JP2009180452A - Water heat exchanger for water heater - Google Patents

Water heat exchanger for water heater Download PDF

Info

Publication number
JP2009180452A
JP2009180452A JP2008020703A JP2008020703A JP2009180452A JP 2009180452 A JP2009180452 A JP 2009180452A JP 2008020703 A JP2008020703 A JP 2008020703A JP 2008020703 A JP2008020703 A JP 2008020703A JP 2009180452 A JP2009180452 A JP 2009180452A
Authority
JP
Japan
Prior art keywords
water
tube
pipe
heat exchanger
inner tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008020703A
Other languages
Japanese (ja)
Inventor
Naoe Sasaki
直栄 佐々木
Shigenao Maruyama
重直 圓山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Light Metal Industries Ltd
Original Assignee
Tohoku University NUC
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Light Metal Industries Ltd filed Critical Tohoku University NUC
Priority to JP2008020703A priority Critical patent/JP2009180452A/en
Publication of JP2009180452A publication Critical patent/JP2009180452A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water heat exchanger for a water heater improving an even heating effect of water by improving heat exchange performance between a heat exchange medium and the water, and capable of effectively suppressing generation of blue water or generation of mound-less type pitting corrosion. <P>SOLUTION: A first inner tube 4 carrying the heat exchange medium of a high temperature is, in one part of its outer circumference face, abutted on and thermally contacted to one part of an outer circumference face of a second inner tube 6 carrying the water and formed by copper or a copper alloy applied with tin plating on an inner face. An inner circumference face of an outer tube 8 is abutted on and thermally contacted to a portion of the outer circumference face of the first inner tube 4 not contacting the outer circumference face of the second inner tube 6. A portion of the outer circumference face of the second inner tube 6 not contacting the outer circumference face of the first inner tube 4 is abutted and thermally contacted with respect to a portion of the inner circumference of the outer tube 8 not contacting the outer circumference face of the first inner tube 4, to compose the water heat exchanger 2 for a water heater. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、給湯機用水熱交換器に係り、特に、炭酸ガスを主成分とする冷媒等の高温の熱交換媒体と水との間の熱交換を行なうための給湯機用水熱交換器に関するものである。   The present invention relates to a water heat exchanger for a hot water heater, and more particularly to a water heat exchanger for a water heater for performing heat exchange between a high-temperature heat exchange medium such as a refrigerant mainly composed of carbon dioxide and water. It is.

従来から、高温の熱交換媒体(冷媒)と水との間の熱交換を行なう給湯機用の水熱交換器として、かかる熱交換媒体を流通させる流路(以下、冷媒流路と略称する)と、熱交換されるべき水を流通させる流路(以下、水流路と略称する)とを、二つの伝熱管を組み合わせて構成し、それら冷媒と水との間で熱交換を行うようにした熱交換器が、各種用いられて来ている。また、そのような水熱交換器において用いられる熱交換媒体(冷媒)としては、従来のフロン系冷媒に代えて、オゾン層の保護や地球環境の温暖化防止等の観点から、温暖化係数の低い自然冷媒が注目されて来ており、近年においては、この自然冷媒を利用した水熱交換器の開発が、行われている。そして、そのような自然冷媒の中でも、炭酸ガスを用いた場合には、高温高圧のガス条件が得られるところから、特に注目を受けているのである。   Conventionally, as a water heat exchanger for a water heater that performs heat exchange between a high-temperature heat exchange medium (refrigerant) and water, a flow path for circulating the heat exchange medium (hereinafter referred to as a refrigerant flow path). And a flow path (hereinafter abbreviated as a water flow path) through which water to be heat-exchanged is configured by combining two heat transfer tubes, and heat exchange is performed between the refrigerant and water. Various heat exchangers have been used. Moreover, as a heat exchange medium (refrigerant) used in such a water heat exchanger, instead of the conventional chlorofluorocarbon-based refrigerant, the warming coefficient is changed from the viewpoint of protecting the ozone layer and preventing global warming. Low natural refrigerants have attracted attention, and in recent years, water heat exchangers using such natural refrigerants have been developed. Among such natural refrigerants, when carbon dioxide gas is used, it is particularly attracting attention because high-temperature and high-pressure gas conditions can be obtained.

ところで、そのような炭酸ガスを主成分とする冷媒と水との間で熱交換を行う方式の給湯機用水熱交換器としては、従来より、以下に例示するように、内部に冷媒を流通させる伝熱管と、内部に水を流通させる伝熱管とを組み合わせて、一つの熱交換器を構成したものが、各種提案されている。   By the way, as a water heat exchanger for a hot water heater of a type that performs heat exchange between a refrigerant mainly composed of carbon dioxide gas and water, conventionally, the refrigerant is circulated inside as exemplified below. Various proposals have been made in which one heat exchanger is configured by combining a heat transfer tube and a heat transfer tube through which water flows.

例えば、特開2006−170571号公報(特許文献1)においては、スパイラル状に撚られ又は捻られた二本の内管内に、それぞれ冷媒を流通せしめる一方、それら二本の内管を収容した外管の管内には、水が流通せしめられるようにした構造の二重多管式熱交換器が、明らかにされている。そして、そこでは、高温側である冷媒流路管(内管)が低温側となる水流路管(外管)の中に完全に封じ込められた形態とされているところから、冷媒の熱が外気へと放出されてしまうことが、低く抑えられるという利点を有しているのであるが、水側への伝熱面積を増加させることが難しいという欠点を内在している。このため、特許文献1では、冷媒流路管をスパイラル状に捻ることにより流路長を長くして、水側への伝熱面積を増加させているのであるが、それでも、伝熱面積の増加の効果は充分ではなく、熱交換器の小型化が難しくなるものであった。   For example, in Japanese Patent Laid-Open No. 2006-170571 (Patent Document 1), a refrigerant is circulated in two inner pipes twisted or twisted in a spiral shape, while the two inner pipes are accommodated. A double-tubular heat exchanger having a structure in which water is allowed to flow in the pipe is disclosed. In this case, the refrigerant flow pipe (inner pipe) on the high temperature side is completely enclosed in the water flow pipe (outer pipe) on the low temperature side. Although it has the advantage that it is kept low, it has the disadvantage that it is difficult to increase the heat transfer area to the water side. For this reason, in patent document 1, although the flow path length is lengthened by twisting the refrigerant flow pipe in a spiral shape and the heat transfer area to the water side is increased, the increase in the heat transfer area is still achieved. This effect was not sufficient, and it was difficult to reduce the size of the heat exchanger.

また、この特許文献1に提案の二重多管式熱交換器にあっては、冷媒流路管の損傷等により、冷媒が、その外側を流通する水中へ漏洩する危険性があり、特に、給湯機用水熱交換器に適用する場合において、飲料用にも使用される水の中へ冷媒が混入することを避ける必要があるところから、特許文献1においては、その図3に示されるような漏洩検知管が、冷媒流路管(内管)として採用されているのであるが、そのために、構造が複雑となると共に、コストアップの要因ともなっているのである。   Further, in the double multi-tubular heat exchanger proposed in Patent Document 1, there is a risk that the refrigerant leaks into the water flowing outside due to damage of the refrigerant flow pipe, etc. In the case of applying to a water heat exchanger for a water heater, it is necessary to avoid the refrigerant from being mixed into the water used also for beverages. In Patent Document 1, as shown in FIG. The leak detection pipe is employed as a refrigerant flow pipe (inner pipe). However, this complicates the structure and increases the cost.

一方、特開2002−228370号公報(特許文献2)や特開2006−90697号公報(特許文献3)においては、水流路管の外側に冷媒流路管を配置してなる構造の、冷媒流路管巻き付けタイプの熱交換器が明らかにされているが、その中で、特許文献2に提案されている構造のものにあっては、水流路管と冷媒流路管との接触面積が充分ではないために、冷媒から水への伝熱性能が低く、充分な熱交換性能を発揮することが困難であるという問題を内在している。このため、そのような形態の熱交換器の伝熱性能を向上させるべく、特許文献3においては、水流路管の外周に、複数条の山谷底部を連続して螺旋状に設け、その山谷底部に沿って、冷媒流路管を巻き付けるようにしているのであるが、これとても、接触面積の増加は充分ではなく、加えて、冷媒からの熱が外気に放出される欠点もあり、熱交換性能面において良好な熱交換器であるとは言い難いものであった。   On the other hand, in Japanese Patent Application Laid-Open No. 2002-228370 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2006-90697 (Patent Document 3), a refrigerant flow having a structure in which a refrigerant channel tube is disposed outside a water channel tube. Although a heat exchanger of a path pipe winding type has been clarified, the contact area between the water flow path pipe and the refrigerant flow path pipe is sufficient in the structure proposed in Patent Document 2. Therefore, there is a problem that heat transfer performance from the refrigerant to water is low and it is difficult to exhibit sufficient heat exchange performance. For this reason, in order to improve the heat transfer performance of the heat exchanger of such a form, in Patent Document 3, a plurality of mountain valley bottom portions are continuously provided in a spiral shape on the outer periphery of the water flow channel pipe, and the mountain valley bottom portion is provided. However, the contact area is not increased sufficiently, and in addition, the heat from the refrigerant is released to the outside air, resulting in heat exchange performance. It was hard to say that it was a good heat exchanger.

さらに、特開2003−14383号公報(特許文献4)は、水流路管に冷媒流路管を押し込むように配置してなる構造の熱交換器を開示しており、そこでは、水流路管の外面を窪ませ、その窪みに冷媒流路管を嵌め込んでなる構成とされているところから、上記特許文献2の如きタイプに比べて、冷媒流路管と水流路管の接触面積が増大され、伝熱性能の向上が図られ得ることとなったのであるが、それでも、充分であるとは言い難いものであった。なお、特許文献4の図5に示されている形態は、冷媒流路管が上下に二本配置されるものであるが、接触面積を増大させるには、そのような冷媒流路管の本数を、3本、4本、或いはそれ以上と増やすことも考えられるものの、その場合において、冷媒流路管から冷媒の熱が外気に放出される欠点は逃れられず、熱交換性能面において、良好な熱交換性能を有しているとは言うことが出来ない。   Furthermore, Japanese Patent Application Laid-Open No. 2003-14383 (Patent Document 4) discloses a heat exchanger having a structure in which a refrigerant channel tube is arranged so as to be pushed into a water channel tube. Since the outer surface is recessed and the coolant channel tube is fitted into the recess, the contact area between the coolant channel tube and the water channel tube is increased compared to the type described in Patent Document 2 above. Although the heat transfer performance could be improved, it was still difficult to say that it was sufficient. In addition, although the form shown by FIG. 5 of patent document 4 arranges two refrigerant | coolant flow path pipes up and down, in order to increase a contact area, the number of such a refrigerant | coolant flow path pipe | tube is used. However, in that case, the disadvantage that the heat of the refrigerant is released from the refrigerant flow pipe to the outside air is not escaped, and the heat exchange performance is good. It cannot be said that it has a good heat exchange performance.

ここで、図6には、かかる特許文献4に開示のタイプにおいて構成された熱交換器30の断面図が示されており、そこでは、3本の冷媒流路管32が、それぞれ、水流路管34の外面に設けられた三つの窪み36内に密着配置されてなる構造において、構成されている。また、そのような熱交換器30における1本の冷媒流路管32からの熱の流れが、図7に示されている。そこにおいて、冷媒流路管32内を流れる冷媒からの熱は、冷媒流路管32と水流路管34との接触部38を介して、その内側の領域40を流れる水を加熱し、その熱が、更に他の領域42,44を流れる水にも伝達されることとなる一方、冷媒からの熱は、外気46へも放散されることとなるのである。そして、このような熱伝達において、接触部38に近い領域40の水の温度は高くなる一方、接触部38の両側に位置して、水流路管34の内周面に近い領域42の水は、外気46の影響を受けて、充分に加熱され得ず、低い温度の水となるのであり、このために、水流路(34)内での水温度の差が大きく、均熱状態とはなり難いのである。   Here, FIG. 6 shows a cross-sectional view of a heat exchanger 30 configured in the type disclosed in Patent Document 4, in which three refrigerant flow pipes 32 are respectively provided as water flow paths. It is configured in a structure in which it is arranged in close contact with three recesses 36 provided on the outer surface of the tube 34. Moreover, the heat flow from one refrigerant flow pipe 32 in such a heat exchanger 30 is shown in FIG. There, the heat from the refrigerant flowing in the refrigerant channel pipe 32 heats the water flowing through the inner region 40 via the contact portion 38 between the refrigerant channel pipe 32 and the water channel pipe 34, and the heat However, while it is also transmitted to the water flowing through the other regions 42 and 44, the heat from the refrigerant is also dissipated to the outside air 46. In such heat transfer, the temperature of the water in the region 40 close to the contact portion 38 is high, while the water in the region 42 located on both sides of the contact portion 38 and close to the inner peripheral surface of the water flow channel pipe 34 is Under the influence of the outside air 46, the water cannot be heated sufficiently and becomes low-temperature water. For this reason, there is a large difference in water temperature in the water flow path (34), and a soaking state is obtained. It is difficult.

また、水道水等の水に含まれるカルシウム等の成分は、高温(およそ85℃以上)に加熱された領域において析出し易く、このために、上記した内側領域40においては、そのような成分の析出によるスケール形成が惹起され易い問題を内在している。そして、熱交換器30を長期間に亘って使用することにより、その形成されたスケールが、流路壁に付着し、そしてその付着量(厚さ)が経時的に増大することによって、流路断面積を減少させ、最終的には流路を閉塞させてしまうという問題を内在しているのであり、更にこのような問題は、特許文献4のタイプに限られることなく、特許文献2、3のようなタイプにおいても起こり得る問題となっているのである。   Moreover, components such as calcium contained in water such as tap water are likely to precipitate in a region heated to a high temperature (approximately 85 ° C. or higher). For this reason, in the inner region 40 described above, The problem inherent in the formation of scale due to precipitation is inherent. Then, by using the heat exchanger 30 for a long period of time, the formed scale adheres to the flow path wall, and the adhesion amount (thickness) increases with time, so that the flow path The problem of reducing the cross-sectional area and eventually closing the flow path is inherent, and such a problem is not limited to the type of Patent Document 4, and Patent Documents 2, 3 It is a problem that can occur even in such types.

ところで、これらの給湯機用水熱交換器においては、その水流路管を構成する材質として、熱交換率が高い、加工性の良好な銅や銅合金が用いられることが多い。そして、そのような水流路管、即ち水が流通する部分を、銅若しくは銅合金にて構成した場合にあっては、水のpHが酸性側やアルカリ性側に変化すると、その管材質である銅若しくは銅合金が、2価の銅イオンとして水に溶け出し易くなる。また、その溶け出した銅イオンが、石鹸や炭酸ガス等と反応して、青水が発生してしまうといった問題も惹起され易くなるのである。   By the way, in these water heat exchangers for water heaters, copper and copper alloys having a high heat exchange rate and good workability are often used as the material constituting the water flow pipe. And, in the case where such a water flow pipe, that is, a portion where water flows is made of copper or a copper alloy, when the pH of the water changes to the acidic side or the alkaline side, the pipe material copper Or a copper alloy becomes easy to melt | dissolve in water as a bivalent copper ion. In addition, the dissolved copper ions react with soap, carbon dioxide gas, etc., and blue water is easily generated.

加えて、それら管内を流通する水中には、種々の成分が含有されており、そのような含有成分によって惹起される問題、例えば遊離炭酸の多い地下水を使用した場合には、I’型孔食の発生が懸念され、また、前述の如く管材質から溶出した2価の銅イオンにより、水中の溶解性SiO2 が析出して、スケールを形成し、マウンドレス型孔食が生じる危険性もあるものであった。また、それらの孔食は、伝熱管に孔を開けるだけでなく、表面の腐食生成物で荒れた部分に、水垢等のスケールが付き易くなり、熱交換性能を悪くするという問題も内在している。 In addition, the water flowing through these pipes contains various components, and problems caused by such components, for example, when using groundwater with a large amount of free carbonic acid, I 'type pitting corrosion In addition, there is a risk that the divalent copper ions eluted from the tube material precipitate the soluble SiO 2 in water to form a scale and cause a moundless pitting corrosion as described above. It was a thing. In addition, these pitting corrosions not only make holes in the heat transfer tubes, but also have a problem that scales such as water scales are easily attached to the surface roughened by the corrosion products on the surface, and the heat exchange performance is deteriorated. Yes.

このため、上述の如きスケールの形成を効果的に抑制するには、水流路(34)内での均熱を図ることが重要であるところから、熱交換されるべき水が出来るだけ均一に加熱され得るようにすることによって、熱交換性能やコスト面での有利さを充分に発揮すると共に、スケール形成を効果的に抑制し、青水発生やマウンドレス型孔食の発生をも効果的に抑制することが出来る機能を兼ね備えるようにした給湯機用水熱交換器の実現が、望まれているのである。   For this reason, in order to effectively suppress the formation of scale as described above, it is important to achieve soaking in the water flow path (34), so that water to be heat-exchanged is heated as uniformly as possible. By making it possible, the heat exchange performance and cost advantages are fully demonstrated, scale formation is effectively suppressed, and generation of blue water and moundless pitting corrosion is also effectively suppressed. The realization of a water heat exchanger for a water heater that has a function that can be performed is desired.

特開2006−170571号公報JP 2006-170571 A 特開2002−228370号公報JP 2002-228370 A 特開2006−90697号公報JP 2006-90697 A 特開2003−14383号公報JP 2003-14383 A

ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、高温の熱交換媒体から熱交換されるべき水への熱交換性能を高めて、かかる熱交換されるべき水の均一加熱効果を向上せしめると共に、青水の発生やマウンドレス型孔食の発生を効果的に抑制することが出来る給湯機用水熱交換器を、比較的単純で且つコンパクトな構造において、製造コストも安価に、実現することにある。   Here, the present invention was made in the background of such circumstances, the place to solve the problem is to improve the heat exchange performance from the high temperature heat exchange medium to the water to be heat exchanged, A water heater water heat exchanger that can improve the uniform heating effect of water to be heat-exchanged and effectively suppress the generation of blue water and moundless pitting corrosion is relatively simple and compact. In a simple structure, the manufacturing cost is to be realized at a low cost.

そして、本発明にあっては、かくの如き課題の解決のために、管内に高温の熱交換媒体が流通せしめられる第一の内管と、該高温の熱交換媒体との間で熱交換されるべき水が管内に流通せしめられる第二の内管と、それら第一及び第二の内管を管内に収容、保持する外管とから構成される給湯機用水熱交換器にして、該第一の内管が、その外周面の一部において、前記第二の内管の外周面の一部に対して当接せしめられて熱的接触させられていると共に、更に、該第二の内管の外周面と接触していない部分において、前記外管の内周面に当接せしめられて熱的接触させられている一方、該第二の内管が、銅若しくは銅合金にて形成されて、その内面に錫めっきが施されていると共に、その外周面のうち前記第一の内管の外周面と接触していない部分において、前記外管の内周面の前記第一の内管の外周面と接触していない部分に対して当接せしめられて、熱的接触させられていることを特徴とする給湯機用水熱交換器を、その要旨とするものである。   In the present invention, in order to solve such problems, heat exchange is performed between the first inner pipe through which the high-temperature heat exchange medium is circulated in the pipe and the high-temperature heat exchange medium. A water heat exchanger for a hot water heater comprising a second inner pipe through which water to be circulated and an outer pipe that houses and holds the first and second inner pipes in the pipe; One inner pipe is brought into contact with a part of the outer peripheral surface of the second inner pipe and brought into thermal contact with a part of the outer peripheral surface thereof. While the outer peripheral surface of the tube is not in contact with the inner peripheral surface of the outer tube, the second inner tube is formed of copper or a copper alloy while being in thermal contact with the inner peripheral surface of the outer tube. The inner surface is tin-plated and is not in contact with the outer peripheral surface of the first inner tube of the outer peripheral surface. In the portion, the water for water heaters is brought into contact with a portion of the inner peripheral surface of the outer tube that is not in contact with the outer peripheral surface of the first inner tube, and is in thermal contact with the portion. A heat exchanger is the gist thereof.

なお、このような本発明に従う給湯機用水熱交換器の望ましい態様の一つによれば、前記第二の内管の外周面に、管軸方向に延びる溝部が、凹陥して形成され、該溝部内に前記第一の内管が密接、収容されている一方、それら第一及び第二の内管に密接するように、前記外管が外嵌めされている構成が、有利に採用されることとなる。   According to one of the desirable embodiments of the water heat exchanger for a water heater according to the present invention, a groove portion extending in the tube axis direction is formed in the outer peripheral surface of the second inner tube so as to be recessed, While the first inner tube is closely accommodated in the groove, the outer tube is advantageously fitted so as to be in close contact with the first and second inner tubes. It will be.

また、本発明の望ましい態様の他の一つによれば、前記第一の内管と前記第二の内管との当接、前記第一の内管と前記外管との当接、及び前記第二の内管と前記外管との当接が、それぞれ機械的な圧着によって実現されて、熱的接触が形成されている。   According to another preferred embodiment of the present invention, the first inner tube and the second inner tube are in contact, the first inner tube and the outer tube are in contact, and The contact between the second inner tube and the outer tube is achieved by mechanical pressure bonding, and thermal contact is formed.

さらに、本発明に従う給湯機用水熱交換器にあっては、望ましくは、前記高温の熱交換媒体が、炭酸ガスを主体とする冷媒とされて構成されることとなる。   Furthermore, in the water heat exchanger for hot water supply according to the present invention, desirably, the high-temperature heat exchange medium is configured as a refrigerant mainly composed of carbon dioxide gas.

更にまた、本発明に従う給湯機用水熱交換器の別の望ましい態様の一つによれば、前記第二の内管の外周面に形成される溝部の入口角部が湾曲部とされると共に、該湾曲部の内面が、管軸方向に対して垂直な断面において、1.0mm以上の曲率半径を有する湾曲面として構成されることとなる。   Furthermore, according to one of the other desirable embodiments of the water heat exchanger for a hot water heater according to the present invention, the inlet corner of the groove formed in the outer peripheral surface of the second inner pipe is a curved portion, The inner surface of the curved portion is configured as a curved surface having a radius of curvature of 1.0 mm or more in a cross section perpendicular to the tube axis direction.

このように、本発明に従う給湯機用水熱交換器にあっては、第一の内管と第二の内管の熱的接触部位を介して、第一の内管内を流通する高温の熱交換媒体からの熱が、第二の内管内を流通する水に伝達されることとなると共に、第一の内管が、外管に対して熱的に接触せしめられていることにより、高温の熱交換媒体からの熱が、外管へも伝熱、拡散し、かかる熱が外気へと放出されてしまうことが、効果的に抑制され得るようになっているのである。加えて、外管と第二の内管との熱的接触部位を介しての伝熱作用も、有効に発揮され得ることとなることによって、かかる第二の内管内を流通する水に、1本の第一の内管から、その周りに位置する第二の内管の複数部位において、伝熱されることとなり、そして、これによって、第二の内管内における水の、より一層有効な均熱化が図られ得ることとなったのである。   Thus, in the water heat exchanger for a hot water heater according to the present invention, high-temperature heat exchange that circulates in the first inner pipe via the thermal contact portion between the first inner pipe and the second inner pipe. The heat from the medium is transferred to the water flowing through the second inner pipe, and the first inner pipe is brought into thermal contact with the outer pipe, thereby The heat from the exchange medium is transferred and diffused to the outer tube, and the heat can be effectively suppressed from being released to the outside air. In addition, the heat transfer action through the thermal contact portion between the outer tube and the second inner tube can also be effectively exhibited, so that the water flowing through the second inner tube is 1 Heat is transferred from the first inner pipe of the book at a plurality of portions of the second inner pipe located around the first inner pipe, and thereby, more effective soaking of water in the second inner pipe. This could be achieved.

また、このように、第二の内管内を流れる水の均熱化の向上によって、かかる水の局所加熱領域の形成が効果的に抑制されることとなるのであり、これによって、水中に含まれるカルシウム等の成分の析出が有利に抑制され、その結果、スケールの形成が、効果的に抑制され得るのである。   In addition, as described above, the soaking of the water flowing in the second inner pipe is effectively suppressed, so that the formation of the local heating region of the water is effectively suppressed, thereby being included in the water. Precipitation of components such as calcium is advantageously suppressed, and as a result, scale formation can be effectively suppressed.

さらに、本発明によれば、水流路である第二の内管が、銅又は銅合金からなる材質にて構成されていると共に、その内面に錫めっきが施されているところから、管材質である銅又は銅合金が2価の銅イオンとして水中に溶け出してしまうことが効果的に抑制され得るのであって、その結果、熱交換器の使用時における青水の発生の抑制と、熱交換器の有効な耐食性とが、有利に実現されることとなる。   Further, according to the present invention, the second inner pipe that is the water flow path is made of a material made of copper or a copper alloy, and the inner surface thereof is tin-plated. It can be effectively suppressed that a certain copper or copper alloy dissolves in water as divalent copper ions. As a result, the generation of blue water during use of the heat exchanger and the heat exchanger can be suppressed. The effective corrosion resistance is advantageously realized.

加えて、本発明に従う給湯機用水熱交換器にあっては、第一の内管と第二の内管とそれらを収容する外管とが、相互に接触せる形態において組み付けられていることによって、目的とする熱交換器が形成されており、そこでは、高温の熱交換媒体が流通せしめられる第一の内管が、外管内に完全に封じ込まれた形態となるところから、第一の内管に損傷等が発生した場合においても、熱交換媒体は、外管と第一及び第二の内管との間の間隙に漏洩することとなるために、その間隙部が漏洩検知管の機能を果たすこととなり、従来の如き特別な構造の漏洩検知管を用いる必要がないために、比較的単純な構造において、しかも、コンパクトな構造において、給湯機用水熱交換器を構成することが出来、それ故製造コストも安価と為し得るのである。   In addition, in the water heat exchanger for a water heater according to the present invention, the first inner pipe, the second inner pipe, and the outer pipe that accommodates them are assembled in a form in which they are in contact with each other. The target heat exchanger is formed, in which the first inner pipe through which the high-temperature heat exchange medium is circulated is completely enclosed in the outer pipe. Even when the inner pipe is damaged, the heat exchange medium leaks into the gap between the outer pipe and the first and second inner pipes. Since it has a function and it is not necessary to use a leakage detector tube having a special structure as in the prior art, a water heat exchanger for a water heater can be configured with a relatively simple structure and a compact structure. Therefore, the manufacturing cost can be low. .

以下、本発明を更に具体的に明らかにするために、本発明の実施の形態について、図面を参照しつつ、詳細に説明することとする。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、図1及び図2には、本発明に従う給湯機用の水熱交換器の一実施形態が示されている。そこにおいて、図1は、かかる水熱交換器の長手方向(管軸方向)における内管及び外管の配設形態を示す一端側断面斜視説明図であり、また図2は、図1に示される水熱交換器の横断面である、管軸に垂直な方向の断面を拡大して示す説明図である。そして、それらの図から明らかなように、水熱交換器2は、管内に高温の熱交換媒体が流通せしめられる、細径の第一の内管4の3本と、かかる高温の熱交換媒体との間で熱交換されるべき水が管内に流通せしめられる、太径の第二の内管6と、それら第一及び二の内管4,6を管内に収容、保持する、太径の外管8とが、相互に密接されて、構成されている。   First, FIG. 1 and FIG. 2 show an embodiment of a water heat exchanger for a hot water heater according to the present invention. FIG. 1 is a perspective view of one end side cross section showing the arrangement of inner and outer tubes in the longitudinal direction (tube axis direction) of such a water heat exchanger, and FIG. 2 is shown in FIG. It is explanatory drawing which expands and shows the cross section of the direction perpendicular | vertical to a tube axis | shaft which is a cross section of the water heat exchanger. As is clear from these figures, the water heat exchanger 2 includes three of the first inner pipe 4 having a small diameter through which a high-temperature heat exchange medium is circulated and the high-temperature heat exchange medium. A large-diameter second inner pipe 6 in which water to be heat-exchanged between the pipes and the first and second inner pipes 4 and 6 are accommodated and held in the pipe. The outer tube 8 is formed in close contact with each other.

より具体的には、第一の内管4は、一般に、外径:3〜7mm、肉厚:0.4〜1.2mm程度の細径の、断面が円形の管体にて構成され、ここでは、その3本が、周方向に約120°の位相差をもって配置せしめられている。また、第二の内管6は、銅若しくは銅合金にて形成され、その内面に錫めっきが施された、外管8の内面に接する程度の大きさの太径の管体にて構成されていると共に、その外周面には、前記第一の内管4を収容し得る深さを有する半円形乃至は円弧状断面の凹溝10が、管軸に平行な方向に延びるように設けられており、更にその凹溝10は、周方向に約120°の位相差をもって3条配設されている。そして、この第二の内管6の3条の凹溝10内に、その円弧状の内面に密接するようにして、第一の内管4が、それぞれ収容、保持せしめられてなる構造とされているのである。   More specifically, the first inner tube 4 is generally composed of a tubular body having a small outer diameter: about 3 to 7 mm and a wall thickness: about 0.4 to 1.2 mm, and a circular section. Here, the three are arranged with a phase difference of about 120 ° in the circumferential direction. The second inner tube 6 is made of copper or a copper alloy, and is formed of a large-diameter tube body having a size enough to be in contact with the inner surface of the outer tube 8 and having an inner surface plated with tin. A concave groove 10 having a semicircular or arcuate cross section having a depth capable of accommodating the first inner tube 4 is provided on the outer peripheral surface thereof so as to extend in a direction parallel to the tube axis. Further, the concave grooves 10 are arranged in three strips with a phase difference of about 120 ° in the circumferential direction. The first inner tube 4 is accommodated and held in the three concave grooves 10 of the second inner tube 6 so as to be in close contact with the arc-shaped inner surface. -ing

また、外管8は、一般に、外径:12.7〜25.4mm、肉厚:0.4〜0.8mm程度の太径の、断面が円形の管体にて構成されている。そして、この外管8に内接するように、第一及び第二の内管4,6が収容されているのである。即ち、第二の内管6とその凹溝10内に収容位置せしめた第一の内管4とが、第二の内管6の最大径に位置する外周面部分において、外管8の内周面に接触せしめられるようになっている。従って、そこでは、第一の内管4が、その外周面の一部において、第二の内管6の外周面の一部に対して当接せしめられて、熱的接触させられていると共に、更に、第二の内管6の外周面と接触していない部分において、外管8の内周面に当接せしめられて、熱的に接触せしめられている一方、第二の内管6が、その外周面のうち、第一の内管4の外周面と接触していない部分において、外管8の内周面の第一の内管4の外周面と接触していない部分に対して当接せしめられて、熱的に接触させられてなる構造となっている。   In addition, the outer tube 8 is generally constituted by a tube having a large diameter of about 12.7 to 25.4 mm and a wall thickness of about 0.4 to 0.8 mm and a circular section. The first and second inner tubes 4 and 6 are accommodated so as to be inscribed in the outer tube 8. In other words, the second inner tube 6 and the first inner tube 4 accommodated in the recessed groove 10 are disposed in the outer tube 8 at the outer peripheral surface portion located at the maximum diameter of the second inner tube 6. It can come into contact with the peripheral surface. Therefore, there, the first inner tube 4 is brought into contact with a part of the outer peripheral surface of the second inner tube 6 and in thermal contact with a part of the outer peripheral surface thereof. Furthermore, the second inner tube 6 is in contact with the inner peripheral surface of the outer tube 8 and in thermal contact with a portion not in contact with the outer peripheral surface of the second inner tube 6. However, in the portion of the outer peripheral surface that is not in contact with the outer peripheral surface of the first inner tube 4, the inner peripheral surface of the outer tube 8 is not in contact with the outer peripheral surface of the first inner tube 4. It has a structure in which they are brought into contact with each other and brought into thermal contact.

従って、このような構造の水熱交換器2にあっては、その熱の流れが、図3に示されている如く、第一の内管4内を流れる高温の熱交換媒体からの熱は、第一の内管4と第二の内管6(具体的には、凹溝10の内面)との接触部12を介して、その内側の領域14を流れる水を加熱し、更にその熱が、他の領域16,18を流れる水に伝達されるようになると同時に、高温の熱交換媒体からの熱は、第一の内管4と外管8との接触部20を介して、外管8に伝熱され、更に外管8を拡散する熱が、外管8と第二の内管6との接触部22を介して、凹溝10の周方向両側に位置する領域16を流れる水に伝達されるようになるのである。その結果、第二の内管6の凹溝10の周方向両側に位置する領域16を流れる水の温度が、効果的に高められ得ることとなり、以て、第二の内管6内を流通する水の温度の均一性が、効果的に向上せしめられ得ることとなるのである。   Therefore, in the water heat exchanger 2 having such a structure, as shown in FIG. 3, the heat from the high-temperature heat exchange medium flowing in the first inner pipe 4 is the heat flow. The water flowing through the inner region 14 is heated via the contact portion 12 between the first inner tube 4 and the second inner tube 6 (specifically, the inner surface of the concave groove 10), and the heat Is transferred to the water flowing through the other regions 16 and 18, and at the same time, the heat from the high-temperature heat exchange medium is transferred to the outside through the contact portion 20 between the first inner tube 4 and the outer tube 8. Heat transferred to the tube 8 and further diffused through the outer tube 8 flows through regions 16 located on both sides in the circumferential direction of the groove 10 via the contact portion 22 between the outer tube 8 and the second inner tube 6. It will be transmitted to the water. As a result, the temperature of the water flowing through the regions 16 located on both sides in the circumferential direction of the concave groove 10 of the second inner pipe 6 can be effectively increased, and thus flows through the second inner pipe 6. Therefore, the uniformity of the temperature of the water to be produced can be effectively improved.

そして、このように、第二の内管6内を流通せしめられる水の温度の均一性が向上せしめられて、そのような流体の局所加熱領域の形成が抑制されることによって、第二の内管6内を流れる水の加熱温度が効果的に高められ得、以て、そのような水を加熱するための第一の内管4内を流れる熱交換媒体の温度を低下せしめ得るところから、領域14における水温の局所的な上昇を有利に回避し得て、かかる流体中のカルシウム等の成分析出が効果的に抑制され得ることとなるのであり、その結果、スケールの形成が有利に抑制され得ることにより、水熱交換器2を長期間に亘って使用しても、そのようなスケールの流路壁に対する付着により、流路断面積が減少したり、甚だしい場合にあっては、流路を閉塞させるという問題の発生も、何等顧慮する必要もなくなったのである。   In this way, the uniformity of the temperature of the water circulated in the second inner pipe 6 is improved, and the formation of such a locally heated region of the fluid is suppressed, whereby the second inner tube From the point that the heating temperature of the water flowing in the pipe 6 can be effectively increased, and thus the temperature of the heat exchange medium flowing in the first inner pipe 4 for heating such water can be lowered. The local rise in the water temperature in the region 14 can be advantageously avoided, and the precipitation of components such as calcium in the fluid can be effectively suppressed. As a result, the formation of scale is advantageously suppressed. As a result, even if the water heat exchanger 2 is used over a long period of time, if the cross-sectional area of the flow path is reduced due to the adhesion of the scale to the flow path wall, The problem of blocking the roads Is the need also no longer be taken into.

しかも、かかる水熱交換器2にあっては、第二の内管6の凹溝10の開口部位に、第一の内管4と第二の内管6と外管8とによって囲まれた空間26が管軸方向に形成されることとなるところから、高温の熱交換媒体が流通せしめられる第一の内管4に損傷等が発生した場合において、高温の熱交換媒体は、そのような空間26内に漏洩し、管軸方向に導かれることとなるのであり、このため、そのような空間26内における熱交換媒体の存在の有無を検知することによって、漏洩検知管としての機能も発揮させることが出来るところから、従来の如き複雑な構造の漏洩検知管を用いる必要が全くなく、そのために、比較的単純な構造において、且つコンパクトな構造として、給湯機用水熱交換器を構成することが出来るのであり、以て、製造コストも安価なものと為し得るのである。   Moreover, in the water heat exchanger 2, the opening portion of the concave groove 10 of the second inner tube 6 is surrounded by the first inner tube 4, the second inner tube 6, and the outer tube 8. Since the space 26 is formed in the tube axis direction, when the first inner tube 4 through which the high-temperature heat exchange medium is circulated is damaged, the high-temperature heat exchange medium is It leaks into the space 26 and is guided in the tube axis direction. Therefore, by detecting the presence or absence of such a heat exchange medium in the space 26, the function as a leak detection tube is also exhibited. Therefore, it is not necessary to use a leak detection tube having a complicated structure as in the prior art. Therefore, a water heat exchanger for a water heater is configured as a relatively simple structure and a compact structure. It is possible to make Cost is also to be done and inexpensive.

なお、かかる水熱交換器2において、第一の内管4や外管8としては、従来から熱交換器に用いられている各種金属材質の管体が利用され得るものであるが、特に、外管8を熱伝導率の高い銅又は銅合金からなる材質にて形成することにより、更に、水熱交換器2の熱交換性能を向上させることが出来る特徴があり、また第一の内管4も、外管8と同様に、銅又は銅合金からなる材質にて形成することが望ましく、そうすることによって、熱交換性能の更なる向上が期待され得ることに加えて、水熱交換器2をスクラップ処理する場合においても、その取扱いが容易となる利点がある。   In the water heat exchanger 2, as the first inner tube 4 and the outer tube 8, pipes of various metal materials conventionally used in heat exchangers can be used. The outer tube 8 is formed of a material made of copper or copper alloy having a high thermal conductivity, so that the heat exchange performance of the water heat exchanger 2 can be further improved. 4 is also preferably made of a material made of copper or a copper alloy, like the outer tube 8, so that further improvement in heat exchange performance can be expected, in addition to the water heat exchanger. Even when the scrap 2 is scrapped, there is an advantage that the handling becomes easy.

また、このような構造の水熱交換器2を製作する場合において、第一の内管4と第二の内管6との接触部12や第一の内管4と外管8との接触部20、更には、第二の内管6と外管8との接触部22は、何れも、ロウ付け等によって接合されていても差し支えないが、本発明では、それら3本の管体を、合わせ抽伸加工等によって、相互に機械的に圧着せしめる手法が、好適に採用されるのである。因みに、ロウ付けによる場合にあっては、ロウ付け不良による接触面積の不足を招き易く、また性能のバラツキを生じ易く、更にロウ付け不良等による歩留り低下等の問題も懸念されるのであるが、第一の内管4を第二の内管6の凹溝10内に組み付けた状態において、外管8内に収容して、抽伸加工する、合わせ抽伸加工等によって、それら3本の管体(4,6,8)を相互に機械的圧着させる場合には、そのような問題はなく、比較的簡単な加工操作にて、目的とする水熱交換器2を有利に製作することが可能となる。   Further, when the water heat exchanger 2 having such a structure is manufactured, the contact portion 12 between the first inner tube 4 and the second inner tube 6, or the contact between the first inner tube 4 and the outer tube 8. The contact portion 22 between the portion 20 and the second inner tube 6 and the outer tube 8 may be joined by brazing or the like, but in the present invention, these three tubes are used. The technique of mechanically press-fitting each other by means of combined drawing or the like is preferably employed. Incidentally, in the case of brazing, it is easy to cause a shortage of the contact area due to brazing failure, and also tends to cause performance variation, and there is also a concern about problems such as yield reduction due to brazing failure, In a state in which the first inner pipe 4 is assembled in the concave groove 10 of the second inner pipe 6, the three pipe bodies ( 4, 6, and 8) are mechanically pressure-bonded to each other, there is no such problem, and the target water heat exchanger 2 can be advantageously manufactured by a relatively simple processing operation. Become.

なお、図1や図2に示される水熱交換器2の、水流路である第二の内管6の内面に錫めっきを施す方法としては、従来より知られている、置換めっき法若しくは化学めっき方による錫めっき銅管及びその製造方法が適宜に採用され、例えば、特開平4−45282号公報において明らかにされている、給水・給湯器用の銅管の端部開口部から管内部にめっき液を流通させて、銅管内面に所定厚さのSn(錫)めっき皮膜を形成する、給水・給湯器用内面Snめっき銅管の製造方を用いることが出来る。このような、置換めっき法若しくは化学めっき法によって銅管の内面に錫めっき処理を施す方法によれば、簡単に、且つ安価に、銅管内面に錫めっき皮膜を形成させることが可能となるのである。   In addition, as a method of applying tin plating to the inner surface of the second inner tube 6 that is a water flow path of the water heat exchanger 2 shown in FIG. 1 or FIG. 2, a conventionally known displacement plating method or chemical method is used. A tin-plated copper pipe and a method for manufacturing the same are appropriately adopted. For example, as disclosed in Japanese Patent Laid-Open No. 4-45282, the inside of the pipe is plated from an end opening of a copper pipe for a water / water heater. A method of manufacturing an inner surface Sn-plated copper tube for a water / water heater can be used in which a liquid is circulated to form a Sn (tin) plating film having a predetermined thickness on the inner surface of the copper tube. According to such a method of performing tin plating on the inner surface of the copper tube by displacement plating or chemical plating, it is possible to form a tin plating film on the inner surface of the copper tube easily and inexpensively. is there.

ところで、給湯機用水熱交換器(2)を構成する際においては、一般に、冷媒流路管(4)と水流路管(6)とを組み付けて、それらを一体化した後、曲げ加工を行なって、最終的な熱交換器形状に仕上げられることとなる。そして、そのような給湯機用水熱交換器(2)において、水流路管(6)の内面に錫めっき処理を施す場合には、例えば、前もって管内面に錫めっき処理が施された伝熱管を水流路管として用いて、それと冷媒流路管とを組み付け、曲げ加工を行なう方法を採用すると、特に、曲げ加工時に錫めっきの表面に小さな亀裂が生じたり、曲げ加工に使用する芯金によって、錫めっき皮膜が損傷する恐れを内在している。また、そのような錫めっき皮膜の微小亀裂部や欠損部においては、耐食性が低下する恐れがある。   By the way, when configuring the water heat exchanger (2) for a water heater, generally, the refrigerant channel pipe (4) and the water channel pipe (6) are assembled and integrated, and then bent. Thus, the final shape of the heat exchanger is finished. In such a water heater water heat exchanger (2), when tin plating is applied to the inner surface of the water flow pipe (6), for example, a heat transfer tube whose inner surface is previously subjected to tin plating is used. When used as a water flow channel pipe, it is assembled with a refrigerant flow channel pipe, and a method of bending is adopted, in particular, a small crack occurs on the surface of tin plating during bending, or depending on the core bar used for bending, There is a risk of damage to the tin plating film. Moreover, there is a risk that the corrosion resistance of the tin-plated film is reduced at the microcracked portion or the missing portion.

このため、冷媒流路管と水流路管とを組み付けて、一体化したものに、曲げ加工等を行なって、最終的な熱交換器形状に加工した後に、水流路管内へ錫めっき液を流通させることによって、水流路管内面に錫めっき皮膜の形成を行なう、置換めっき法或いは化学めっき法が、水流路管内へ健全な錫めっき皮膜を被覆するための方法として有利に採用され、そして、そのような手法を採用することによって、水流路管内面の錫めっき皮膜が損傷してしまう恐れを、効果的に解消することが可能となるのである。   For this reason, the coolant channel pipe and the water channel pipe are assembled, and the integrated one is bent and processed into a final heat exchanger shape, and then the tin plating solution is circulated into the water channel pipe Thus, a displacement plating method or a chemical plating method for forming a tin plating film on the inner surface of the water channel tube is advantageously employed as a method for coating a sound tin plating film in the water channel tube, and By adopting such a technique, it is possible to effectively eliminate the fear that the tin plating film on the inner surface of the water channel pipe will be damaged.

しかしながら、このように伝熱管を最終的な熱交換器形状に加工した後に、水流路管内へ錫めっき液を流通させて、置換めっき法或いは化学めっき法によって、水流路管の内面に対して錫めっき皮膜の形成処理を行なう場合にあっては、錫めっき液を流通させる水流路管の形状がどのような形状であっても、その流路全面に、健全な錫めっき皮膜が形成されるというものではなく、その流路形状に一定の条件が必要となる。   However, after processing the heat transfer tube into the final heat exchanger shape in this way, the tin plating solution is circulated into the water flow channel tube, and the inner surface of the water flow channel tube is tinned by the displacement plating method or the chemical plating method. In the case of performing a plating film formation process, a sound tin plating film is formed on the entire surface of the flow channel regardless of the shape of the water flow channel pipe through which the tin plating solution is circulated. It is not a thing, but a certain condition is required for the flow path shape.

そこで、本発明に従う構成とされた水熱交換器2にあっては、望ましくは、その内部を熱交換されるべき水が流通する第二の内管6の、外周面に形成される凹溝10の入口角部24を湾曲した形状とすると共に、その内面が、管軸方向に対して垂直な断面において、1.0mm以上の曲率半径(R)を有する湾曲面を与えるように構成することが、有利に採用されることとなる。このような形状とすることによって、置換めっき法或いは化学めっき法により錫めっき皮膜の形成処理を行なう場合にも、水流路である第二の内管6の内面の全面に亘って、健全な錫めっき皮膜を形成することが可能となるのである。即ち、かかる曲率半径(R)が1.0mm未満となる場合、錫めっき液が、このような入口角部24に充分に流れ込まない恐れがあり、健全な錫めっき皮膜にて被覆することが困難となる恐れを生じるのである。   Therefore, in the water heat exchanger 2 configured according to the present invention, desirably, a concave groove formed on the outer peripheral surface of the second inner pipe 6 through which water to be heat-exchanged flows. The ten entrance corners 24 have a curved shape, and the inner surface thereof is configured to give a curved surface having a curvature radius (R) of 1.0 mm or more in a cross section perpendicular to the tube axis direction. Are advantageously employed. By adopting such a shape, even when a tin plating film is formed by a displacement plating method or a chemical plating method, a sound tin is formed over the entire inner surface of the second inner pipe 6 that is a water flow path. It is possible to form a plating film. That is, when the curvature radius (R) is less than 1.0 mm, the tin plating solution may not sufficiently flow into the entrance corner 24 and it is difficult to cover with a healthy tin plating film. The fear of becoming.

なお、本発明に従う給湯機用水熱交換器は、例示の実施形態に係る具体的な記述によって、何等限定的に解釈されるものでは決してなく、本発明が、当業者の知識に基づいて、種々なる変更、修正、改良等を加えた態様において実施され得るものであり、またそのような実施の態様が、本発明の趣旨を逸脱しない限りにおいて、何れも、本発明の範疇に属するものであることが、理解されるべきである。   Note that the water heat exchanger for a hot water heater according to the present invention is not to be construed as being limited in any way by the specific description according to the exemplary embodiment, and the present invention is based on the knowledge of those skilled in the art. The present invention can be carried out in a mode to which changes, modifications, improvements, and the like are added, and all such modes are within the scope of the present invention as long as they do not depart from the gist of the present invention. It should be understood.

例えば、第一の内管4は、図1に示される如く、管軸に平行な方向に配置せしめられる他、図4に示される如く、管軸方向においてらせん状に、適数本の第一の内管4を配置せしめるようにすることも可能であり、その場合において、そのようならせん状配置となるように、第二の内管6の外周面に設けられる凹溝10も、管軸方向にらせん状に形成せしめられることとなる。   For example, the first inner tube 4 is arranged in a direction parallel to the tube axis as shown in FIG. 1, and an appropriate number of first tubes are spirally formed in the tube axis direction as shown in FIG. It is also possible to dispose the inner tube 4 of the second inner tube 6, and in this case, the concave groove 10 provided on the outer peripheral surface of the second inner tube 6 also has a tube axis. It will be spirally formed in the direction.

また、第一の内管4の配設本数にあっても、目的に応じて、適宜の本数が選定され、例えば、4本の第一の内管4を配設する場合にあっては、図5に示される如く、周方向に約90°の位相差をもって配設してなる構造が、有利に採用されることとなる。   Further, even when the number of the first inner pipes 4 is arranged, an appropriate number is selected according to the purpose. For example, when four first inner pipes 4 are arranged, As shown in FIG. 5, a structure having a phase difference of about 90 ° in the circumferential direction is advantageously employed.

以下に、本発明の代表的な実施例の一つを示し、本発明の特徴を更に明確にすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。   In the following, one of the representative embodiments of the present invention will be shown to clarify the features of the present invention. However, the present invention is not restricted by the description of such embodiments. It goes without saying that it is not a thing.

先ず、図1〜図3に示される構造の、本発明に従う水熱交換器(2)を得るべく、外管(8)として、外径:17.2mm、内径:15.8mm、肉厚:0.7mmの、断面が単純な円形の太径の平滑管を準備した。また、第一の内管(4)としては、外径:5.0mm、内径:4mm、肉厚:0.5mmの、断面が単純な円形の細径の平滑管の3本を準備した。更に、第二の内管(6)としては、外径:約22.2mm、肉厚:0.7mmの、断面が単純な円形の太径の平滑管を準備した。なお、それら三種の平滑管の材質は、何れも、りん脱酸銅(JIS−H−330−C1220)とした。   First, in order to obtain the water heat exchanger (2) according to the present invention having the structure shown in FIGS. 1 to 3, the outer tube (8) has an outer diameter: 17.2 mm, an inner diameter: 15.8 mm, and a wall thickness: A 0.7 mm thick circular tube with a simple circular cross section was prepared. As the first inner tube (4), three smooth circular tubes having an outer diameter of 5.0 mm, an inner diameter of 4 mm, and a thickness of 0.5 mm and having a simple cross section were prepared. Furthermore, as the second inner tube (6), a circular large-diameter smooth tube with a simple cross section having an outer diameter of about 22.2 mm and a wall thickness of 0.7 mm was prepared. The three types of smooth tubes were made of phosphorous deoxidized copper (JIS-H-330-C1220).

そして、目的とする水熱交換器(2)を得るべく、第二の内管(6)を与える太径の平滑管に対して、予め最終形状に近い形に異形加工を施し、その形成された円弧状の凹溝(10)内に、第一の内管(4)を与える細径の平滑管を挿入して組み付け、更にその組付け管を、外管(8)を与える太径の平滑管内に挿入した後、常法に従って、抽伸縮径加工を施すことにより、目的とする水熱交換器(2)を製作した。   Then, in order to obtain the target water heat exchanger (2), the large-diameter smooth tube that gives the second inner tube (6) is preliminarily shaped into a shape close to the final shape and formed. A small-diameter smooth tube that gives the first inner pipe (4) is inserted and assembled into the arc-shaped concave groove (10), and the assembled pipe is further attached to a large-diameter groove that gives the outer pipe (8). After insertion into the smooth tube, the desired water heat exchanger (2) was produced by subjecting the drawn diameter to expansion and contraction according to a conventional method.

また、比較のために、外管(8)の存在しない、図6〜図7に示される如き形態の水熱交換器(30)を、上記した第一及び第二の内管(4,6)を与える二種類の平滑管を用いて、作製した。   For comparison, the hydrothermal exchanger (30) shown in FIGS. 6 to 7 without the outer pipe (8) is connected to the first and second inner pipes (4, 6) described above. ) Was used to produce two types of smooth tubes.

かくして得られた二種の水熱交換器(2,30)を用いて、その第二の内管(6,34)内を流通する水の均熱性を評価した。なお、流量等の条件は、以下の通りとした。
熱交換されるべき流体:水
流量 :1L/min、2L/min、
出口温度:65℃
熱交換媒体(冷媒) :炭酸ガス冷媒
流量 :管1本当り2L/min、総流量:6L/min
入口温度:80℃
入口圧力:10MPa
Using the two types of water heat exchangers (2, 30) thus obtained, the thermal uniformity of the water flowing through the second inner pipe (6, 34) was evaluated. The conditions such as the flow rate were as follows.
Fluid to be heat exchanged: water
Flow rate: 1L / min, 2L / min,
Outlet temperature: 65 ° C
Heat exchange medium (refrigerant): Carbon dioxide refrigerant
Flow rate: 2 L / min per pipe, total flow rate: 6 L / min
Inlet temperature: 80 ° C
Inlet pressure: 10 MPa

そして、それら二つの水熱交換器(2,30)の均熱性を評価するために、熱交換器の水出口(冷媒入口)付近の流路内面に、熱電対を貼り付けて、表面温度を測定した。その結果、本発明に従う水熱交換器(2)においては、加熱された水の最大温度差が1℃以内となり、効果的に均熱化し得ることが確認された。これに対して、外管(8)の設けられていない、従来の水熱交換器(30)にあっては、最大温度差が2℃となり、その均熱化が充分でないことが、明らかとなった。   And in order to evaluate the soaking | uniform-heating property of these two water heat exchangers (2, 30), a thermocouple is affixed on the flow path inner surface near the water outlet (refrigerant inlet) of a heat exchanger, and surface temperature is set. It was measured. As a result, in the water heat exchanger (2) according to the present invention, it was confirmed that the maximum temperature difference of the heated water was within 1 ° C., and the temperature could be effectively equalized. On the other hand, in the conventional water heat exchanger (30) in which the outer pipe (8) is not provided, it is clear that the maximum temperature difference is 2 ° C. and the temperature equalization is not sufficient. became.

本発明に従う給湯機用水熱交換器の一例を示す一端側断面斜視説明図である。It is one end side cross-section perspective explanatory drawing which shows an example of the water heat exchanger for water heaters according to this invention. 図1に示される給湯機用水熱交換器の横断面を拡大して示す説明図である。It is explanatory drawing which expands and shows the cross section of the water heat exchanger for water heaters shown by FIG. 熱の流れを示す図2の一部拡大部分図である。FIG. 3 is a partially enlarged partial view of FIG. 2 showing a heat flow. 本発明に従う給湯機用水熱交換器の他の一例を示す図1に対応する説明図である。It is explanatory drawing corresponding to FIG. 1 which shows another example of the water heat exchanger for water heaters according to this invention. 本発明に従う給湯機用水熱交換器の更に他の例を示す図2に対応する横断面拡大説明図である。It is a cross-sectional enlarged explanatory view corresponding to FIG. 2 which shows the further another example of the water heat exchanger for hot water supply according to this invention. 従来の熱交換器の一例を示す横断面説明図である。It is a cross-sectional explanatory drawing which shows an example of the conventional heat exchanger. 図6に示される熱交換器の熱の流れを示す部分拡大説明図である。It is a partial expansion explanatory view which shows the heat flow of the heat exchanger shown by FIG.

符号の説明Explanation of symbols

2 水熱交換器
4 第一の内管
6 第二の内管
8 外管
10 凹溝
12,20,22 接触部
14,16,18 領域
24 入口角部
26 空間
2 Water Heat Exchanger 4 First Inner Tube 6 Second Inner Tube 8 Outer Tube 10 Concave Groove 12, 20, 22 Contact Portion 14, 16, 18 Region 24 Entrance Corner 26 Space

Claims (5)

管内に高温の熱交換媒体が流通せしめられる第一の内管と、該高温の熱交換媒体との間で熱交換されるべき水が管内に流通せしめられる第二の内管と、それら第一及び第二の内管を管内に収容、保持する外管とから構成される給湯機用水熱交換器にして、
該第一の内管が、その外周面の一部において、前記第二の内管の外周面の一部に対して当接せしめられて熱的接触させられていると共に、更に、該第二の内管の外周面と接触していない部分において、前記外管の内周面に当接せしめられて熱的接触させられている一方、該第二の内管が、銅若しくは銅合金にて形成されて、その内面に錫めっきが施されていると共に、その外周面のうち前記第一の内管の外周面と接触していない部分において、前記外管の内周面の前記第一の内管の外周面と接触していない部分に対して当接せしめられて、熱的接触させられていることを特徴とする給湯機用水熱交換器。
A first inner pipe in which a high-temperature heat exchange medium is circulated in the pipe, a second inner pipe in which water to be exchanged with the high-temperature heat exchange medium is circulated in the pipe, and the first And a water heat exchanger for a hot water heater constituted by an outer pipe that houses and holds the second inner pipe in the pipe,
The first inner pipe is brought into contact with a part of the outer peripheral surface of the second inner pipe and brought into thermal contact with a part of the outer peripheral surface of the first inner pipe. In the portion that is not in contact with the outer peripheral surface of the inner tube, the second inner tube is made of copper or a copper alloy while being in contact with the inner peripheral surface of the outer tube and being in thermal contact therewith. Formed and tin plated on the inner surface thereof, and in the portion of the outer peripheral surface not in contact with the outer peripheral surface of the first inner tube, the first of the inner peripheral surface of the outer tube A water heat exchanger for a water heater, wherein the water heat exchanger is brought into contact with a portion that is not in contact with the outer peripheral surface of the inner tube and is in thermal contact.
前記第二の内管の外周面に、管軸方向に延びる溝部が、凹陥して形成されて、該溝部内に前記第一の内管が密接、収容されている一方、それら第一及び第二の内管に密接するように、前記外管が外嵌めされていることを特徴とする請求項1に記載の給湯機用水熱交換器。   A groove portion extending in the tube axis direction is formed in the outer peripheral surface of the second inner tube so as to be recessed, and the first inner tube is closely accommodated in the groove portion. The water heat exchanger for hot water supply according to claim 1, wherein the outer pipe is externally fitted so as to be in close contact with the second inner pipe. 前記第一の内管と前記第二の内管との当接、前記第一の内管と前記外管との当接、及び前記第二の内管と前記外管との当接が、それぞれ、機械的な圧着によって実現されて、熱的接触が形成されていることを特徴とする請求項1又は請求項2に記載の給湯機用水熱交換器。   Contact between the first inner tube and the second inner tube, contact between the first inner tube and the outer tube, and contact between the second inner tube and the outer tube, The water heat exchanger for a water heater according to claim 1 or 2, wherein each is realized by mechanical pressure bonding to form a thermal contact. 前記高温の熱交換媒体が、炭酸ガスを主体とする冷媒であることを特徴とする請求項1乃至請求項3の何れか一つに記載の給湯機用水熱交換器。   The water heat exchanger for a hot water heater according to any one of claims 1 to 3, wherein the high-temperature heat exchange medium is a refrigerant mainly composed of carbon dioxide gas. 前記第二の内管の外周面に形成される溝部の入口角部が湾曲部とされていると共に、該湾曲部の内面が、管軸方向に対して垂直な断面において、1.0mm以上の曲率半径を有する湾曲面とされていることを特徴とする請求項2乃至請求項4の何れか一つに記載の給湯機用水熱交換器。
The entrance corner of the groove formed on the outer peripheral surface of the second inner tube is a curved portion, and the inner surface of the curved portion is 1.0 mm or more in a cross section perpendicular to the tube axis direction. The water heat exchanger for a hot water heater according to any one of claims 2 to 4, wherein the water heat exchanger is a curved surface having a radius of curvature.
JP2008020703A 2008-01-31 2008-01-31 Water heat exchanger for water heater Pending JP2009180452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008020703A JP2009180452A (en) 2008-01-31 2008-01-31 Water heat exchanger for water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008020703A JP2009180452A (en) 2008-01-31 2008-01-31 Water heat exchanger for water heater

Publications (1)

Publication Number Publication Date
JP2009180452A true JP2009180452A (en) 2009-08-13

Family

ID=41034576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008020703A Pending JP2009180452A (en) 2008-01-31 2008-01-31 Water heat exchanger for water heater

Country Status (1)

Country Link
JP (1) JP2009180452A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169581A (en) * 2010-02-22 2011-09-01 Sang Pil Choi Water cooler/heater
JP2012007767A (en) * 2010-06-23 2012-01-12 Sumitomo Light Metal Ind Ltd Double tube for heat exchanger
CN103808173A (en) * 2014-01-27 2014-05-21 石祖嘉 Tube-type annular channel high-flux micro-channel heat exchanger
JP2017159388A (en) * 2016-03-08 2017-09-14 三井精機工業株式会社 Cooling structure of feed shaft in machine tool

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445282A (en) * 1990-06-13 1992-02-14 Sumitomo Light Metal Ind Ltd Internally tinned copper pipe for feeding water and hot water and production thereof
JPH08178585A (en) * 1994-12-27 1996-07-12 Paloma Ind Ltd Manufacture of heat exchanger
JP2002228370A (en) * 2001-01-30 2002-08-14 Daikin Ind Ltd Heat exchanger
JP2003014383A (en) * 2001-07-03 2003-01-15 Sanyo Electric Co Ltd Heat exchanger, and heat pump type hot water heater
JP2004144430A (en) * 2002-10-25 2004-05-20 Denso Corp Heat exchange pipe and heat exchanger
JP2004150760A (en) * 2002-10-31 2004-05-27 Denso Corp Heat exchanger
JP2004218946A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump water heater using the same
JP2006090697A (en) * 2004-08-26 2006-04-06 Mitsubishi Electric Corp Twisted tube type heat exchanger
JP2006170571A (en) * 2004-12-17 2006-06-29 Hitachi Cable Ltd Double multitubular heat exchanger
JP2008121908A (en) * 2006-11-08 2008-05-29 Sumitomo Light Metal Ind Ltd Heat exchanger
JP2008267770A (en) * 2007-04-20 2008-11-06 Kanou Reiki:Kk Capillary tube embracing heat exchanger
JP2009041880A (en) * 2007-08-10 2009-02-26 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445282A (en) * 1990-06-13 1992-02-14 Sumitomo Light Metal Ind Ltd Internally tinned copper pipe for feeding water and hot water and production thereof
JPH08178585A (en) * 1994-12-27 1996-07-12 Paloma Ind Ltd Manufacture of heat exchanger
JP2002228370A (en) * 2001-01-30 2002-08-14 Daikin Ind Ltd Heat exchanger
JP2003014383A (en) * 2001-07-03 2003-01-15 Sanyo Electric Co Ltd Heat exchanger, and heat pump type hot water heater
JP2004144430A (en) * 2002-10-25 2004-05-20 Denso Corp Heat exchange pipe and heat exchanger
JP2004150760A (en) * 2002-10-31 2004-05-27 Denso Corp Heat exchanger
JP2004218946A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump water heater using the same
JP2006090697A (en) * 2004-08-26 2006-04-06 Mitsubishi Electric Corp Twisted tube type heat exchanger
JP2006170571A (en) * 2004-12-17 2006-06-29 Hitachi Cable Ltd Double multitubular heat exchanger
JP2008121908A (en) * 2006-11-08 2008-05-29 Sumitomo Light Metal Ind Ltd Heat exchanger
JP2008267770A (en) * 2007-04-20 2008-11-06 Kanou Reiki:Kk Capillary tube embracing heat exchanger
JP2009041880A (en) * 2007-08-10 2009-02-26 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169581A (en) * 2010-02-22 2011-09-01 Sang Pil Choi Water cooler/heater
JP2012007767A (en) * 2010-06-23 2012-01-12 Sumitomo Light Metal Ind Ltd Double tube for heat exchanger
CN103808173A (en) * 2014-01-27 2014-05-21 石祖嘉 Tube-type annular channel high-flux micro-channel heat exchanger
JP2017159388A (en) * 2016-03-08 2017-09-14 三井精機工業株式会社 Cooling structure of feed shaft in machine tool

Similar Documents

Publication Publication Date Title
JP2009041880A (en) Water heat exchanger for water heater
JP2008121908A (en) Heat exchanger
JP4958150B2 (en) Water heat exchanger for water heater
JP2002228370A (en) Heat exchanger
US8887795B2 (en) Heat exchanger and water heater including the same
JP2009180452A (en) Water heat exchanger for water heater
JP2008261566A (en) Double-pipe heat exchanger
JP2009186063A (en) Heat exchanger and its manufacturing method
JP5044365B2 (en) Double tube heat exchanger
JP2008045868A (en) Heat exchanger for water heater, and its manufacturing method
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP2009216309A (en) Heat exchanger
JP2006145056A (en) Heat exchanger
JP2008014624A (en) Water heat exchanger for water heater, and manufacturing method therefor
JP2007298266A (en) Water heat exchanger for water heater
JP2005069620A (en) Heat exchanger
JP2005201625A (en) Heat exchanger and its manufacturing method
JP2009024969A (en) Heat exchanger
JP2004085166A (en) Heat exchanger, its manufacturing method, and bath water heating system and floor heating system using the heat exchanger
JP2008267631A (en) Heat exchanger
CN106766343A (en) A kind of lithium bromide cold and hot water machine group and expansion tube method
JP2022051011A (en) Heat exchanger and hot water supply machine including the same
JP2008057908A (en) Heat exchanger
JP2008082600A (en) Water-refrigerant heat exchanger and heat pump hot water supply device using the same
JP2007247917A (en) Triple tube-type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101220

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Effective date: 20120501

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120904

Free format text: JAPANESE INTERMEDIATE CODE: A02