JPH0445282A - Internally tinned copper pipe for feeding water and hot water and production thereof - Google Patents

Internally tinned copper pipe for feeding water and hot water and production thereof

Info

Publication number
JPH0445282A
JPH0445282A JP15284490A JP15284490A JPH0445282A JP H0445282 A JPH0445282 A JP H0445282A JP 15284490 A JP15284490 A JP 15284490A JP 15284490 A JP15284490 A JP 15284490A JP H0445282 A JPH0445282 A JP H0445282A
Authority
JP
Japan
Prior art keywords
copper
plating
pipe
tinning
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15284490A
Other languages
Japanese (ja)
Other versions
JP2544678B2 (en
Inventor
Yutaka Yamada
豊 山田
Makoto Yonemitsu
誠 米光
Kozo Kono
浩三 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15549367&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0445282(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2152844A priority Critical patent/JP2544678B2/en
Publication of JPH0445282A publication Critical patent/JPH0445282A/en
Application granted granted Critical
Publication of JP2544678B2 publication Critical patent/JP2544678B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

PURPOSE:To obtain a low-cost internally tinned Cu pipe suppressing the leaching of Cu ions in tap water and easy to handle by coating the inside of a Cu pipe with an Sn layer by substitution tinning or chemical reduction tinning. CONSTITUTION:When the inside of a Cu pipe is coated with an Sn layer consisting of Sn grains by substitution tinning or chemical reduction tinning to produce an internally tinned Cu pipe for feeding water and hot water, a pretreating soln. for tinning and 1-20g/l (expressed in terms of Sn) tinning soln. for substitution tinning or chemical reduction tinning are continuously circulated in the coil-shaped Cu pipe from an open end for 10-60min to form an Sn layer of <=3mum thickness on the inside of the Cu pipe. An internally tinned Cu pipe preventing the leaching of Cu ions can be produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、淡水配管系、すなわち建物等の給水、給湯系
の配管に使用される内面Snめっき銅管とその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an internal Sn-plated copper pipe used for freshwater piping systems, that is, piping for water supply and hot water supply systems for buildings, etc., and a method for manufacturing the same.

[従来の技術〕 上水道の給水用配管材料としては銅管、銅管、ステンレ
ス銅管、塩化ビニール管等が使用されている。このなか
でも銅管は、長尺であってもコイル状に巻き上げ、運搬
を容易にすることが可能であり、また工事の施工性や水
、温水に対し1耐食性か良好であることで広く使用され
ており、寺に建築用配管には多く使用されている。しか
し、特殊な水質条件下(たとえばpHが比較的低い上水
)では、銅管内表面から銅イオンが溶出し、水中の銅イ
オン濃度が厚生省の上水道水水質基準であるippm以
上になることがある。また、銅イオン量がlppm以下
であっても、洗剤の種類により、青色に着色されること
があり、水中の銅イオンの量は少ないほうが望ましい。
[Prior Art] Copper pipes, copper pipes, stainless copper pipes, vinyl chloride pipes, etc. are used as piping materials for water supply of waterworks. Among these, copper pipes are widely used because even long pipes can be rolled up into coils and transported easily, and are easy to construct and have good corrosion resistance of 1 or higher against water and hot water. It is often used for architectural piping in temples. However, under special water quality conditions (for example, tap water with a relatively low pH), copper ions are eluted from the inner surface of copper pipes, and the concentration of copper ions in the water can exceed the IPPM water quality standard set by the Ministry of Health and Welfare. be. Further, even if the amount of copper ions is 1 ppm or less, the water may be colored blue depending on the type of detergent, so it is desirable that the amount of copper ions in the water be small.

この銅イオンの溶出を減少させる方法として、Cu−M
g系合金等の開発または給水中へ薬剤の投入が行われて
きた。しかし、合金系では、溶解、鋳造、加工等の製造
方法が繁雑となり、高価になる。また、給水中への薬剤
の投入では薬剤の補充、投入設備の新設等が必要であっ
た。
As a method to reduce the elution of copper ions, Cu-M
G-based alloys have been developed or chemicals have been introduced into the water supply. However, in the case of alloy-based materials, manufacturing methods such as melting, casting, and processing are complicated and expensive. In addition, injecting chemicals into the water supply required replenishing the chemicals and installing new dosing equipment.

これらを解決するために、銅管の内面に低融点の金属ま
たは合金とフラックスを被覆した後加熱することにより
合金を被覆し、耐食性を向上させたもの(特開昭60−
200954号公報、特開昭60−200975号公報
、特開昭62−61717号公報、特開昭62−617
18号公報)、内面にCu−5nの合金層を形成させた
銅管(特開昭61−221359号公報)、銅管内に溶
融状態のメッキ金属をフローティングプラグを用いてメ
ッキする方法(特開昭62−61716号公報)等が提
案されている。
In order to solve these problems, the inner surface of the copper tube was coated with a low melting point metal or alloy and flux, and then heated to coat the alloy and improve corrosion resistance (Japanese Patent Application Laid-Open No. 1986-1999-1).
200954, JP 60-200975, JP 62-61717, JP 62-617
18), a copper tube with a Cu-5n alloy layer formed on the inner surface (Japanese Unexamined Patent Publication No. 61-221359), a method of plating molten plating metal inside a copper tube using a floating plug (Special 62-61716) etc. have been proposed.

[発明が解決しようとする課題] 上述の従来の技術は、いずれもそれなりにそれ相当の性
能が得られるものであるが、メッキ金属粉末とフラック
スとを銅管内面に均一に塗着し、加熱を行って皮膜を形
成することは、高度な技術・熟練を必要とする作業であ
り、常に一定品質の製品を提供することは困難であった
。また、このようなメッキ手段は、管の直径に対し長さ
の短い管材には適用できるが、給水・給湯用配管のよう
な管の直径に対し長さの長い管材(通常内径15.88
mm、長さ4m以上)には適用できなかった。
[Problems to be Solved by the Invention] All of the above-mentioned conventional techniques can achieve a certain level of performance, but they do not require that plating metal powder and flux be uniformly applied to the inner surface of the copper tube and then heated. Forming a film by doing this is work that requires advanced technology and skill, and it has been difficult to always provide products of constant quality. In addition, such plating means can be applied to pipe materials that are short in length relative to the pipe diameter, but are applicable to pipe materials that are long relative to the pipe diameter (usually inner diameter 15.88 mm), such as water and hot water supply piping.
mm, length of 4 m or more) could not be applied.

また、銅表面から銅イオンが溶出するのを避けるために
は、銅表面をSn−で被覆することは、公知である。し
かもニーリックの著書に「銅イオンによる水の汚染は、
銅管の内面をSnで被覆することによって(tinne
d  copper)避けることができる。この被覆に
孔(pare )が存在すると、SnまたはCu−8n
金属間化合物がCuに対してカソードとなって、Cuが
露出した部分の腐食が促進されるので、孔は避けなけれ
ばならないJ  (H,H,ニーリック著 [腐食反応
とその制御−原理と応用−CORRO8ION AND
 C0RRO8IONCONTRORJ産業図書(19
68) p275)とあるように、忌み嫌われていた。
Furthermore, in order to prevent copper ions from eluting from the copper surface, it is known to coat the copper surface with Sn-. Moreover, according to Neelik's book, ``Water contamination by copper ions is
By coating the inner surface of the copper tube with Sn (tinne
d copper) can be avoided. If there are pores in this coating, Sn or Cu-8n
Pores must be avoided because the intermetallic compounds act as cathodes for Cu, accelerating corrosion of exposed Cu areas. -CORRO8ION AND
C0RRO8IONCONTRORJ Industrial Book (19
68) p275), it was hated.

しかし、置換メッキまたは化学還元メッキで形成された
皮膜は、微小孔があっても、Snの水素化電圧が高くな
るため、または犠牲陽極効果により、銅イオンが溶出し
ないことが推定される。
However, in a film formed by displacement plating or chemical reduction plating, even if there are micropores, copper ions are presumed not to be eluted due to the high Sn hydrogenation voltage or the sacrificial anode effect.

そこで本発明の目的は、銅管の内面を、従来考えられて
いなかった置換メッキ法または化学還元メッキ法により
、厚さ3μm以下のSnメッキ層で被覆し、水道水によ
る銅イオンの溶出を軽減し、しかも安価で取り扱い容易
な内面処理銅管を提供することにある。
Therefore, the purpose of the present invention is to coat the inner surface of a copper pipe with a Sn plating layer with a thickness of 3 μm or less using a displacement plating method or a chemical reduction plating method, which has not been thought of in the past, to reduce the elution of copper ions by tap water. However, it is an object of the present invention to provide an internally treated copper tube that is inexpensive and easy to handle.

[課題を解決するための手段] 上記目的を達成するため、本発明者らは鋭意研究を重ね
た結果、置換メッキまたは化学還元メッキによる極めて
薄い皮膜は、たとえ微小な孔が存在する皮膜であっても
、銅イオンの溶出防止に十分な効果があることを知見し
、本発明を完成するに至った。
[Means for Solving the Problems] In order to achieve the above object, the present inventors have conducted intensive research and found that extremely thin films formed by displacement plating or chemical reduction plating, even if they have minute pores, However, the present inventors have found that the present invention is sufficiently effective in preventing the elution of copper ions.

すなわち、本発明の要旨は、銅管内面に置換メッキまた
は化学還元メッキにより、母材である銅の上に、厚さ3
μm以下に積層されたSn結晶粒から成るSnメッキ皮
膜を有する給水・給湯用内面Snメッキ銅管を第1の発
明とし、コイル状の銅管の端部開口部から管内部に、メ
ッキ前処理液およびSn換算量で1  g/l 〜20
  g/lの置換メッキ液または化学還元メッキ液を、
10〜60分間連続的に流通させ、厚さ3μm以下のS
nメッキ皮膜を銅管内面に形成させることにより、給水
・給湯用内面Snメッキ銅管を製造する方法を第2の発
明とするものである。
That is, the gist of the present invention is to coat the inner surface of a copper tube with a thickness of 3.
The first invention is an internal Sn-plated copper pipe for water supply and hot water supply having a Sn-plated film consisting of Sn crystal grains laminated to a size of less than μm. Liquid and Sn equivalent amount 1 g/l ~ 20
g/l displacement plating solution or chemical reduction plating solution,
Flowed continuously for 10 to 60 minutes, S with a thickness of 3 μm or less
The second invention is a method for manufacturing a Sn-plated copper pipe for water supply and hot water supply by forming an n-plated film on the inner surface of the copper pipe.

[作用コ 本発明は、皮膜の厚さか非常に薄く、たとえ微小孔が存
在しても、Sn結晶粒が積層されたSnメッキ皮膜を、
銅管内面に有することが特徴である。
[Operations] The present invention is capable of producing a Sn plating film in which Sn crystal grains are laminated, even if the film is very thin and has micropores.
It is characterized by having it on the inner surface of the copper tube.

結晶粒が積層されること Snの置換メッキにおいては、銅と錫との置換反応によ
って析出が進行する。第2図に示した走査電子顕微鏡の
写真から、メッキの析出形態は、(a)ないしくe)に
示すような状態で、各時間毎に結晶粒が積層されたもの
である。この皮膜形成過程を模式的に第1図(a)ない
しくc)に示した。化学還元メッキにおいては、表面の
触媒活性により皮膜が積層される。
In displacement plating of Sn, in which crystal grains are stacked, precipitation progresses due to a displacement reaction between copper and tin. From the scanning electron microscope photograph shown in FIG. 2, the precipitation form of the plating is as shown in (a) to e), with crystal grains stacked at each time point. This film forming process is schematically shown in FIGS. 1(a) to 1(c). In chemical reduction plating, a film is deposited due to the catalytic activity of the surface.

メッキ皮膜の厚さ メッキ皮膜の厚さは、銅イオンの溶出を防止するために
は、0.1μm以上存在することが好ましい。また、置
換メッキの場合には、銅と錫とのfi[換反応によって
析出が進行するため、せいぜい3μmが限度である。化
学還元メッキでは、反応が遅く、被着に長時間を要する
こと、および3μm以上と厚くなっても銅イオンの溶出
防止効果が飽和するので、3μm以下が好ましい。
Thickness of the plating film The thickness of the plating film is preferably 0.1 μm or more in order to prevent elution of copper ions. In addition, in the case of displacement plating, since precipitation proceeds due to the fi exchange reaction between copper and tin, the thickness is at most 3 μm. In chemical reduction plating, the reaction is slow and it takes a long time to adhere, and even if the thickness is 3 μm or more, the effect of preventing elution of copper ions is saturated, so the thickness is preferably 3 μm or less.

銅イオンの溶出を防止するには、銅が露出していないこ
とが最も好ましい。たとえば、ニーリックの著書に「銅
の露出部分における腐食が促進されるので孔は避けなけ
ればならない。」とあるように、忌み嫌われていた。し
かし、置換メッキまたは化学還元メッキで形成された皮
膜は、被覆率が50%以上であれば、Snの水素化電圧
が高くなるため、または犠牲陽極効果により、銅イオン
が溶出しないことが推定される。本発明はたとえ銅が露
出していても、snメンキ法によっては溶出を防止でき
ることにある。しかし、被覆率が50%以下ではこの効
果が得られなくなる。
To prevent elution of copper ions, it is most preferable that copper is not exposed. For example, it was frowned upon in Neelik's book: ``Pores should be avoided as they promote corrosion on exposed copper.'' However, if the coating formed by displacement plating or chemical reduction plating has a coverage of 50% or more, it is estimated that copper ions will not be eluted due to the high hydrogenation voltage of Sn or the sacrificial anode effect. Ru. The present invention resides in that even if copper is exposed, elution can be prevented by the sn Menke method. However, this effect cannot be obtained if the coverage is less than 50%.

次に、製造方法について説明する。Next, the manufacturing method will be explained.

管内部に処理液を連続的に流通させること管内部に処理
液を連続的に流通させることは、管内面の処理を行うの
は特には発明力を要しないが、給水、給湯用銅管のよう
な直径に対する長さの長いものに対しては有効である。
Continuously flowing the treatment liquid inside the pipe Although it does not require special inventiveness to treat the inner surface of the pipe, it is possible to continuously flow the treatment liquid inside the pipe. It is effective for objects that have a long length relative to their diameter.

また、処理液として置換メッキまたは化学還元メッキを
用いるのは、メッキ皮膜の析出速度が遅いため、銅管の
内面に薄い皮膜を均一に形成させる効果がある。
Furthermore, the use of displacement plating or chemical reduction plating as the treatment liquid has the effect of uniformly forming a thin film on the inner surface of the copper tube because the deposition rate of the plating film is slow.

メッキ液中のSn濃度 Sn濃度は、メッキ厚さに最も影響を及ぼすものであり
、1 g/I!以下では皮膜形成速度が低く、温度をあ
げても長時間を必要とするので工業的に不利である。2
0 g / lを越えるとメッキ液の種類によっては溶
解が飽和し、液が製作できなくなる。
Sn concentration in the plating solution The Sn concentration has the greatest effect on the plating thickness, and is 1 g/I! Below this, the film formation rate is low and a long time is required even if the temperature is raised, which is industrially disadvantageous. 2
If it exceeds 0 g/l, depending on the type of plating solution, the dissolution will reach saturation, making it impossible to produce the solution.

処理時間 置換メッキは、銅と錫との置換反応によって析出が進行
するため、露出した銅部分か少なくなれば、析出が低下
するので、皮膜厚さを制御するには処理時間を調整する
のが好ましい。また、化学還元メッキは、メッキ液を新
しく更新すれば、厚いメッキ厚さが得られるが、皮膜厚
さを制御するには、析出速度は1μm / h r程度
であるので、処理時間を調整するのが好ましい。
Processing time In displacement plating, precipitation progresses due to a substitution reaction between copper and tin, so the less copper is exposed, the less precipitation occurs, so adjusting the processing time is the best way to control the film thickness. preferable. In addition, with chemical reduction plating, a thick plating thickness can be obtained by renewing the plating solution, but in order to control the film thickness, the deposition rate is about 1 μm/hr, so the processing time must be adjusted. is preferable.

温度は、メッキ厚さに影響を及ぼし、温度が高いはとメ
ッキ速度が速くなり好ましいか、80℃以上ではメッキ
液に分解が起こるので好ましくない。
Temperature affects the plating thickness, and higher temperatures are preferable because the plating speed becomes faster, while temperatures higher than 80° C. are not preferable because the plating solution decomposes.

[実施例] 本発明の実施例について説明する。[Example] Examples of the present invention will be described.

実施例1 一辺の長さが100mmの脱酸銅の板材を用意し、下記
に示す工程で第1表に示す置換メッキ液のおよび化学還
元メッキ液のを用い、液温度を60℃とし、処理時間を
種々変えたメッキを行い、メッキ厚さを種々変化させた
試験材を得た。
Example 1 A deoxidized copper plate with a side length of 100 mm was prepared and treated in the steps shown below using the displacement plating solution and chemical reduction plating solution shown in Table 1 at a solution temperature of 60°C. Plating was performed at various times to obtain test materials with various plating thicknesses.

アルカリ脱脂→水洗→ 酸洗(高濃度酸性溶液)→水洗→ 中和(希薄酸性溶液)→メ・ンキ→ 水洗→湯洗→乾燥 第1表 得られた試験材の一部を、塩酸溶液で溶解し、重量減少
量からメッキ厚さを計算によって求め、第2表に示すよ
うなメッキ厚さを有する試験材を得た。これらの試験材
を水道水中に24時間浸漬し、水道水中に溶出した銅イ
オン量を、原子吸光光度分析法によって測定し、これら
の結果を第2表に示した。
Alkali degreasing → water washing → pickling (highly concentrated acidic solution) → water washing → neutralization (dilute acidic solution) → cleaning → water washing → hot water washing → drying Table 1: Part of the obtained test material was washed with hydrochloric acid solution. The plating thickness was determined by calculation from the amount of weight loss after melting, and test materials having the plating thickness shown in Table 2 were obtained. These test materials were immersed in tap water for 24 hours, and the amount of copper ions eluted into the tap water was measured by atomic absorption spectrometry. The results are shown in Table 2.

100 X 100 mmの銅板を用い1こ。Use a 100 x 100 mm copper plate.

これらから発明例のNo1〜10は、メッキ皮膜厚さが
0.1μm以上存在するため、銅イオン溶出量がo、o
sppm以下であり、良好である。これに対し、比較例
のNo、11は、メッキ皮膜厚さが4μm存在するため
、銅イオン溶出量がO,lllppm以下と良好である
が、これは板材を溶融メッキ法で得られたもので、長い
管材の内面メッキを行うのは困難である。
From these, invention examples No. 1 to 10 have a plating film thickness of 0.1 μm or more, so the amount of copper ion elution is o, o
sppm or less, which is good. On the other hand, Comparative Example No. 11 has a plating film thickness of 4 μm, so the copper ion elution amount is less than O,lll ppm, which is good, but this was obtained by hot-dipping the plate material. However, it is difficult to plate the inner surface of long tubes.

No、12および16は、いずれもメンキ厚さが厚いた
め、銅イオン溶出量が0.01ppm以下と良好である
か、フラックス加熱法および電気メッキ法で得られたも
ので、長い管材の内面メッキを行うのは困難である。
No. 12 and No. 16 all have thick coatings, so the copper ion elution amount is 0.01 ppm or less, or they are obtained by flux heating method and electroplating method, and are suitable for inner plating of long pipe materials. is difficult to do.

No、13および14は、置換メッキおよび化学還元メ
ッキであるが、メッキ厚さが0.01μmと薄いため、
銅イオンの溶出量が0.36ppmおよび0.20pp
mとなり本発明の基準値(0,1ppm)を越えている
Nos. 13 and 14 are displacement plating and chemical reduction plating, but because the plating thickness is as thin as 0.01 μm,
Elution amount of copper ions is 0.36 ppm and 0.20 ppm
m, which exceeds the standard value (0.1 ppm) of the present invention.

No 15は、化学還元メッキでメッキ皮膜厚さを4μ
m形成させたものであるか、銅イオン溶出量が0.01
ppm以下であり良好であるが、化学還元メッキの速度
が低く、液の更新を頻繁に行うことと、これらの処理に
長時間を必要とするので好ましくない。
No. 15 has a plating film thickness of 4μ by chemical reduction plating.
whether the copper ion elution amount is 0.01
ppm or less, which is good, but it is not preferable because the speed of chemical reduction plating is low, the solution must be refreshed frequently, and these treatments require a long time.

No、17は、メッキ処理していない銅板材であり、銅
イオン溶出量が1.24ppmと多くなっている。
No. 17 is a copper plate material that has not been plated, and the amount of copper ions eluted is as high as 1.24 ppm.

実施例2 各種置換メッキ液を用い、Sn濃度、処理時間および処
理温度を変えた試験を、実施例1と同様な方法で行い、
その結果を第3表に示す。
Example 2 A test was conducted in the same manner as in Example 1 using various displacement plating solutions and varying the Sn concentration, treatment time, and treatment temperature.
The results are shown in Table 3.

第3表 置換メッキ液■■■は、第1表に示す組成でSn化合物
の量を変化させた。
Table 3 Displacement plating solutions ■■■ had the compositions shown in Table 1 with varying amounts of Sn compounds.

メッキ液のSn濃度、処理時間および処理温度か発明の
範囲内にあるN0118〜27は、メッキ厚さとして0
.08μm以上が得られ、銅イオン溶出量が0.O8p
pm以下となり、良好である。
For N0118 to 27, the Sn concentration of the plating solution, treatment time, and treatment temperature are within the range of the invention, the plating thickness is 0.
.. 0.08 μm or more was obtained, and the amount of copper ion elution was 0.08 μm or more. O8p
pm or less, which is good.

これに対し、No、28は、Sn濃度が20g/lと高
いか、処理時間が5分と短く、メッキ厚さか0.08μ
mと薄くなり、銅イオン溶出量が0.10ppmとなっ
た。
On the other hand, No. 28 has a high Sn concentration of 20 g/l, a short processing time of 5 minutes, and a plating thickness of 0.08μ.
The copper ion elution amount was 0.10 ppm.

No、29.30および31は、置換メッキ液のSn濃
度が0.5g/Iと低いため、処理時間および処理温度
を発明の範囲の上限で行ったが、メッキ厚さが0.05
〜0.07μmとなり、銅イオンの溶出量か015〜0
.18ppmと高くなった。
For Nos. 29, 30, and 31, the Sn concentration of the displacement plating solution was as low as 0.5 g/I, so the treatment time and treatment temperature were set at the upper limit of the range of the invention, but the plating thickness was 0.05 g/I.
~0.07μm, and the amount of copper ion elution is 0.15~0.
.. It was as high as 18 ppm.

実施例3 置換メッキ液および化学還元メッキ液を用い、処理時間
および処理温度を変えた試験を、実施例1と同様な方法
で行い、その結果を第4表に示す。
Example 3 A test was conducted in the same manner as in Example 1 using a displacement plating solution and a chemical reduction plating solution and varying the treatment time and temperature, and the results are shown in Table 4.

第4表 処理時間および処理温度が発明の範囲内にあるNo、3
2〜45は、メッキ厚さとして0.25μm以上が得ら
れ、銅イオン溶出量も0.O4ppm以下となり、良好
である。
Table 4 No. 3 where the treatment time and treatment temperature are within the range of the invention
For Nos. 2 to 45, a plating thickness of 0.25 μm or more was obtained, and the amount of copper ion elution was also 0. O4 ppm or less, which is good.

これに対し、比較例のNo、46〜51は、いずれも処
理時間が5分と短いため、メッキ厚さとして0.04μ
m以下となり、銅イオン溶出量も0.19ppm以上と
なった。
On the other hand, in Comparative Examples Nos. 46 to 51, the processing time was as short as 5 minutes, so the plating thickness was 0.04 μm.
m or less, and the amount of copper ion elution was also 0.19 ppm or more.

実施例4 外径15.88 m m 、肉厚0.71mm、長さ5
0mの脱酸銅管のコイルを用意し、実施例1で示した処
理工程で、コイルの管端から処理液を流通させ、メッキ
処理を行なった。 得られた銅管について、コイルの両
端および中央部から長さ500mmの試験材を切り出し
、メッキ皮膜の厚さおよび銅イオン溶出試験を行った。
Example 4 Outer diameter 15.88 mm, wall thickness 0.71 mm, length 5
A coil of 0 m long deoxidized copper tube was prepared, and a plating treatment was performed in the treatment process shown in Example 1 by flowing a treatment liquid from the tube end of the coil. Regarding the obtained copper tube, test pieces having a length of 500 mm were cut from both ends and the center of the coil, and the thickness of the plating film and the copper ion elution test were conducted.

メッキ皮膜の厚さの測定は、銅管内に塩酸溶液を充填し
、Sn層を溶解させ、重量減少量からメッキ厚さを計算
によって求めた。
The thickness of the plating film was measured by filling a copper tube with a hydrochloric acid solution to dissolve the Sn layer, and calculating the plating thickness from the amount of weight loss.

銅イオン溶出試験は、500mmの銅管に水道水を充填
・密封し、24時間後における銅イオン溶出量を、原子
吸光光度分析法によって測定した。それらの結果を第5
表に示した。
In the copper ion elution test, a 500 mm copper tube was filled with tap water and sealed, and the amount of copper ion elution after 24 hours was measured by atomic absorption spectrometry. Those results in the fifth
Shown in the table.

第5表 処理時間および処理温度か発明の範囲内にあるNo 5
2〜54は、メッキ厚さとして033μm以上が得られ
、銅イオン溶出量も0.01pprn以下となり、良好
である。これに対し、比較例のNo、55および56は
、いずれも処理時間が5分と短いため、メッキ厚さとし
て0.02μm以下となり、銅イオン溶出量も0.31
ppm以上となった。
Table 5 Processing time and processing temperature are within the range of the invention No. 5
Samples Nos. 2 to 54 are good, with a plating thickness of 0.33 μm or more and a copper ion elution amount of 0.01 pprn or less. On the other hand, in Comparative Examples No. 55 and 56, the processing time was as short as 5 minutes, so the plating thickness was 0.02 μm or less, and the amount of copper ions eluted was 0.31 μm.
It became more than ppm.

[発明の効果] 本発明は、以上説明したように構成されているので、簡
単に銅管内面へ薄いSnメッキ皮膜を形成させることが
可能となり、銅イオンの溶出を防止し、しかも継手部品
も従来のものをそのまま使用できるという効果が奏され
、産業上極めて有用である。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to easily form a thin Sn plating film on the inner surface of a copper pipe, prevent the elution of copper ions, and also prevent coupling parts. It has the effect that conventional products can be used as is, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)(b)(c)は、Sn結晶が積層される状
況を示す模式図である。 第2図(a)l;!1分後、第2図(b)は5分後、第
2図(c)は10分後、第2図(d)は30分後、第2
図(e)は60分後の置換メッキにょるSn結晶が積層
された状況を示す走査型顕微鏡写真図である。 代理人   星  野    昇 −4F1Fl −
FIGS. 1(a), 1(b), and 1(c) are schematic diagrams showing how Sn crystals are stacked. Figure 2 (a) l;! After 1 minute, Figure 2(b) after 5 minutes, Figure 2(c) after 10 minutes, Figure 2(d) after 30 minutes,
Figure (e) is a scanning micrograph showing the state in which Sn crystals were stacked after 60 minutes of displacement plating. Agent Noboru Hoshino-4F1Fl-

Claims (2)

【特許請求の範囲】[Claims] (1)給水・給湯用銅管の内部表面皮膜構造において、
母材である銅の上に、厚さ3μm以下に積層されたSn
結晶粒から成るSnメッキ皮膜を有することを特徴とす
る給水・給湯用内面Snメッキ銅管。
(1) In the internal surface coating structure of copper pipes for water supply and hot water supply,
Sn layered to a thickness of 3 μm or less on the copper base material
An internal Sn-plated copper pipe for water supply and hot water supply, characterized by having a Sn-plated film consisting of crystal grains.
(2)コイル状の銅管の端部開口部から管内部に、メッ
キ前処理液およびSn換算量で1g/l〜20g/lの
置換メッキ液または化学還元メッキ液を、10〜60分
間連続的に流通させ、厚さ3μm以下のSnメッキ皮膜
を銅管内面に形成させることを特徴とする給水・給湯用
内面Snメッキ銅管の製造方法。
(2) Apply plating pretreatment solution and displacement plating solution or chemical reduction plating solution in an Sn equivalent amount of 1 g/l to 20 g/l continuously from the end opening of the coiled copper tube to the inside of the tube for 10 to 60 minutes. 1. A method for manufacturing a Sn-plated internal copper pipe for water supply and hot water supply, characterized by forming an Sn-plated film with a thickness of 3 μm or less on the internal surface of the copper pipe.
JP2152844A 1990-06-13 1990-06-13 Inner Sn plated copper pipe for water / hot water supply and method for manufacturing the same Expired - Lifetime JP2544678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152844A JP2544678B2 (en) 1990-06-13 1990-06-13 Inner Sn plated copper pipe for water / hot water supply and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152844A JP2544678B2 (en) 1990-06-13 1990-06-13 Inner Sn plated copper pipe for water / hot water supply and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0445282A true JPH0445282A (en) 1992-02-14
JP2544678B2 JP2544678B2 (en) 1996-10-16

Family

ID=15549367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152844A Expired - Lifetime JP2544678B2 (en) 1990-06-13 1990-06-13 Inner Sn plated copper pipe for water / hot water supply and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2544678B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996028686A1 (en) * 1995-03-16 1996-09-19 Kabushiki Kaisha Kobe Seiko Sho Copper alloy pipe for water/hot water supply equipped with protective film on its inner surface, production thereof, and heat-exchanger for hot water supply
JP2007069985A (en) * 2005-08-09 2007-03-22 Nippon Electric Glass Co Ltd Glass roving package, glass roving packing element, and its packing method
JP2009180452A (en) * 2008-01-31 2009-08-13 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534862A (en) * 1978-09-04 1980-03-11 Hitachi Ltd Commutator
JPS6261716A (en) * 1985-09-10 1987-03-18 Hitachi Cable Ltd Internal planting method for metal pipe
JPS63109179A (en) * 1986-10-27 1988-05-13 Usui Internatl Ind Co Ltd Method for forming coated film of tin or tin-based alloy on inner surface of metallic pipe
JPH0261073A (en) * 1988-08-26 1990-03-01 C Uyemura & Co Ltd Electroless tin plating bath and electroless tin plating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534862A (en) * 1978-09-04 1980-03-11 Hitachi Ltd Commutator
JPS6261716A (en) * 1985-09-10 1987-03-18 Hitachi Cable Ltd Internal planting method for metal pipe
JPS63109179A (en) * 1986-10-27 1988-05-13 Usui Internatl Ind Co Ltd Method for forming coated film of tin or tin-based alloy on inner surface of metallic pipe
JPH0261073A (en) * 1988-08-26 1990-03-01 C Uyemura & Co Ltd Electroless tin plating bath and electroless tin plating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996028686A1 (en) * 1995-03-16 1996-09-19 Kabushiki Kaisha Kobe Seiko Sho Copper alloy pipe for water/hot water supply equipped with protective film on its inner surface, production thereof, and heat-exchanger for hot water supply
US5769129A (en) * 1995-03-16 1998-06-23 Kabushiki Kaisha Kobe Seiko Sho Cold-and hot-water supply copper-alloy pipe with inner-surface protective film, method for manufacturing same, and hot-water supply heat exchanger
JP2007069985A (en) * 2005-08-09 2007-03-22 Nippon Electric Glass Co Ltd Glass roving package, glass roving packing element, and its packing method
JP2009180452A (en) * 2008-01-31 2009-08-13 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater

Also Published As

Publication number Publication date
JP2544678B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
JP2806531B2 (en) Zinc phosphate aqueous solution for surface treatment of iron or iron alloy material and treatment method
US3666529A (en) Method of conditioning aluminous surfaces for the reception of electroless nickel plating
US2159510A (en) Method of coating copper or its alloys with tin
JPS59177381A (en) Production of galvanized steel sheet having resistance to blackening
US3506499A (en) Method of surface-treating zinc,aluminum and their alloys
JP2004502868A (en) Improvement of zinc-aluminum alloy film forming method by immersion in molten metal bath
JPH0445282A (en) Internally tinned copper pipe for feeding water and hot water and production thereof
JPH03236476A (en) Manufacture of aluminium memory disk finished by flat and smooth metal plating
US3206324A (en) Method and pre-flux for coating ferrous metals with nickel prior to galvanizing
JP5688292B2 (en) Metal coating method and coating produced thereby
JPS647153B2 (en)
WO1987001397A1 (en) Hot-dipped steel plate and process for its production
JPH0499180A (en) Interior double lined copper pipe for water and hot water supply and its production
JPS6025515B2 (en) Tin alloy electrodeposition bath
JPH11302570A (en) Production of antimicrobial coating film
JP2008121101A (en) Rust-preventing liquid for metal surface plated with zinc or zinc alloy, and method for forming rust-preventing film on the metal surface
US3432337A (en) Process for the currentless deposition of copper-tin layers
JPH04131384A (en) Copper pipe for water and hot water feeding having cu-sn alloy layer on inside surface and production thereof
JPH1112751A (en) Method for electroless plating with nickel and/or cobalt
US3288636A (en) Process for coating uranium alloy members
US6572754B2 (en) Method for producing a tin film on the inner surface of hollow copper alloy components
JPS61166999A (en) Method for cleaning surface of steel sheet
JP3071567B2 (en) Substitution tin plating method for copper material
JPH0123555B2 (en)
JPH06240467A (en) Aluminum plate excellent in filiform erosion resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

EXPY Cancellation because of completion of term