JPH0444840A - 潤滑性に優れた樹脂被覆複合鋼板 - Google Patents

潤滑性に優れた樹脂被覆複合鋼板

Info

Publication number
JPH0444840A
JPH0444840A JP15236090A JP15236090A JPH0444840A JP H0444840 A JPH0444840 A JP H0444840A JP 15236090 A JP15236090 A JP 15236090A JP 15236090 A JP15236090 A JP 15236090A JP H0444840 A JPH0444840 A JP H0444840A
Authority
JP
Japan
Prior art keywords
resin
steel sheet
solid lubricant
zinc
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15236090A
Other languages
English (en)
Inventor
Yoshihiro Kawanishi
義博 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15236090A priority Critical patent/JPH0444840A/ja
Publication of JPH0444840A publication Critical patent/JPH0444840A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、自動車、家電製品、建材製品等の素材とし
て適用されるところの、樹脂薄膜をコーティングした樹
脂被覆複合鋼板に関するものである。
〈従来技術とその課題〉 一般に、自動車、家電製品、建材製品等の素材鋼板には
優れた耐食性、塗装密着性、溶接性等が必要とされてい
るが、近年、製品の高性能化傾向に伴ってその要求品質
レベルは一段と厳しいものとなってきている。
ところで、通常、上記用途に供する鋼板では耐食性改善
のために亜鉛又は亜鉛系合金メッキが施されるが、この
ようなメッキ鋼板でも無塗装のままで長時間放置すると
錆が発生するので・、1次防錆のため更にクロメ−ト処
理を施される場合が多い。しかしながら、一般のクロメ
ート処理では塩水噴霧試験で精々48時間程度の耐食性
し、か確保できず、最終素材製品として十分な耐食性を
有しているとは言えなかった。そこで、この間離を解決
すべくシリカゾル等を添加し5た特殊な処理液を用いる
塗布型クロメート処理法が開発され15・が、それでも
適用環境が厳し、い場合の耐食性や塗装密着性が十分と
は言えず、これを適用し2かメッキ鋼板もやはり最終素
材製品とし2て1−分に満足できるものではなかった。
また、厳し7い環境にも対始できるよう、リン酸塩処理
を施したメッキ鋼板に樹脂塗料を厚く(膜厚:数−1ミ
クロン程度に)コーティングする手段も検討されている
が、このような処理を施し7た鋼板は溶接が不可能であ
る上、塗料コストが嵩むと;4゛う問題点かあ−1で採
用が躊躇されるものであ、2だ、。
ところが、最近、亜鉛又は亜鉛系合金メン4釦板にクロ
メート処理を施し、更にその」〜に有機樹脂を薄く−7
ティングし7た薄膜樹脂被覆複合網板が開発され(特公
昭60−33192号9特開昭64−8034号)、耐
食性、塗装密着性が良好で溶接も口]能である表面処理
鋼板とt2て注目を浴びている。
−へあ、網板のグ[・ス成形ごは−・般t:: “潤滑
油の塗布・′プレス・脱脂”と言う■稈が採られるが、
近年になって[潤滑油を使用しないプレス加1(に′対
する7−ザ の要望が日増しに強まる傾向を見せている
。これは、潤滑油の不使用や脱脂1]程の省略が4“J
ストダウンを可能にすると言・つ理由6ごよるだけでな
く、潤滑油を使用し7ないことによる作業環境の改善、
更には脱脂液を使用しないことによる大気環境の改善に
も・つながるからであった。
従って、潤滑油の使用なLi、、:十分なプレス成形性
を丞すと共に、耐食性や塗装密着性にも優れ、し2かも
溶接が可能な表面処理銅板に対゛づる要求は、今後益々
切実なものとなってくることが予想される3゜ しかるに、耐食性、塗装密着性、溶接性の・飄から大き
な期待が持たれる前述の薄膜樹脂液ff捨金鋼板では、
無塗油でのプレス加工は殆んど不iJ能であるか、或い
はダイスでのカジリが激しくて製品外観に問題を来たす
ばかりでなく、加工後の耐食性が著しく劣化してし7ま
うため、プレス成形素材鋼板としてそれほど満足できる
ものではなか。
た。
もっとも、プレス加工性向上のため高分Y樹脂中に潤滑
剤を添加し、これをクロメ−ト処理鋼板上に薄くコーテ
ィングした潤滑性薄膜樹脂被覆複合鋼板も開発されてい
る(特公昭62−24505号、特公昭63−25O3
2号、特開昭63−195282月)、イし、で、確か
にこの潤滑性薄膜樹脂被覆複合鋼板は室温i!I傍での
スピードが比較的遅いプレス加工、の場合には非常に良
好な性能を発揮した。
しかしながら、実際のプレス作業では、プレススピード
が非常に速い上、連続してブし・ス成形が行われるため
、プレス型や成形鋼板(製品)の温度は相当に高い値と
なってしまう。例えば、10段のトランスファーブレス
°?シンを使用して1、絞り比=2.0の製品を2段で
プレスした場合には最終製品の温度が1000個成形し
た段階で80℃程度まで」昇し、また絞り比:4.0の
製品を3段でプレスした場合には500個成形した段階
で製品温度が120℃にまで達した例もある。イして1
.二のように成形鋼板温度が非常に高くなる実際のプレ
ス作業においては、従来の薄膜樹脂被覆複合網板では樹
脂の軟化による鋼板と型とのメタルタッチが起こりやす
く、樹脂剥離1 メッキ剥離を起こむ。
て樹脂が型に付着するため連続プレス成形性が悪くなる
と一ル゛う問題のほか、樹脂剥離、メッキ剥離のために
製品がかじられてしまい製品外観や加工後耐食性の悪化
を招くとの問題が」−分に解決されていなかった。
このようなことから、本発明が目的としたのは、加]の
前後を通じて優れた耐食性を示すと共に、溶接も可能で
あり、しかも鋼板温度が高温となる実際のプレス作業で
潤滑油の使用なしに良好な連続プレス成形を実施できて
、十分に満足できる加ff&外観、が得られる成形用耐
食鋼板を捷供することであった。
〈課題を解決するための手段〉 本発明者等は、上記目的を達成すべく、特に亜鉛又は亜
鉛系合金メッキ鋼板にクロメート処理と薄い樹脂塗装を
施した前記“薄膜樹脂被覆複合鋼板”の耐食性、塗装密
着性、溶接性に注目し、その高温度下における加工性(
潤滑性)の改善策を求めて鋭意研究を重ねた結果、次の
ような知見を得ることができた。即ち、 a)I膜樹脂被覆複合鋼板の潤滑性改善には樹脂皮膜中
への特定の固形潤滑剤添加が不可欠であるが、その粒径
の違いが潤滑性に大きな影響を与え、この影響は高温下
において特に顕著に現れる。
ところが、添加する固形潤滑剤の粒径を特定の範囲に調
整すると樹脂皮膜の高温下における潤滑性能が極めて良
好な領域で安定化するようになる。
b) また、上記樹脂皮膜の下地としてのクロメート処
理皮膜も、樹脂皮膜の密着性改善効果を通じて鋼板の加
工性に少なからぬ影響を与えるが、良好な加工性を確保
するには該クロメート処理皮膜の形成量も特定の範囲内
となるように調整する必要がある。
C)そこで、亜鉛又は亜鉛系合金メッキ鋼板上に形成す
るクロメート処理皮膜の形成量と、その上にコーティン
グする有機樹脂の中へ添加する固形潤滑剤の粒径とを特
定の範囲に調整すると、実際のプレス作業において予想
される120℃程度の温度上昇が生じたとしても潤滑剤
の使用なしに良好なプレス成形を行うことが可能となり
、環境への悪影響を懸念することなく十分に満足できる
品質の製品を低コストで提供できるようになる。
本発明は、上記知見事項等に基づいてなされたもので、 [亜鉛又は亜鉛系合金メッキ鋼板上に、クロム付着量が
金属Cr換算で片面当り200gg/m”以下のクロメ
ート皮膜と、粒径が3〜100pの結晶性固形潤滑側を
含む塗布量二0.2〜4.0g/m2の樹脂被覆層とを
この順序で形成させて樹脂被覆複合鋼板を構成すること
により、自動車、家電製品、建材製品等の素材として好
適な優れた耐食性、塗装密着性、潤滑性、加工熱による
昇温下でのプレス成形性、加工後外観並びに加工後耐食
性と、十分な溶接性とを兼備せしめた点」 に特徴を有している。
本発明での対象素材たる亜鉛又は亜鉛系合金メッキ鋼板
としては、亜鉛メッキ鋼板、亜鉛−鉄合金メッキ鋼板、
亜鉛−ニッケル合金メッキ鋼板。
亜鉛−マンガン合金メッキ鋼板、亜鉛−アルミ合金メッ
キ鋼板、亜鉛−コバルト−クロム合金メッキ鋼板、或い
はこれら任意の鋼板のメッキ成分にNil PelMn
、 Mo、 Co、 u、 Cr等の元素を1種又は2
種以上添加したものを挙げることができる。勿論、上記
メッキのうちの同種又は異種のものを2層以上施した複
合メッキ調板(例えばFe含有量の異なるFe−Zn合
金メッキを2層以上施したメッキ鋼板等)であっても差
し支えない。ただ、これらのうち、特に耐食性の見地か
らは亜鉛−ニッケル合金メッキ鋼板や亜鉛−マンガン合
金メッキ鋼板が好ましく、また亜鉛−ニッケル合金メッ
キ鋼板を使用する場合にはメッキ皮膜中のNi含有量を
5〜20重量%の範囲に、亜鉛−マンガン合金メッキ鋼
板を使用する場合にはメッキ皮膜中のMn含有量を30
〜85重量%の範囲にそれぞれ調整することが好ましい
なお、これら亜鉛系メッキ網板を製造する際のメッキ手
段としては、電解法、溶融法、気相法等のうちの実施可
能な何れによっても良いことは言うまでもない。
上述の素材メッキ鋼板の表面には、耐食性向上と樹脂と
の密着性向上のためにクロメート皮膜が形成せしめられ
るが、その膜厚はクロム付着量として金属Cr換算で2
00mg/m”以下とする必要がある。なぜなら、クロ
ム付着量が200 mg/m”を超えるとクロメート皮
膜層内での凝集破壊が起こって加工性が劣化する恐れが
ある上、溶接性も劣化するためである。ただ、クロム付
着量が105g/ m Zを下回るとクロメート皮膜の
均一性に難がでがちとなるため、好ましくはクロム付着
量を10〜200 w+g/m”に調整するのが良い。
なお、クロメート皮膜を形成させるためのクロメート処
理としては反応型1塗布型1電解型等の何れの方法によ
っても構わないが、形成されるクロメート皮膜中に6価
のCr(Cr”″)が存在するように図るのが望ましい
。なぜなら、このCr”はセルフヒーリング効果を有し
ているため、加工等で鋼板に傷が41いた場合でも腐食
を抑制する作用を発揮するためである。
さて、本発明に係る複合鋼板は、素材メッキ鋼板上にク
ロメ〜 ト処理を施して特定膜厚のクロメト皮膜を形成
させ、更にその上に潤滑性向り等のための有機複合樹脂
をコーティングしたこと否特徴としているが、この有機
複合樹脂はベース樹脂に特定の固形潤滑剤を含んで成る
組成を有している。
ベース樹脂は、鋼板の耐食性、塗装密着性を向上させる
ほか、固形潤滑剤を強固に保持J”るために必要なもの
である。このベース樹脂としては、例えばエポキシ基、
カルボキシル基、エステル基、アルデヒド基、水酸基、
アミノ基等の官能基の1挿又は2種以−]を側鎖及び/
又は主鎖に有する樹脂を挙げることができ、このような
樹脂としてj゛クリル樹脂アルキド樹脂、ウレタン樹脂
、:Eボキシ樹脂、フェノール樹脂4アミノ樹脂1不飽
和ポリエステル樹脂、ビニル樹脂等を例示できる。
また、固形潤滑剤は樹脂皮膜層の潤滑性を向上させるた
めに添加するが、有機系の結晶性固形潤滑剤が選ばれ、
例えばパラフィン系やポリオレフィン系のワックス、或
いはフッ素樹脂が好まし、い。
即ち、固形潤滑剤として〜・般には (a、l  ワックス (パラフィンワックスのよ・)
な天然ワックスやポリエチし・ンワックス、ステアリン
酸エステルのような合成ワックス等がある)。
(b)  層間の剪断強さが弱く、結晶層間が滑ること
によって摩擦庖低下させる層状固体潤滑剤(例えば黒鉛
、二硫化モリブデン、二硫化タングステン、窒化ホウ素
、フッ化黒鉛等がある) (C)  摩擦特性が良く、低い摩擦係数値を有するプ
ラスデック (例えばテフロンと言う商品名で呼ばれて
いるフッ素樹脂やナイロン、ポリエチレン、塩化ビニル
等がある)。
(d)  金属表面の境界潤滑に効果的に作用する金属
上つけん(ステアリン酸ナトリウム、ステアリン酸カル
シウム等がある)。
等の数多くのものが知られているが、前記ベース樹脂中
へ混入してクロメート処理鋼板表面に塗布する場合、特
にワックス或いはプラスチックのような有機系の結晶性
固形潤滑剤を採用することによって初めて「皮膜中に均
一に分散し、かつ加工後の外観・加工後の耐食性に優れ
る」と言う所望の効果がもたらされる。これは、有機系
の結晶性固形潤滑剤は他のものに比べて柔らかく、−・
−ス樹脂となじみやすいことによるものと推測される。
これに対して、例えば黒鉛、二硫化モリブデ〉′等の層
状固形潤滑剤は良好な加工性を示しはするが、結晶が硬
いl−、ベース樹脂中に保持されにくくて鋼板とプレス
型との摺動により潤滑剤が剥離を起こしやすく、この潤
滑剤が鋼板のメッキ表面にキズを入れかじってしまうた
めに、加工後外観心1パ劣ると言う問題を生じる。また
、ステアリン酸カルシウムのような金属石けんも、同様
の理由で加、■−後外観に問題が生じて不適当である。
ここで、樹脂皮膜層が高温下でも良好な潤滑性(低い動
摩擦係数値)を保持するためには、潤滑剤の粒径が非常
に重要となる。
つまり、本発明に係る樹脂被覆複合fi4板では樹脂膜
厚が薄いので、潤滑剤が均一に分散すれば鋼板表面にか
なり微細な凹凸が形成される。このため、該樹脂層は潤
滑剤自身が持つ摩擦係数よりも低い摩擦係数値を有する
こととなる。このように、鋼板表面状態が潤滑性に大き
な影響を及ぼ釘が、固形潤滑剤の粒径が3Q未満である
と樹脂皮膜層が潤滑剤をカバーしてしまって鋼板表面に
微細な凹凸が形成されなくり、そのため潤滑剤を添加し
た動床が殆んど認められなくなる。一方、潤滑剤の粒径
が100mを超えると樹脂が潤滑剤を保持できなくなっ
て潤滑剤の剥離が起きることから、やはり良好な潤滑性
が得られなくなる。従って、固形潤滑剤の粒径を3〜1
00悶と限定し、た。
なお、固形潤滑剤の融点も樹脂皮膜層の潤滑性に少なか
らぬ影響を及ぼすため、該融点が120℃以上のものを
適用するのが好ましい。即ち、実際のプレス作業におい
ては、素材鋼板は加工が進むにつれて加工熱により常温
から120℃程度まで温度上昇する。従って、120℃
と言う高温下でも樹脂皮膜層が良好な潤滑性を維持する
ためには、潤滑剤が120℃でも融解しないで鋼板表面
(樹脂層表面)に微細な凹凸を保っておくことが重要と
なる。
ただ、非常に融点の高い有機系固形潤滑剤は一般に常温
付近での硬度も高いため、プレス加工初期に型との摺動
で固形潤滑剤の剥離を起こしやすく、加工外観を劣化さ
せると言う問題が生じがちである。そのため、融点が非
常に高い固形潤滑剤だけを使用することは好ましくない
。従って、樹脂皮膜層に常温から120℃までの温度範
囲で良好な潤滑性、動摩擦係数を発揮させるためには、
固形潤滑剤として“融点が120℃以上のもの”と“融
点が120℃以下のもの”を組み合わせることが好まし
い。但し、低融点の有機系固形潤滑剤を多量に使用する
と、プレス加工段階で鋼板温度が融点以上になり固形潤
滑剤が溶融して鋼板や型に付着していくため、連続プレ
ス成形性が劣化すると言う問題を生じる。そこで、固形
潤滑剤の全量中に“融点が120℃以上の固形潤滑剤”
が占める割合が、重量比で10%以上となるように成分
調整を行うのが望ましい。
また、ベース樹脂への固形潤滑剤の添加量としては 有機高分子(ベース樹脂):固形潤滑剤= (1:0.
02)〜(1:0.4)の範囲が好ましい。この理由は ベース樹脂:固形潤滑剤=1:0.02の比率よりも潤
滑剤添加量が少ないと十分な潤滑性を得ることができず
、一方、 ベース樹脂:固形潤滑剤=1:0.4 の比率よりも潤滑剤添加量が多いとベース樹脂が潤滑剤
を保持できなくなり、加工時の型との摺動で潤滑剤の剥
離を起こしやすくなって潤滑性が劣化するからである。
また、潤滑剤の添加量を多くすることは塗装密着性を劣
化させると言う問題も引き起こす。
更に、樹脂皮膜層の潤滑性に関しては、該樹脂層のガラ
ス転移点Tg (樹脂がガラス状態からゴム状態へ変化
する温度)も少なからぬ影響を与え、Tgがプレス温度
から大きく離れる条件の場合には良好な潤滑性が発揮さ
れない恐れがある。つまり、樹脂被覆複合鋼板が120
℃程度にまで温度が上昇するような苛酷な実プレス作業
においてもなお良好な潤滑性を示し、連続プレス成形が
可能な状態を維持するには、高温下であっても小さな摩
擦係数値を有していることが必要であり、具体的には1
20℃程度の温度下で0.15以下の摩擦係数値でない
と十分とは言えない。
この高温下における摩擦係数値には樹脂被覆複合鋼板の
熱特性が影響し、特に樹脂がガラス状態からゴム状態へ
移る“ガラス転移点(Tg)”が重要であって、この7
g近傍では潤滑性が非常に良好となり小さな動摩擦係数
値を示す。そして、多くの実験結果から、(Tg±30
℃〕の温度範囲では殆んど動摩擦係数値に変化が認めら
れず、この範囲であれば極めて良好な潤滑性を示すこと
が確認された。しかし、(Tg+30℃〕を超える温度
になると樹脂が軟化して完全にゴム状態或いは流動状態
となり、プレス型とメッキ層とのメタルタッチが起こり
やすくなってかじりを生じ動摩擦係数値が急激に上昇す
る。また、このように樹脂がゴム状態或いは流動状態に
なった場合には固形潤滑剤の保持も困難となり、潤滑剤
による潤滑効果が期待できなくなってくる。一方、(T
g −30℃〕を下回る温度では樹脂が完全にガラス状
態となっており、樹脂がプレス型に接触すると徐々に削
られる現象を起こすのでやはり動摩擦係数値は上昇する
。もっとも、この場合には潤滑剤が強固に保持されたま
まであるため、潤滑剤を選択すれば成る程度の動摩擦係
数値の上昇は防止できる。
従って、120℃まで被加工材温度が上昇するような苛
酷なプレス条件下でも良好な潤滑性を保持するためには
、被覆する樹脂としてTgが20〜120℃のものを選
択することが望ましいと言える。即ち、1gが20℃を
下回る樹脂では、いくら良好な潤滑剤を使用しても12
0℃の高温下では潤滑効果が認められなくなる。一方、
Tgが120℃を超える場合には、平板での潤滑性は潤
滑剤を選択すれば良好となるものの、樹脂皮膜が非常に
硬いために塗膜の内部応力が高く、加工を行うと型との
こすれによる外観不良を生じたり、樹脂層中にクラック
が入って耐食性を劣化する等の問題が懸念されるように
なる。
ところで、樹脂被覆複合鋼板の樹脂層中へ固形潤滑の他
にシリカを添加することは、鋼板の耐食性を更に向上さ
せる上で非常に好ましいことである。
シリカとしては、水分散性のコロイダルシリカ(例えば
酸性側で安定化したスノーテックスOやスノーテックス
−OL、或いは塩基性側で安定化したスノーテックス−
N〔何れも日量化学工業−の商品名〕等)や有機溶剤中
にコロイド状に分散させたオルガノシリカゾル(例えば
メタノールシリカゾルやn−ブタノールシリカゾル等)
が適用でき、また粉末タイプの乾式シリカ(例えばデグ
サ社の商品名A、 E ROS I N、等)も使用で
きる。このようなシリカの粒径とし7ては、樹脂中に均
・−に分散させるために5〜100mに調整するのが適
当である。
このシリカは、シリカ表面にある水酸基(シラトル基)
がベース樹脂と反応して、或いはシランカップリング剤
(γ−アミツブaピルトリエトキシシラン、ビニルトリ
エトキシシラン、γ−グリシドキシプロビルトリメトキ
シシラン、T メタクリロキシプロピルトリメトキシシ
ラン、ビニルトリス(βメトキシエトキシ)シラン等)
を用いてシリカ粒子表面を変性させることによりベース
樹脂と反応させることで、更なる耐食性向上効果を発揮
する。また、シリカはベース樹脂と反応して有機 無機
複合樹脂を形成するが、これを通じて樹脂の硬度2ガラ
ス転移点(Tg)を上昇させる効果も奏する。
なお、樹脂中へのシリカの添加量は 有機高分子くベース樹脂)ニジリカ = (1: 0.053〜(1: 1:1の範囲とする
のが好ましく、シリカ添加量がベース樹脂ニジリカー1
:0.05 の比率以上になると耐食性向上効果が顕著となって、近
年ユーザーから要求されるようになった最終製品(例え
ば絞り比:2.0の円筒絞り品)での耐食性が塩水噴霧
200hr以上と言った性能を安定して満足するように
なる。しかし、シリカ添加量がベース樹脂ニジリカ=1
:1 の比率を超えて多くなると形成される有機 無機複合樹
脂皮膜は通水性が大きくなって耐食性の劣化を招くほか
、樹脂皮膜が非常に硬くかつ脆くなって加工時に剥離し
やすくなり、固形潤滑剤を添加しても十分な潤滑性が得
られなくなる恐れが出てくる。
ここで、樹脂−シリカの反応性を高め、シリカの分散性
を向上させるために前述した如くシランカップリング荊
等の反応促進剤を共に添加したり、固形潤滑剤の樹脂液
中での分散性を上げるために界面活性剤等の安定剤や分
散剤をベース樹脂に添加することは、塗工性や製品性能
の安定化につながるので好ましいことである。また、樹
脂皮膜の架橋密度を向上させて皮膜の硬度やTgを上げ
、耐食性、潤滑性の向上を図るため、クロム酸、アンモ
ニア等の架橋触媒を添加することも好まし7い王立てで
ある。特に、クロム酸の添加は、Crb+の持つセルフ
ヒーリング効果によって加工後耐食性の向1が期待でき
るので非常に望ましい。なお、クロム酸の添加量として
は、皮膜乾燥重量当り30%以下であることが好ましく
、これよりも多く添加すると樹脂薬液中の安定性が悪く
なると同時に、未反応のクロム酸が溶出して逆に耐食性
が劣化する懸念が出てくる。
このように、ベース樹脂、固体潤滑剤、シリカ等を均一
に分散させた樹脂をメッキ鋼板上に薄くコーティングす
るに当り、形成する樹脂被覆層の厚さは塗布量で0.2
〜4.0g/−に調整すべきである。
なぜなら、該樹脂被覆層の塗布量が0.28/d未満で
あるとメ・ツキ鋼板を前面コーティングすることが困難
であり、また加工によってメッキ層とプレス型とのメタ
ルタッチを防止するだけの十分な膜厚が確保できないの
で潤滑性、加工後外観、加工後耐食性が劣化する。一方
、4.0g/m”を超える塗布量とした場合には、耐食
性は向上し加工後外観も良好となるが、溶接性が悪化し
て特に抵抗溶接ができなくなると言う問題を引き起こす
上、経済的にも好ましくない。
なお、本発明に係る樹脂被覆複合鋼板の製造に際し、各
被覆層の形成には公知の通常の方法が十分採用でき、そ
の処理方法については特に規定されるものではない。ま
た、このような被覆層構造の形成は鋼板の両面であって
も片面のみであっても良(、使用目的に応じて決定すれ
ば良い。例えば、加工性の面からすると、片面に本発明
に係る皮膜構造を形成すると共に、他面を樹脂コーティ
ングしないか或いは潤滑剤を含んでいない樹脂をコーテ
ィングし、鋼板の表裏間で潤滑性能を変えることが好ま
しい。しかし、この場合には本発明に係る皮膜構造を形
成しなかった面の耐食性が悪くなるので、両面に良好な
加工後耐食性が求められるときには両面共に本発明に係
る皮膜構造を形成するのが良い。
続いて、本発明の効果を実施例によって更に具体的に説
明する。
〈実施例〉 実施例 1 第1表に示すメッキ鋼板を準備し、これら各メッキ鋼板
に、Cr”/Cr”−2/3となるように還元剤を添加
したCrO3: 20 g/ lを含むクロメート処理
液(pH:1.8)をCr付着量が250tag/cd
以下となるように回転塗布し、最高到達温度:100℃
で20秒間オーブン乾燥した。
次いで、第2表に示す組成の樹脂、潤滑荊、シリカを均
一に分散させた樹脂液を、乾燥重量にて0.1〜5.0
g/rttの塗布量範囲となるようにバーコーターで塗
布し、第2表に示す条件で焼付・乾燥した。
このようにして得られた樹脂被覆複合鋼板について、各
種温度における潤滑性、加工後外観、加第 1後耐食性、並びに平板耐食性を調査したが、その結果
を第3表に示す。
なお、上記各特性の調査と評価は下記の手法にによって
行った。
(A)  潤滑性 バウデン試験機(先端子:鋼球)を用い、無塗油で20
℃、60℃、120℃の試験片温度での動摩擦係数値を
測定した。なお、このとき加えた荷重は500gで、摺
動回数は10回とした。そして、評価結果は ◎:動摩擦係数が0.10未満。
○:動摩擦係数が0.10以上0.15未満。
△:動摩擦係数が0.15以上0.20未満。
×:動摩擦係数が0.20以上。
で表示した。
(B)  加工後外観 室温下において無塗油の試験片を下記試験条件で円筒絞
りし、その時の加工後外観を観察した。
1y五条作 しわ抑え圧:lトン、   ポンチ径:40鶴φ。
ダイス径=42鶴φ、 絞り比=2.0゜そして、評価
結果は ◎:カジリ無し。
○:カジリ僅かに有り △:カジリやや多い ×:カジリ多い。
で表示した。
(C)  加工後耐食性 前記円筒絞り試験と同一条件で無塗油の試験片を加工し
、試験片の摺動部に温水が当たるように加工品を設置し
て塩水噴霧試験を行い、白錆発生時間を観察した。
そして、評価結果は ◎:白錆発生時間500hr以上。
○:白錆発生時間200hr以上500hr未満。
△:白錆発生時間100hr以上200hr未満。
×:白錆発生時間100hr未満。
で表示した。
(D)  平板耐食性 試験片を平板で塩水噴霧試験(JIS Z2371)に
供し、白錆発生時間を観察した。
そして、評価結果は ◎:白錆発生時間1000hr以上。
○:白錆発生時間500hr以上1000hr未満。
△:白錆発生時間200hr以上500hr未満。
×:白錆発生時間200hr未満。
で表示した。
第3表に示される結果からも明らかなように、本発明に
係る樹脂被覆複合鋼板は優れた高温潤滑性と平板耐食性
を示し、かつ加工後外観及び加工後耐食性とも十分に満
足できるものであることが分かる。
実施例 2 第1表のAで示される電気Znnメッキ板を準備し、こ
の電気Znメッキ鋼板にCr”/Cr” =2/3とな
るように還元剤を添加したCrO3: 20 g/ 1
を含むクロメート処理液(p H:1.8)をCr付着
量が80wg/m”以下となるように回転塗布し、最高
到達温度:100℃で20秒間オーブン乾燥した。
次いで、ベース樹脂としてのアクリルエステル共重合体
、固形潤滑剤としての平均粒径が1〜110悶の範囲内
での各種粒径のポリエチレンワックス(配合比:0.1
0.全ワックス量に対する融点120℃以上のポリエチ
レンワックス量=60重量%)、シリカ分としてのコロ
イダルシリカ(配合比: 0.20)を均一に分散させ
た樹脂液を、乾燥重量にて0.1〜5.0g/rfの塗
布量範囲となるようにバーコータで塗布し、最高到達温
度7100℃で10秒間焼付・乾燥した。なお、このと
き形成された樹脂層のTgは60℃であった。
このようにして得られた樹脂被覆複合銅板について、高
温における潤滑性、加工後外観、並びにスポット溶接性
を調査し、その結果を第1図乃至第5図に整理して示し
た。
なお、高温における潤滑性は実施例1と同様のバウデン
試験により、また加工後外観も実施例1と同様の円筒絞
り試験によってそれぞれ調査した。
そして、スポット溶接性については 電極チップ・・・6φWR型。
溶接電流・・・9kA。
加圧力・・・200kgf。
通電時間・・・ 1.09イクル。
の条件にて試験片のスポット溶接を行い、。
○:溶接i=1能。
×:溶接不6J能。
の評価基準で評価し7た。
さて、第1図は、バウデン試験によって確かめられたワ
ックス平均粒子径と動摩擦係数との関係(樹脂膜厚は1
.6g/rn”に統一)を示したものであるが、この結
犀からも本発明に係る樹脂被覆複合網板は優れた高温潤
滑性を示すのに対して、固形潤滑剤(ワックス)の粒径
が3側を下回ると潤滑性が急激に低Fすることが分かる
第2図は、円筒絞り試験によって確かめられたワックス
平均粒子径と加工後外観との関係(樹脂膜厚は1.6g
/’m”に統一・)を示し、たちのであるが、この結果
からも本発明に係る樹脂被覆伸合all、加工後外観に
優れるのに対し、乙、固形潤滑剤(ワックス)のわ径が
3〜100.wの範囲から外れると加工後外観の悪化を
招くことが分かる。
第3図は、バウデン試験によって確かめられた樹脂膜厚
と動摩擦係数との関係(ワックス平均粒径は30Rに統
一)を示したものであるが、この結果からも本発明に係
る樹脂被覆複合銅板は優れた高温潤滑性を示すのに対シ
、′ζ5、樹脂膜厚が塗4量でO,2g/m”を下回る
と潤滑性が急激に低下することが分かる。
第4図は、円筒絞り試験によって確かめられた樹脂膜厚
と加工後外観、との関係(ワックス平均粒径は30悶に
統一) fL示したものであるが、この結果からも本発
明に係る樹脂被覆複合鋼板は加工後外観、に優れるのに
対(,7、樹脂膜厚が塗布量で0.2〜・4.0g/m
′!の範囲から外れると加工後外観の悪化を招く、:と
が分かる。
第5図は1.スポット溶接試験によって確かめられた樹
脂膜厚とスポット溶接性との関係(ソックス平均粒径は
30卿Qご統一・ンを示したものであるが、この結果か
らも本発明に係る樹脂被覆複合銅板はスボソ[・溶接が
iiJ能であるのGご対し7て、樹脂膜厚が塗布量で4
.0g/rn”をト同るさスポット溶接が不可能になる
ことが分かる。
〈効果の総括〉 以上に説明した如く、この発明によれば、高温下でも良
好な潤滑性を発揮するためブレススピドを1分に速くす
るごとができ、より苛酷な)□゛レス条件おいても良好
な連続プレス成形が潤湧油を使用することなく可能であ
る耐食性に優れた樹脂被覆複合鋼板が提供され、ユーザ
〜でのブレス油塗油り程や脱脂T稈の省略、それQコよ
るコスト低減、プレス油を使用しないための伴星環境の
向」二、脱脂液を使用しないための環境衛住改善等の便
益が享受できるようになるなど、産業ト極めて有用な動
床がもたらされる。
【図面の簡単な説明】
第1図は、実施例で確認された固形潤滑剤粒径と潤滑性
との関係を示すグラフである。 第2図は、実施例で確認された固形潤滑剤粒径と加工後
外観との関係を示すグラフである。 第3図は、実施例で確認された樹脂被覆層F7V潤滑性
との関係を示すグラフである。 第4図は、実施例で確認された樹脂被覆層、1vと加]
−後外観との関係を示づグラフである。 第5図は、実施例でも育認された樹脂被覆層)ツとスポ
ット溶接性との関係を示すグラフである。

Claims (3)

    【特許請求の範囲】
  1. (1)亜鉛又は亜鉛系合金メッキ鋼板上に、クロム付着
    量が金属Cr換算で片面当り200mg/m^2以下の
    クロメート皮膜と、粒径が3〜100μmの結晶性固形
    潤滑剤を含む塗布量:0.2〜4.0g/m^2の樹脂
    被覆層とをこの順序で有して成ることを特徴とする、潤
    滑性に優れた樹脂被覆複合鋼板。
  2. (2)前記樹脂被覆層が、乾燥重量比で 有機高分子:固形潤滑剤 =〔1:0.02〕〜〔1:0.4〕、 有機高分子:シリカ=〔1:0.05〕〜〔1:1〕の
    割合で固形潤滑剤及びシリカを含み、かつ20〜120
    ℃のガラス転移点を有したものである、請求項1に記載
    の潤滑性に優れた樹脂被覆複合鋼板。
  3. (3)前記固形潤滑剤が、パラフィン系ワックス、ポリ
    オレフィン系ワックス、フッ素系樹脂の1種又は2種以
    上から成り、かつ120℃以上の融点を有したものであ
    る、請求項1に記載の潤滑性に優れた樹脂被覆複合鋼板
JP15236090A 1990-06-11 1990-06-11 潤滑性に優れた樹脂被覆複合鋼板 Pending JPH0444840A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15236090A JPH0444840A (ja) 1990-06-11 1990-06-11 潤滑性に優れた樹脂被覆複合鋼板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15236090A JPH0444840A (ja) 1990-06-11 1990-06-11 潤滑性に優れた樹脂被覆複合鋼板

Publications (1)

Publication Number Publication Date
JPH0444840A true JPH0444840A (ja) 1992-02-14

Family

ID=15538842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15236090A Pending JPH0444840A (ja) 1990-06-11 1990-06-11 潤滑性に優れた樹脂被覆複合鋼板

Country Status (1)

Country Link
JP (1) JPH0444840A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049923A (ko) * 2000-12-20 2002-06-26 이구택 표면 내스크래치성 및 제품가공후 표면외관이 우수한내지문용액 및 이를 이용한 내지문강판의 제조방법
US7175698B2 (en) 2003-06-30 2007-02-13 Toyo Roki Seizo Kabushiki Kaisha Canister
WO2012043511A1 (ja) * 2010-09-29 2012-04-05 Jfeスチール株式会社 冷延鋼板
JP2012077369A (ja) * 2010-10-06 2012-04-19 Jfe Steel Corp 高耐食性表面処理鋼板
JP2012077370A (ja) * 2010-10-06 2012-04-19 Jfe Steel Corp 高耐食性表面処理鋼板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64297A (en) * 1987-06-23 1989-01-05 Nippon Steel Corp Organic composite steel sheet having excellent corrosion resistance and cation electrodepositon paintability
JPH01301333A (ja) * 1988-05-31 1989-12-05 Kawasaki Steel Corp 成形性、耐食性に優れた潤滑樹脂処理鋼板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64297A (en) * 1987-06-23 1989-01-05 Nippon Steel Corp Organic composite steel sheet having excellent corrosion resistance and cation electrodepositon paintability
JPH01301333A (ja) * 1988-05-31 1989-12-05 Kawasaki Steel Corp 成形性、耐食性に優れた潤滑樹脂処理鋼板

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049923A (ko) * 2000-12-20 2002-06-26 이구택 표면 내스크래치성 및 제품가공후 표면외관이 우수한내지문용액 및 이를 이용한 내지문강판의 제조방법
US7175698B2 (en) 2003-06-30 2007-02-13 Toyo Roki Seizo Kabushiki Kaisha Canister
WO2012043511A1 (ja) * 2010-09-29 2012-04-05 Jfeスチール株式会社 冷延鋼板
JP2012071490A (ja) * 2010-09-29 2012-04-12 Jfe Steel Corp 冷延鋼板
TWI461571B (zh) * 2010-09-29 2014-11-21 Jfe Steel Corp The use of organic and inorganic composite film
US9321246B2 (en) 2010-09-29 2016-04-26 Jfe Steel Corporation Cold rolled steel sheet
JP2012077369A (ja) * 2010-10-06 2012-04-19 Jfe Steel Corp 高耐食性表面処理鋼板
JP2012077370A (ja) * 2010-10-06 2012-04-19 Jfe Steel Corp 高耐食性表面処理鋼板

Similar Documents

Publication Publication Date Title
JP5782198B2 (ja) アルカリ可溶型潤滑皮膜を有する鋼板、その製造方法および組成物
JP5188090B2 (ja) 塗布液およびクリヤーコート鋼板
JPH0444840A (ja) 潤滑性に優れた樹脂被覆複合鋼板
JPH0339485A (ja) 成形時の耐パウダリング性に優れた潤滑樹脂処理鋼板
JP2002012983A (ja) 耐食性、潤滑性、塗料密着性に優れたリン酸塩複合被覆鋼板
JPH0577357A (ja) 加工後外観に優れた樹脂被覆複合鋼板
JP2511497B2 (ja) 成形性に優れた潤滑樹脂処理鋼板
JPH0494771A (ja) 耐食性,溶接性に優れた潤滑性薄膜樹脂鋼板
JPH0243040A (ja) 耐食性に優れた潤滑樹脂処理鋼板
JPH0316726A (ja) 成型性の優れた潤滑樹脂処理鋼板
JP2007161765A (ja) クリヤーコート鋼板とそれに用いる水系塗布液
JP2002012982A (ja) 耐食性、潤滑性、塗料密着性に優れたリン酸塩複合被覆鋼板
JP2002172363A (ja) 有機被覆表面処理鋼板
JPH0565667A (ja) 高性能潤滑めつき鋼板の製造方法
JP3600759B2 (ja) 加工性に優れたリン酸塩処理亜鉛系メッキ鋼板およびその製造方法
JPH0351124A (ja) 高耐食性表面処理鋼板
JPH05237449A (ja) プレス成形性、加工部耐食性に優れた潤滑樹脂処理鋼板
JPH0741962A (ja) プレス成形性、耐食性に優れた潤滑樹脂処理鋼板
JPH03284942A (ja) 有機樹脂被覆合金化溶融亜鉛めつき鋼板
JPH01301333A (ja) 成形性、耐食性に優れた潤滑樹脂処理鋼板
JPH07258895A (ja) プレス加工性および耐食性に優れた複層亜鉛系めっき鋼板
JP3282498B2 (ja) ロールフォーミング加工性に優れた表面処理Al−Zn系合金めっき鋼板及びその製造方法
JPS63270131A (ja) 高耐食性有機複合めつき鋼板
JP2005206921A (ja) 非クロメート型表面処理金属板
JP2004052073A (ja) リチウムシリケート系潤滑処理鋼帯