02129035A (en) Mold for molding optical element
US20060010919A1 (en) Molding core
JP2662285B2 (en) Mold for optical element molding
JP2971226B2 (en) Method for manufacturing glass optical element molding die
JPH0274531A (en) Mold for molding optical elements
JP2732863B2 (en) Mold for optical element molding
JPS6330342A (en) Graphite jig for molding glass
JPH07187704A (en) Thermally decomposable carbon-coated carbon member having excellent releasability from glass
JPH0337109A (en) Graphite material
JP2962905B2 (en) Method for manufacturing glass optical element molding die
JPH10324530A (en) Die for forming glass
JP4009330B2 (en) Complex
JPH0151452B2 (en)