JPH0445209B2 - - Google Patents

Info

Publication number
JPH0445209B2
JPH0445209B2 JP59240591A JP24059184A JPH0445209B2 JP H0445209 B2 JPH0445209 B2 JP H0445209B2 JP 59240591 A JP59240591 A JP 59240591A JP 24059184 A JP24059184 A JP 24059184A JP H0445209 B2 JPH0445209 B2 JP H0445209B2
Authority
JP
Japan
Prior art keywords
spinning
hollow fiber
nozzle
irregularly shaped
stock solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59240591A
Other languages
Japanese (ja)
Other versions
JPS61120606A (en
Inventor
Shoji Mizutani
Nobuo Taneda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP24059184A priority Critical patent/JPS61120606A/en
Priority to CA494836A priority patent/CA1272139C/en
Priority to EP89100842A priority patent/EP0321447B1/en
Priority to DE3588092T priority patent/DE3588092T2/en
Priority to DE3587795T priority patent/DE3587795T2/en
Priority to US06/796,865 priority patent/US4781833A/en
Priority to EP89100843A priority patent/EP0321448B1/en
Priority to EP85308220A priority patent/EP0186293B1/en
Priority to DE3587787T priority patent/DE3587787T2/en
Priority to ES548931A priority patent/ES8705250A1/en
Publication of JPS61120606A publication Critical patent/JPS61120606A/en
Priority to US07/477,174 priority patent/US5063009A/en
Publication of JPH0445209B2 publication Critical patent/JPH0445209B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/082Hollow fibre membranes characterised by the cross-sectional shape of the fibre
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〈技術分野〉 本発明は選択透過性を有する異形中空糸の製造
方法に関するものである。更に詳細には、長手方
向に延長されたフインを有する選択透過性を有す
る異形中空糸の製造方法に関する。 〈従来技術〉 腎不全患者の血液を浄化し、余剰の水分を除去
するために、血液透析器が使用されている。これ
は容器の中に透析膜、例えば中空糸膜を多数本収
納し、その中空内部に患者の血液を流し、外部即
ち中空糸膜間に透析液を流して、中空糸膜を介し
て透析によつて血液中の老廃物を除去し、電解質
濃度を調整するとともに、中空糸膜内外に圧力差
を与え、限外濾過によつて血液中の余剰の水分を
除去するものである。また限外濾過のみによつ
て、多量の水分とともに老廃物などを除去し、抜
きすぎた水分を電解質などの必要成分とともに、
補給する方法(血液濾過)も実状に応じて適用さ
れている。さらに、血液中から血漿を分離し、或
いはその血漿の中から特定の有害成分を除去して
自己免疫疾患などを治療するために中空糸膜を使
用することも臨床的に試みられ始めた。 このように血液処理用の中空糸膜は、目的に応
じて物質を選択的に透過しなければならない。そ
の性能は、中空糸膜の素材、ポロシテイ(孔の大
きさ、数など)膜厚などによつて決定される。し
かし、それだけではない。多数本の中空糸膜を如
何に集束して有効に作用させるかが、性能を決定
するポイントになる。例えば透析に際して中空糸
膜どうしが長さ方向に沿つて接触すると透析液が
その近接で中空糸膜の囲りを均等に流れずに、あ
る特定の流路を形成することになり、この流れに
あずからないところでは、透析が殆ど行われなく
なつて透析効率は低下する。中空糸膜の両側の濃
度差が透析のドライビングフオースとなるから、
透析液が中空糸膜の間を均等に流れて境膜抵抗を
出来るだけ減少させ、血液側との濃度差を増大さ
せるように、中空糸膜を収納し、また、中空糸膜
自体の形状を工夫することが必要である。前者に
ついては我々はさきに中空糸を交差状に集束して
容器内に収納することによつて中空糸膜間の接
触、従つて膜面積の減少を防止するとともに透析
液を均等に流し、境膜抵抗を減少させて透析効率
を向上させうることを見出した(特公昭52−
38837)。また、後者については、例えば特開昭48
−75481、特開昭56−148907、特開昭58−169510
にみられるように中空糸膜の外側にフインを設け
ることによつて同様の効果を発揮させる方法が提
案されている。しかしこれらのフイン付中空糸の
製造法は、フイン部による中空糸の有効面積が減
少したり、安定な紡糸成形が困難な場合が多く、
その改善が望まれていた。 〈発明の目的〉 本発明の目的は、この様な観点に立つて流体分
離、特に血液処理用に適したフイン付異形中空糸
を溶融紡糸により安定に製造する方法を提供する
ことである。本発明の他の目的は、種々の形状の
フインを有する異形中空糸を安定にかつ容易に製
造する方法を提供することである。 〈発明の構成〉 本発明者らは、かかる目的を達成するために鋭
意研究を行なつたところ、溶融紡糸原液のコント
ロールすべき最適範囲を見い出し本発明に到達し
た。 即ち本発明は、長手方向に貫通する中空部を有
し且つ外周部において長手方向に延長された少な
くとも1条のフインを有する選択透過性異形中空
糸の溶融紡糸による製造方法において、紡糸原液
が、少なくとも1種の熱可塑性重合体及び必要に
応じて少なくとも1種の添加剤を含有するもので
あり、二重円環状スリツトの外側に少なくとも1
個の切欠部を有した形状の吐出口を有する紡糸ノ
ズルから溶融紡糸原液を吐出する際の該ノズルに
おける該紡糸原液の粘度が100〜10000ポイズの範
囲内にあり、該紡糸ノズルから吐出された該異形
中空糸の固化点と該紡糸ノズル端面との距離が40
cm以下であり、紡糸固化された中空糸をさらに延
伸、添加剤の抽出除去及び化学反応処理の少なく
とも1種の処理により選択透過性を付与すること
を特徴とする該フインの高さ(H)と根元の巾
(W)の比H/Wが0.4以上である選択透過性異形
中空糸の製造方法を提供するものである。 以下本発明についてさらに詳細に説明する。即
ち本発明の方法によつて得られるフイン付異形中
空糸の形状は例えば図1に示すものである。ここ
でフインの高さHは、中空糸外径dに対して余り
低いとフインとしのて効果が十分発揮されない事
は明らかである。 又、フイン部根本の巾Wについては、フインの
数にもよるが、フインが屈曲しない範囲で狭い方
が望ましい。巾Wが大きいと、フインの数をxと
すると、外周πdのうちxW分だけが物質の移動に
有効にきかない為に、中空糸の有効面積が減少し
好ましくない。 ところが、中空糸紡糸用の原液は、液状であ
り、吐出孔から吐出された後、その表面張力によ
り、フイン部の原液が根元方向に集中する傾向を
有する。この傾向を抑制する為には、吐出孔から
出糸する時の原液の粘度を上げ、中空糸の形状が
形成されるまでの時間を短縮する必要がある。こ
の観点より種々検討した結果、血液浄化用に使用
でき、中空糸膜の有効面積をあまり減少させるこ
となく、また血液透析に用いた場合に透析液側の
流れを均一にし、十分透析効果を高めるようなフ
イン付異形中空糸の形状を得るには、紡糸時のノ
ズルでの紡糸原液の溶融粘度が100〜10000ポイズ
である必要があることを見い出した。 一般にフイン付異形中空糸の口金としては、図
2の如きものが用いられ、1の部分より、中空部
を形成する為の気体又は、液体が吐出され、2の
部分より中空糸膜素材が原液の状態で吐出され、
その後、冷却固化して中空糸の形状が固定され
る。フイン部の根元を狭くする為の工夫として例
えば図3、図4のような形状のものが実施される
こともあるが、紡糸原液粘度が100ポイズより低
いとフインの形状が正常に固定されず十分目的が
達成されない。 一方、紡糸原液の溶融粘度が高すぎ、10000ポ
イズを超えると口金吐出孔での圧力損失が大きく
なり、機械的に問題があるばかりでなく、ノズル
から吐出した糸条にスムースなドラフト(延伸)
をかけることができなく、紡糸中の断糸の発生
や、糸の太さ斑の発生をひき起し安定な製糸が困
難となる。 また紡糸時の紡糸ノズルにおける紡糸原液の粘
度としては、300〜2000ポイズが更に好ましく、
特に500〜1500ポイズの範囲にあればフインの形
状が正確に固定され安定に紡糸することができ
る。尚本発明で言う紡糸時の紡糸原液の粘度と
は、紡糸ノズルにおけるものを意味するが、厳密
には紡糸ノズルの出口におけるものである。 またノズル吐出時の原液粘度が適当な範囲にあ
つても、出糸された中空糸が固化するまでの時間
がながいとその間に原液の表面張力による変形が
促進されシヤープなフイン形状のものを得ること
が出来ない。望ましくは、出糸後、急速に冷却固
化させ、出糸時の形状を固定することである。通
常の溶融紡糸においては、糸条の流動性がなくな
り、捲取張力による細化が進まなくなる点、いわ
ゆる固化点は、ノズルより約10cmの所にあるが、
本発明に係わるような、血液浄化用のフイン付異
形中空糸を得るには、固化点はノイズ先端より40
cm以内であるのが望ましいことがわかつた。かか
る固化点とノイズ先端との距離が5〜40cmの範囲
にあれば更に好ましく、特に10〜25cmの範囲では
極めて安定な紡糸が可能である。 さらに本発明における紡糸条件として、好まし
いドラフトの範囲は20〜200であり、特に40〜100
である場合には所定の形状のフイン付中空糸が安
定に得やすい。 本発明の製造法における紡糸原液は、主として
熱可塑性重合体からなるが、それ以外に他の添加
剤を含んでもよい。該熱可塑性重合体としてはセ
ルロースエステル、ポリエチレン、ポリプロピレ
ン、ポリエチレンテタフタレート、ポリメチルメ
タアクリレート、ポリエーテルサルホン等が好ま
しい。該添加剤としては、ポリアルキレングリコ
ール、グリセリン、分子中にエチレン−プロピレ
ン鎖を有するグリコールなどのポリオール類、ス
ルホラン、カプロラクトン、ジメチルスルホキシ
ドなど又はこれらの混合物等の可塑化剤や、無機
塩、有機塩、及び上記熱可塑性重合体やその他の
熱可塑性重合体等が挙げられる。それらの組成
は、要求される選択透過性能によつて、あるいは
紡糸時の粘度コントロールに対応して選ばれる。 また本発明の製造方では、紡糸固化された中空
糸にさらに延伸工程、添加剤の抽出除去、あるい
はケン化等の化学反応処理等の処理を施すことに
よつて選択透過性を発現させる。かかる処理法
は、紡糸原液の組成に応じて選ばれるものである
が、通常用いられる方法のいずれであつてもよ
く、特に限定されるものではない。 本発明に係わるフイン付異形中空糸の形状、サ
イズについては、特に限定するものではないが、
フインの数は1〜10好ましくは2〜7、外径(d)は
100〜500μ好ましくは200〜300μ、フインのない
部分の膜厚(h)は5〜50μ好ましくは10〜40μ、フ
インの高さHは10〜65μが一般的に実用に供され
る範囲である。 本発明の方法によつて得られたフイン付中空糸
は、外限濾過、逆浸透、透析、ガス分離等の流体
分離に用いられるが、索状に血液透析、血液濾
過、血漿分離、人工肺等の血液処理に適してお
り、中でも血液透析に優れた効果を発揮する。 フイン付異形中空糸を血液浄化器に組み立てる
には、中空糸を5000〜10000本集束し、円筒状容
器の中に挿入し、両端をウレタン等の接着剤で中
空糸間を接着固化させ、その後中空糸端部切断開
口させる。両端の中空糸開口部の部分に血液分配
用ポート部分をつけ血液浄化器としての性能及び
リークなどの品質を検査後、滅菌処理をする。一
般には中空糸は単なる円形中空糸が使用されてい
るが本発明に係わるフイン付異形中空糸を使用す
ることにより、第1に、中空糸単糸相互の密着を
避けることが出来、透析液の流れの偏流が減少
し、透析効率が大巾に向上し、各浄化器間の透析
効率のバラツキも小さく出来る。第2に、血液浄
化器端部での中空糸の分布が均一になり、中空糸
中への血液の分配で均一になり、中空糸中又は中
空糸開口部付近での血液凝固性、使用後の血液残
留度を少くすることが出来る。更に中空糸を多数
本容器内に充填した場合、密着した糸の間に微小
の空間が出来、この部分への接着剤樹脂の浸透が
妨げられ未接着空間ができ、リークが発生する結
果となるフイン付異形中空糸の場合には、その発
生確率が極めて少ないという効果がある。本発明
の方法によつて、血液浄化器として使用した場
合、上記の如き効果を十分発揮するフイン付異形
中空糸を得ることが出来るのである。 〈発明の効果〉 本発明の製造方法によれば、これまで安定な製
造が困難な場合が多いとされていた溶融紡糸によ
るフイン付異形断面の選択透過性中空糸を非常に
安定に得ることが出来る。また本発明の方法はフ
インの形状も広い範囲で自由に選択することが容
易であるという優れた利点がある。さらに本発明
によつて得られた中空糸は、特に血液浄化器に使
用されて優れた性能を発揮するものである。 以下本発明について実施例を挙げて説明する
が、本発明はこれらに何ら限定されるものではな
い。 実施例1〜10、比較例4、5 セルロースジアセテート100重量部に対し、ポ
リエチレングリコール(以下PEGと略記する)
(分子量300)を表1に示す重量部だけ加えたもの
を混合し、その混合物を200〜240℃で溶融し図2
に示すノズル(二重円環状スリツトの内側直径
1.6mm、外側直径2mm、切欠部巾0.15mm、高さ0.7
mm)より表1に示す出口での温度で吐出させた
後、表1に示す室温の冷却風速で冷却後、捲取つ
た。 尚各温度でのポリマー融液の溶融粘度は別途フ
ローテスターで測定した。 固化点の口金先端からの距離の測定は、紡糸中
の糸条をはさみ取り具取り出して行ない、細化の
終了する点を固定点とした。口金温度190℃では、
ポリマーの粘度が高すぎて断糸が発生しやすく、
良好な捲取が出来なかつた。 それ以外のものについては、捲取糸をアルカリ
でセルロースに鹸化後、得られた表1の様な形状
のフイン付異形中空糸(フイン部以外の膜厚が約
20〜25μ)をほぼ同一充填率で容器内に充填し、
透析器として組み立つた。そのin vitroでの透析
性能を測定し、表1に示す。本発明に係わるもの
は、フイン部の形状がシヤープでフイン根元の巾
(W)が狭く、フイン高さ(H)も十分なものが
得られ、透析器としての透析性能も高い値を示し
ている。一方、本発明から外れる比較例では、フ
ンイ形状が丸みを帯び十分な高さの形状を得るこ
とが出来なかつた。 尚、有効面積1m2当りの尿素クリアランス
[ml/min]の測定は、昭和57年9月の日本人工
臓器学会によるダイアライザー性能評価基準によ
り測定した。
<Technical Field> The present invention relates to a method for producing irregularly shaped hollow fibers having permselectivity. More specifically, the present invention relates to a method for producing irregularly shaped hollow fibers having fins extending in the longitudinal direction and having permselectivity. <Prior Art> Hemodialyzers are used to purify the blood of patients with renal failure and remove excess water. In this system, a large number of dialysis membranes, such as hollow fiber membranes, are housed in a container, and the patient's blood is poured into the hollow interior of the container, and the dialysate is poured outside, that is, between the hollow fiber membranes, and dialysis is carried out through the hollow fiber membranes. Therefore, waste products in the blood are removed, electrolyte concentration is adjusted, and excess water in the blood is removed by ultrafiltration by applying a pressure difference between the inside and outside of the hollow fiber membrane. In addition, by using only ultrafiltration, large amounts of water and waste products are removed, and excess water is removed along with necessary components such as electrolytes.
Replenishment methods (hemofiltration) are also applied depending on the actual situation. Furthermore, clinical trials have begun to use hollow fiber membranes to separate plasma from blood or remove specific harmful components from the plasma to treat autoimmune diseases. In this way, hollow fiber membranes for blood treatment must selectively permeate substances depending on the purpose. Its performance is determined by the hollow fiber membrane material, porosity (pore size, number, etc.), membrane thickness, and other factors. But that's not all. The key point in determining performance is how to focus a large number of hollow fiber membranes and make them work effectively. For example, when hollow fiber membranes come into contact with each other along their length during dialysis, the dialysate does not flow evenly around the hollow fiber membranes in close proximity, but rather forms a specific flow path. In areas where there is no access, dialysis is hardly performed and the dialysis efficiency decreases. The concentration difference on both sides of the hollow fiber membrane becomes the driving force for dialysis, so
The hollow fiber membranes are housed, and the shape of the hollow fiber membrane itself is designed so that the dialysate flows evenly between the hollow fiber membranes, reducing membrane resistance as much as possible and increasing the concentration difference with the blood side. It is necessary to devise ways to do so. Regarding the former, we first focused the hollow fibers in a crosswise manner and housed them in a container to prevent contact between the hollow fiber membranes, thereby preventing a decrease in the membrane area, and to ensure that the dialysate flowed evenly and that the It was discovered that dialysis efficiency could be improved by reducing membrane resistance (Special Publication 1977-
38837). Regarding the latter, for example,
−75481, JP 1984-148907, JP 58-169510
A method has been proposed in which a similar effect is achieved by providing fins on the outside of a hollow fiber membrane, as shown in . However, these manufacturing methods for hollow fibers with fins often reduce the effective area of the hollow fibers due to the fins, or make stable spinning and forming difficult.
Improvement was desired. <Objective of the Invention> In view of the above, an object of the present invention is to provide a method for stably producing finned irregularly shaped hollow fibers suitable for fluid separation, particularly blood treatment, by melt spinning. Another object of the present invention is to provide a method for stably and easily manufacturing irregularly shaped hollow fibers having fins of various shapes. <Structure of the Invention> In order to achieve the above object, the inventors of the present invention conducted intensive research and found the optimum range for controlling the melt spinning stock solution, thereby achieving the present invention. That is, the present invention provides a method for producing selectively permeable irregularly shaped hollow fibers having a hollow portion penetrating in the longitudinal direction and having at least one fin extending in the longitudinal direction in the outer circumferential portion by melt spinning, in which the spinning stock solution comprises: It contains at least one thermoplastic polymer and, if necessary, at least one additive, and at least one thermoplastic polymer is added to the outside of the double circular slit.
When the melt spinning stock solution is discharged from a spinning nozzle having a discharge port having a shape of notches, the viscosity of the melt spinning stock solution at the nozzle is within the range of 100 to 10,000 poise, and the melt spinning stock solution is discharged from the spinning nozzle. The distance between the solidification point of the irregularly shaped hollow fiber and the end face of the spinning nozzle is 40
cm or less, and the height (H) of the fin is characterized by imparting permselectivity through at least one of the following treatments: further stretching of the spun-solidified hollow fiber, extraction and removal of additives, and chemical reaction treatment. The purpose of the present invention is to provide a method for producing a permselective irregularly shaped hollow fiber having a ratio H/W of width (W) and root width (W) of 0.4 or more. The present invention will be explained in more detail below. That is, the shape of the irregularly shaped hollow fiber with fins obtained by the method of the present invention is, for example, as shown in FIG. Here, it is clear that if the height H of the fins is too low relative to the outer diameter d of the hollow fibers, the effect of the fins will not be sufficiently exhibited. Further, although it depends on the number of fins, it is preferable that the width W of the base of the fin portion be as narrow as possible without bending the fins. If the width W is large, if the number of fins is x, only xW of the outer circumference πd is not effective for material transfer, which is undesirable because the effective area of the hollow fiber decreases. However, the stock solution for hollow fiber spinning is in a liquid state, and after being discharged from the discharge hole, the stock solution in the fin portion tends to concentrate in the root direction due to its surface tension. In order to suppress this tendency, it is necessary to increase the viscosity of the stock solution when yarn is drawn out from the discharge hole and to shorten the time until the hollow fiber shape is formed. As a result of various studies from this point of view, we found that it can be used for blood purification, does not significantly reduce the effective area of the hollow fiber membrane, and when used for hemodialysis, it makes the flow on the dialysate side uniform and sufficiently increases the dialysis effect. It has been found that in order to obtain the shape of the finned irregularly shaped hollow fibers, the melt viscosity of the spinning dope at the nozzle during spinning needs to be 100 to 10,000 poise. Generally, as a base for irregularly shaped hollow fibers with fins, something like the one shown in Figure 2 is used. Gas or liquid for forming the hollow part is discharged from part 1, and hollow fiber membrane material is discharged from part 2 as a undiluted solution. It is discharged in the state of
Thereafter, it is cooled and solidified to fix the shape of the hollow fiber. In order to narrow the base of the fin, shapes such as those shown in Figures 3 and 4 are sometimes implemented, but if the viscosity of the spinning dope is lower than 100 poise, the shape of the fin will not be fixed properly. The purpose is not fully achieved. On the other hand, if the melt viscosity of the spinning stock solution is too high and exceeds 10,000 poise, the pressure loss at the nozzle discharge hole will increase, which not only causes mechanical problems, but also causes smooth draft (drawing) of the yarn discharged from the nozzle.
As a result, yarn breakage occurs during spinning and yarn thickness unevenness occurs, making stable yarn spinning difficult. Further, the viscosity of the spinning dope in the spinning nozzle during spinning is more preferably 300 to 2000 poise.
In particular, if it is in the range of 500 to 1500 poise, the shape of the fins will be accurately fixed and stable spinning will be possible. In the present invention, the viscosity of the spinning dope during spinning refers to the viscosity at the spinning nozzle, but strictly speaking, it is the viscosity at the outlet of the spinning nozzle. In addition, even if the viscosity of the stock solution at the time of nozzle discharge is within an appropriate range, if it takes a long time for the spun hollow fibers to solidify, the surface tension of the stock solution will accelerate deformation during that time, resulting in a sharp fin shape. I can't do that. Desirably, the yarn is rapidly cooled and solidified after spinning to fix the yarn shape at the time of spinning. In normal melt spinning, the point at which the fluidity of the yarn is lost and thinning due to winding tension no longer progresses, the so-called solidification point, is approximately 10 cm from the nozzle.
In order to obtain the irregularly shaped hollow fiber with fins for blood purification as related to the present invention, the solidification point must be 40° from the noise tip.
It was found that it is desirable to be within cm. It is more preferable if the distance between the solidification point and the noise tip is in the range of 5 to 40 cm, and especially in the range of 10 to 25 cm, extremely stable spinning is possible. Furthermore, as the spinning conditions in the present invention, the preferable draft range is 20 to 200, particularly 40 to 100.
In this case, it is easy to stably obtain finned hollow fibers having a predetermined shape. The spinning dope in the production method of the present invention mainly consists of a thermoplastic polymer, but may also contain other additives. Preferred examples of the thermoplastic polymer include cellulose ester, polyethylene, polypropylene, polyethylene tetaphthalate, polymethyl methacrylate, and polyether sulfone. Examples of such additives include polyols such as polyalkylene glycol, glycerin, and glycol having an ethylene-propylene chain in the molecule, plasticizers such as sulfolane, caprolactone, dimethyl sulfoxide, and mixtures thereof, and inorganic salts and organic salts. , and the above thermoplastic polymers and other thermoplastic polymers. Their composition is selected depending on the required permselective performance or viscosity control during spinning. In addition, in the production method of the present invention, permselectivity is developed by further subjecting the spun-solidified hollow fiber to a stretching process, extraction and removal of additives, or chemical reaction treatment such as saponification. Such a treatment method is selected depending on the composition of the spinning dope, but it may be any commonly used method and is not particularly limited. Although the shape and size of the finned irregularly shaped hollow fibers according to the present invention are not particularly limited,
The number of fins is 1 to 10, preferably 2 to 7, and the outer diameter (d) is
100 to 500μ, preferably 200 to 300μ, the film thickness (h) of the part without fins is 5 to 50μ, preferably 10 to 40μ, and the height H of the fins is 10 to 65μ, which are generally in the practical range. . The finned hollow fibers obtained by the method of the present invention are used for fluid separation such as ultrafiltration, reverse osmosis, dialysis, and gas separation. It is suitable for blood processing such as, and is particularly effective in hemodialysis. To assemble irregularly shaped hollow fibers with fins into a blood purifier, bundle 5,000 to 10,000 hollow fibers, insert them into a cylindrical container, bond and solidify the hollow fibers at both ends with an adhesive such as urethane, and then Cut the hollow fiber end to open it. Blood distribution ports are attached to the hollow fiber openings at both ends, and after testing the performance as a blood purifier and quality such as leakage, it is sterilized. Generally, a simple circular hollow fiber is used as the hollow fiber, but by using the irregularly shaped hollow fiber with fins according to the present invention, firstly, it is possible to avoid close contact between the single hollow fibers, and it is possible to prevent the dialysis fluid from coming into contact with each other. Unbalanced flow is reduced, dialysis efficiency is greatly improved, and variations in dialysis efficiency between purifiers can be reduced. Secondly, the distribution of the hollow fibers at the end of the blood purifier becomes uniform, the distribution of blood into the hollow fibers becomes uniform, and the blood coagulation properties in the hollow fibers or near the hollow fiber openings are reduced after use. The amount of blood remaining can be reduced. Furthermore, when a large number of hollow fibers are filled into the container, small spaces are created between the closely-adhered fibers, which prevents the adhesive resin from penetrating into these parts, creating unbonded spaces and causing leaks. In the case of irregularly shaped hollow fibers with fins, there is an advantage that the probability of such occurrence is extremely low. By the method of the present invention, it is possible to obtain a modified hollow fiber with fins that fully exhibits the above-mentioned effects when used as a blood purifier. <Effects of the Invention> According to the production method of the present invention, permselective hollow fibers with fins and irregular cross sections can be obtained very stably by melt spinning, which has been difficult to produce stably in many cases. I can do it. Furthermore, the method of the present invention has the excellent advantage that the shape of the fins can be easily selected within a wide range. Furthermore, the hollow fibers obtained by the present invention are particularly useful in blood purifiers and exhibit excellent performance. The present invention will be described below with reference to Examples, but the present invention is not limited to these in any way. Examples 1 to 10, Comparative Examples 4 and 5 Polyethylene glycol (hereinafter abbreviated as PEG) to 100 parts by weight of cellulose diacetate
(molecular weight 300) was added in the weight parts shown in Table 1, and the mixture was melted at 200 to 240°C.
The nozzle shown in (inner diameter of double annular slit)
1.6mm, outer diameter 2mm, notch width 0.15mm, height 0.7
mm) at the outlet temperature shown in Table 1, and then cooled at the room temperature cooling air speed shown in Table 1, and then wound up. The melt viscosity of the polymer melt at each temperature was measured separately using a flow tester. The distance from the tip of the spinneret to the solidification point was measured by taking out a scissors from the yarn being spun, and the point where thinning ended was taken as the fixed point. At a cap temperature of 190℃,
The viscosity of the polymer is too high and thread breakage is likely to occur.
Good winding was not possible. For other types, after saponifying the wound yarn to cellulose with an alkali, the obtained irregularly shaped hollow fiber with fins as shown in Table 1 (the thickness of the film other than the fins is approx.
20~25μ) into the container at almost the same filling rate,
It was assembled as a dialysis machine. Its in vitro dialysis performance was measured and shown in Table 1. The device according to the present invention has a sharp fin shape, a narrow width (W) at the base of the fin, and a sufficient fin height (H), and exhibits high dialysis performance as a dialyzer. There is. On the other hand, in a comparative example that deviates from the present invention, the shape of the rim was rounded and it was not possible to obtain a shape with sufficient height. The urea clearance [ml/min] per 1 m 2 of effective area was measured according to the dialyzer performance evaluation standards published by the Japan Society for Artificial Organs in September 1980.

【表】【table】

【表】 実施例12〜15比較例3、4 実施例1と同様にして、表2に示すポリマーを
用いて溶融紡糸を行なつた後さらに延伸により微
多孔質処理したところ、表2に示すような形状の
フインを有する異形中空糸が得られた。
[Table] Examples 12 to 15 Comparative Examples 3 and 4 In the same manner as in Example 1, the polymers shown in Table 2 were melt-spun and then subjected to microporous treatment by stretching, resulting in the results shown in Table 2. An irregularly shaped hollow fiber having fins having the following shape was obtained.

【表】 比較例 6 PEGを50重量部、ノズル温度を235℃、ノズル
吐出口での粘度を85ポイズ、ノズル吐出面と固化
点の距離を35cm、ドラフトを60、冷却風速度を
0.5m/secとする以外は、実施例1と同様にして
中空糸を製造した。得られた中空糸のフインの形
状としてHが13μ、Wが39μ(H/Wが0.33)であ
り、その中空糸を用いた透析器の尿素クリアラン
スが152であつた。
[Table] Comparative Example 6 50 parts by weight of PEG, nozzle temperature of 235°C, viscosity at nozzle outlet of 85 poise, distance between nozzle discharge surface and solidification point of 35 cm, draft of 60, and cooling air velocity of
A hollow fiber was produced in the same manner as in Example 1 except that the speed was 0.5 m/sec. The fin shape of the obtained hollow fiber was 13μ in H and 39μ in W (H/W 0.33), and the urea clearance of a dialyzer using the hollow fiber was 152.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、本発明に係わる中空糸膜の拡大断面図
の1例である。図2、図3、図4は、本発明に係
わる中空糸紡糸用ノズル形状の例を示す。
FIG. 1 is an example of an enlarged cross-sectional view of a hollow fiber membrane according to the present invention. 2, 3, and 4 show examples of hollow fiber spinning nozzle shapes according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 長手方向に貫通する中空部を有し且つ外周部
において長手方向に延長された少なくとも1条の
フインを有する選択透過性異形中空糸の溶融紡糸
による製造方法において、紡糸原液が、少なくと
も1種の熱可塑性重合体及び必要に応じて少なく
とも1種の添加剤を含有するものであり、二重円
環状スリツトの外側に少なくとも1個の切欠部を
有した形状の吐出口を有する紡糸ノズルから溶融
紡糸原液を吐出する際の該ノズルにおける該紡糸
原液の粘度が100〜10000ポイズの範囲内にあり、
該紡糸ノズルから吐出された該異形中空糸の固化
点と該紡糸ノズル端面との距離が40cm以下であ
り、紡糸固化された中空糸をさらに延伸、添加剤
の抽出除去及び化学反応処理の少なくとも1種の
処理により選択透過性を付与することを特徴とす
る該フインの高さ(H)と根元の巾(W)の比
H/Wが0.4以上である選択透過性異形中空糸の
製造方法。
1. A method for producing selectively permeable irregularly shaped hollow fibers having a hollow portion passing through the longitudinal direction and having at least one fin extending in the longitudinal direction at the outer peripheral portion by melt spinning, wherein the spinning stock solution contains at least one type of fin. Melt spinning containing a thermoplastic polymer and optionally at least one additive, from a spinning nozzle having a discharge opening shaped like a double annular slit and at least one notch on the outside. The viscosity of the spinning stock solution in the nozzle when discharging the stock solution is within the range of 100 to 10,000 poise,
The distance between the solidification point of the irregularly shaped hollow fiber discharged from the spinning nozzle and the end face of the spinning nozzle is 40 cm or less, and the solidified hollow fiber is subjected to at least one of further stretching, extraction and removal of additives, and chemical reaction treatment. A method for producing a permselective irregularly shaped hollow fiber in which the ratio H/W of the height (H) of the fin to the width (W) of the root is 0.4 or more, characterized in that the permselectivity is imparted by seed treatment.
JP24059184A 1984-11-16 1984-11-16 Preparation of permselective profile hollow yarn Granted JPS61120606A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP24059184A JPS61120606A (en) 1984-11-16 1984-11-16 Preparation of permselective profile hollow yarn
CA494836A CA1272139C (en) 1984-11-16 1985-11-07 Fluid separator, hollow fiber to be used for construction thereof and process for preparation of said hollow fibers
US06/796,865 US4781833A (en) 1984-11-16 1985-11-12 Hollow fiber fluid separator
DE3588092T DE3588092T2 (en) 1984-11-16 1985-11-12 Blood treatment device
DE3587795T DE3587795T2 (en) 1984-11-16 1985-11-12 Hollow cellulose fibers.
EP89100842A EP0321447B1 (en) 1984-11-16 1985-11-12 Cellulose type hollow fibers
EP89100843A EP0321448B1 (en) 1984-11-16 1985-11-12 Process for preparation of hollow fibers
EP85308220A EP0186293B1 (en) 1984-11-16 1985-11-12 Blood treatment device
DE3587787T DE3587787T2 (en) 1984-11-16 1985-11-12 Process for the production of hollow fibers.
ES548931A ES8705250A1 (en) 1984-11-16 1985-11-15 Process for preparing a hollow fibre of the cellulose type
US07/477,174 US5063009A (en) 1984-11-16 1990-01-26 Process for preparation of hollow fibers for fluid separator construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24059184A JPS61120606A (en) 1984-11-16 1984-11-16 Preparation of permselective profile hollow yarn

Publications (2)

Publication Number Publication Date
JPS61120606A JPS61120606A (en) 1986-06-07
JPH0445209B2 true JPH0445209B2 (en) 1992-07-24

Family

ID=17061781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24059184A Granted JPS61120606A (en) 1984-11-16 1984-11-16 Preparation of permselective profile hollow yarn

Country Status (1)

Country Link
JP (1) JPS61120606A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102574068B (en) * 2010-04-16 2015-05-20 旭化成化学株式会社 Deformed porous hollow fiber membrane, production method of deformed porous hollow fiber membrane, and module, filtration device, and water treatment method in which deformed porous hollow fiber membrane is used

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029816A (en) * 1973-07-17 1975-03-25
JPS5095513A (en) * 1973-12-27 1975-07-30
JPS5277228A (en) * 1975-12-24 1977-06-29 Teijin Ltd Production of polyester fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029816A (en) * 1973-07-17 1975-03-25
JPS5095513A (en) * 1973-12-27 1975-07-30
JPS5277228A (en) * 1975-12-24 1977-06-29 Teijin Ltd Production of polyester fiber

Also Published As

Publication number Publication date
JPS61120606A (en) 1986-06-07

Similar Documents

Publication Publication Date Title
KR100432464B1 (en) Polysulfone Hollow Fiber Semipermeable Membrane
EP0321448B1 (en) Process for preparation of hollow fibers
WO2007102528A1 (en) Hollow fiber membrane with excellent performance stability and blood purifier and method for producing hollow fiber membrane
JP5440332B2 (en) Hollow fiber membrane
WO2015046411A1 (en) Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
JPH09154936A (en) Blood purifying module, blood purifying membrane and production thereof
JP5217238B2 (en) Porous hollow fiber membrane and blood purifier excellent in permeation performance stability
JP2542572B2 (en) Hollow fiber
JP5212837B2 (en) Permselective hollow fiber membrane
JPS6333871B2 (en)
JPH0445209B2 (en)
JP2008246402A (en) Hollow fiber type blood purification membrane and method of manufacturing the same
JPS6118404A (en) Hollow yarn membrane and its preparation
JPH0194902A (en) Polysulfone hollow fibrous membrane and production thereof
JP2000126286A (en) Blood treating device
US5505859A (en) Hollow fiber for dialysis and process of manufacturing
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney
JP4036740B2 (en) Method for producing hollow fiber blood purification membrane
JPH031054B2 (en)
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
JP2710711B2 (en) Cellulose diacetate hollow fiber
JP2010063605A (en) Blood purifier having excellent impact resistance
JP5423326B2 (en) Method for producing hollow fiber membrane
JP2009078121A (en) Blood purifier and its production method
JPS61274706A (en) Cellulosic hollow yarn, its production and fluid separator