JPH0444619B2 - - Google Patents

Info

Publication number
JPH0444619B2
JPH0444619B2 JP5013987A JP5013987A JPH0444619B2 JP H0444619 B2 JPH0444619 B2 JP H0444619B2 JP 5013987 A JP5013987 A JP 5013987A JP 5013987 A JP5013987 A JP 5013987A JP H0444619 B2 JPH0444619 B2 JP H0444619B2
Authority
JP
Japan
Prior art keywords
glass
chalcogenide glass
present
raw material
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5013987A
Other languages
Japanese (ja)
Other versions
JPS63218521A (en
Inventor
Ryuji Iizuka
Shozo Morimoto
Ikuo Inagawa
Ryosuke Yokota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HISANKABUTSU GARASU KENKYU KAIHATSU KK
Original Assignee
HISANKABUTSU GARASU KENKYU KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HISANKABUTSU GARASU KENKYU KAIHATSU KK filed Critical HISANKABUTSU GARASU KENKYU KAIHATSU KK
Priority to JP5013987A priority Critical patent/JPS63218521A/en
Publication of JPS63218521A publication Critical patent/JPS63218521A/en
Publication of JPH0444619B2 publication Critical patent/JPH0444619B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/321Chalcogenide glasses, e.g. containing S, Se, Te

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は1〜16μm領域に赤外透過性を有する
カルコゲナイドガラス、特にSi、Teを成分とし
て含有するガラスの製造方法に関するものであ
る。 [従来の技術] カルコゲナイドガラスに於いては、Teは安定
でしかも赤外線を良く透過するガラスが得られる
ため、溶融温度、化学的耐久性を向上させ得る点
で有利であるが、溶解が困難であるという欠点を
有している。 従来、波長1〜16μm領域の赤外透過性を有す
るカルコゲナイドガラス製造方法はガラス組成原
料に酸化物になり易い金属、例えばAl,Zr,Mg
などを100ppm以下添加し、洗浄した石英アンプ
ルに充填した後、真空封入した石英アンプルを加
熱溶融することにより得ていた。 [発明が解決しようとする問題点] ところがSiを含むカルコゲナイドガラスを上記
の方法を用いて、溶融すると、Siがガラス中に溶
け込みにくく、最後まで粒子として残留し、これ
が散乱の原因となり、赤外、特に2μm以上の波長
域の透過損失を著しく増大せしめていた。 さらにSi原料は、表面が酸化されやすく、この
酸素がカルコゲナイドガラス中に溶解し、透過損
失と原因となつていた。又Teは酸素を含有しや
すく、これも透過損失の原因となつていた。 従つて、本発明の目的は第1にSi、Teを含む
カルコゲナイドガラスに於いて、ガラスを安定に
し、溶融温度、化学的耐久性を向上させ得るSiを
ガラス中に粒子として残留させることなく、溶解
せしめる方法を提供することにあり、第2には、
酸素の含有率が極めて少ないSi、Teを含むカル
コゲナイドガラスの製造方法を提供することにあ
る。 [問題点を解決するための手段] 本発明はこれらの問題点は下記の手段を採用す
ることにより解決し得ることを見出してなつても
のである。すなわち、本発明はSi、Teを含有す
るカルコゲナイドガラスの製造方法に於いて、原
料としてテルル化珪素化合物を使用することから
なるもので、このような手段により、容易にSiを
ガラス中に溶解せしめることが可能となる。 また表面が酸化されたSi原料はフツ酸水溶液で
処理することにより、表面の酸化された部分を除
去することが可能であり、Te中の酸素は酸化物
になり易い金属、例えばAl、Mg、Zrを微量添加
して蒸留精製することにより除去することができ
る。 テルル化珪素化合物は上記の方法によつて得ら
れたSi、Geを非酸化性の雰囲気中で所定の割合
秤量、混合し、洗浄、空焼きした石英アンプル中
に充填後、真空封入し、かつ溶融することにより
得られる。 [作用] 上記のように本発明の方法によれば、Siの原料
をSiとTeの化合物の形で使用するため、Siにこ
の化合物は、単味の融点よりも著しく低くなり、
Siは完全にガラス中に溶解し得る。Si原料の酸化
された表面はフツ酸水溶液で処理することにより
溶解、除去されるため、酸素はガラス中に混入す
ることはない。又Te原料中の酸素は、微量の酸
化物になり易い金属結合し、蒸留により除去され
る。 [実施例] 10%のフツ酸水溶液で1時間処理した純度
99.9999%のSiは加熱処理を行う。純度99.9999%
のTeは酸化物になり易い金属Mgを100ppm加え、
蒸留精製を行う。 各々処理を行つたSiとTeをアルゴン雰囲気中
で1:5の割合で秤量し、洗浄、空焼きした石英
アンプルに充填した後、真空封入した。電気炉に
アンプルを入れ攪拌しながら、550℃で2時間余
熱した後、1000℃に加熱し、50時間保持した。次
に電気炉の電源を切り、ただちに石英アンプルを
取り出し、空気中で冷却した。このように作製し
たテルル化珪素化合物50%、Ge10%、As40%、
を再度アルゴンガス雰囲気中で秤量し、洗浄、空
焼きした石英アンプルに充填した後、真空封入し
た。次にテルル化シリコン化合物を得た方法を用
い、加熱溶融及び冷却を行い、ガラスロツドを得
た。 下表に本発明を実施して作製したSi20Te80
DSC(示差走査熱量計)の測定結果及びSiの融点
(参考文献:岩波理化学辞典)を比較したものを
示す。
[Industrial Application Field] The present invention relates to a method for producing chalcogenide glass having infrared transparency in the 1-16 μm region, particularly glass containing Si and Te as components. [Prior art] In chalcogenide glass, Te is stable and can transmit infrared rays well, so it is advantageous in that it can improve the melting temperature and chemical durability, but it is difficult to melt. It has some drawbacks. Conventionally, chalcogenide glass manufacturing methods that have infrared transmittance in the wavelength range of 1 to 16 μm use metals that easily become oxides, such as Al, Zr, and Mg, as raw materials for glass composition.
It was obtained by adding 100 ppm or less of such substances, filling them into a cleaned quartz ampoule, and then heating and melting the vacuum-sealed quartz ampoule. [Problems to be solved by the invention] However, when chalcogenide glass containing Si is melted using the above method, Si is difficult to dissolve in the glass and remains as particles until the end, which causes scattering and infrared radiation. In particular, the transmission loss in the wavelength range of 2 μm or more was significantly increased. Furthermore, the surface of the Si raw material is easily oxidized, and this oxygen dissolves into the chalcogenide glass, causing transmission loss. Furthermore, Te tends to contain oxygen, which also causes transmission loss. Therefore, the first object of the present invention is to stabilize a chalcogenide glass containing Si and Te without leaving Si as particles in the glass, which can improve the melting temperature and chemical durability of the glass. The second purpose is to provide a method for dissolving
The object of the present invention is to provide a method for producing chalcogenide glass containing Si and Te with extremely low oxygen content. [Means for Solving the Problems] The present invention has found that these problems can be solved by adopting the following means. That is, the present invention is a method for producing chalcogenide glass containing Si and Te, which consists of using a silicon telluride compound as a raw material, and by such means, Si can be easily dissolved into the glass. becomes possible. In addition, by treating Si raw materials with oxidized surfaces with a hydrofluoric acid aqueous solution, it is possible to remove the oxidized parts of the surface, and the oxygen in Te can be used to remove metals that easily become oxides, such as Al, Mg, etc. It can be removed by adding a small amount of Zr and purifying it by distillation. A silicon telluride compound is prepared by weighing and mixing Si and Ge obtained by the above method in a predetermined proportion in a non-oxidizing atmosphere, filling it into a cleaned and air-baked quartz ampoule, and then vacuum-sealing it. Obtained by melting. [Function] As described above, according to the method of the present invention, since the Si raw material is used in the form of a compound of Si and Te, the melting point of this compound in Si is significantly lower than that of the simple substance.
Si can be completely dissolved in glass. Since the oxidized surface of the Si raw material is dissolved and removed by treatment with a hydrofluoric acid aqueous solution, oxygen does not mix into the glass. Furthermore, the oxygen in the Te raw material is likely to form a trace amount of metal bonding to form an oxide, which is removed by distillation. [Example] Purity treated with 10% hydrofluoric acid aqueous solution for 1 hour
99.9999% Si is heat treated. Purity 99.9999%
For Te, add 100ppm of Mg, a metal that easily becomes an oxide.
Perform distillation purification. The treated Si and Te were weighed at a ratio of 1:5 in an argon atmosphere, filled into a cleaned and fired quartz ampoule, and then vacuum sealed. The ampoule was placed in an electric furnace and preheated at 550°C for 2 hours while stirring, then heated to 1000°C and held for 50 hours. The electric furnace was then turned off, and the quartz ampoules were immediately removed and cooled in air. The silicon telluride compound prepared in this way was 50%, Ge10%, As40%,
The sample was weighed again in an argon gas atmosphere, filled into a cleaned and air-baked quartz ampoule, and then vacuum sealed. Next, using the method used to obtain the silicon telluride compound, heating and melting and cooling were performed to obtain a glass rod. The table below shows the Si 20 Te 80 produced by implementing the present invention.
A comparison of the measurement results of DSC (differential scanning calorimeter) and the melting point of Si (reference: Iwanami Dictionary of Physical and Chemical Sciences) is shown.

【表】 明らかにSiと比較するとSi20Te80は融点が低
い。図に本発明を実施して作製したSi10ョe10As40
Te40の赤外透過性を本発明を実施しないガラス
サンプルと比較して示した。図から明らかな通
り、本発明を実施したガラスの赤外透過性Aは本
発明を実施しないガラスサンプルの赤外透過性B
と比較して短波長側の落ちこみは非常に少ない。
故に同一条件で製造したガラスでも本発明を実施
たガラスは均一化に大きな効果を有し、1〜
16μmの赤外波長域の光学特性の改善に役立つこ
とがわかる。 [発明の効果] 実施例で示したように本発明によれば、カルコ
ゲナイドガラスの原料の調合に際し、溶解しなく
いSi原料をより融点の低いテルル化珪素化合物の
形で使用するため、Siはガラス中で粒子として残
留することがないため、散乱によつて生ずる透過
損失の少ない安定で、融点、化学的耐久性の高い
カルコゲナイドガラスを得ることができる。又テ
ルル化珪素化合物を得るに際し、Si原料はその表
面をフツ酸水溶液で処理することにより、表面の
酸化物を除去し、Te原料中の微量の酸化物にな
い注水金属を加え、蒸留により除去するため、酸
素の吸収の少ないカルコゲナイドガラスが得られ
る。
[Table] Obviously, compared to Si, Si 20 Te 80 has a lower melting point. The figure shows Si 10 10 As 40 produced by implementing the present invention.
The infrared transmission of Te 40 is shown in comparison to a glass sample not implementing the invention. As is clear from the figure, the infrared transmittance A of the glass that implemented the present invention is the infrared transmittance B of the glass sample that did not implement the present invention.
Compared to , the drop on the short wavelength side is very small.
Therefore, even if the glass is manufactured under the same conditions, the glass according to the present invention has a great effect on uniformity, and
It can be seen that this is useful for improving optical properties in the infrared wavelength region of 16 μm. [Effects of the Invention] As shown in the examples, according to the present invention, when preparing the raw material for chalcogenide glass, an undissolved Si raw material is used in the form of a silicon telluride compound with a lower melting point. Since it does not remain as particles in the glass, it is possible to obtain a stable chalcogenide glass with little transmission loss caused by scattering, a high melting point, and high chemical durability. In addition, when obtaining a silicon telluride compound, the surface of the Si raw material is treated with an aqueous solution of hydrofluoric acid to remove the oxides on the surface, a water injection metal that is not present in trace amounts of oxides in the Te raw material is added, and then removed by distillation. Therefore, a chalcogenide glass with low oxygen absorption can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の製造方法によつて得られたカルコ
ゲナイドガラスSi10Ge10As40Te40の分光透過率A
と従来の製造方法によつて得られたカルコゲナイ
ドガラスSi10Ge10As40Te40の分光透過率Bを比較
して示したものである。
The figure shows the spectral transmittance A of chalcogenide glass Si 10 Ge 10 As 40 Te 40 obtained by the manufacturing method of the present invention.
The figure shows a comparison of the spectral transmittance B of chalcogenide glass Si 10 Ge 10 As 40 Te 40 obtained by a conventional manufacturing method.

Claims (1)

【特許請求の範囲】 1 SiとTeを含有するカルコゲナイドガラスの
製造方法に於いて、原料としてテルル化珪素化合
物を使用することを特徴とするカルコゲナイドガ
ラスの製造方法。 2 Siはフツ酸水溶液により、Teは酸化物にな
り易い金属を加え蒸留することにより精製するこ
とを特徴とする特許請求の範囲第1項記載のカル
コゲナイドガラスの製造方法。
[Claims] 1. A method for producing chalcogenide glass containing Si and Te, characterized in that a silicon telluride compound is used as a raw material. 2. The method for producing chalcogenide glass according to claim 1, wherein Si is purified by an aqueous hydrofluoric acid solution, and Te is purified by adding a metal that easily becomes an oxide and distilling the mixture.
JP5013987A 1987-03-06 1987-03-06 Production of chalcogenide glass Granted JPS63218521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5013987A JPS63218521A (en) 1987-03-06 1987-03-06 Production of chalcogenide glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5013987A JPS63218521A (en) 1987-03-06 1987-03-06 Production of chalcogenide glass

Publications (2)

Publication Number Publication Date
JPS63218521A JPS63218521A (en) 1988-09-12
JPH0444619B2 true JPH0444619B2 (en) 1992-07-22

Family

ID=12850814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5013987A Granted JPS63218521A (en) 1987-03-06 1987-03-06 Production of chalcogenide glass

Country Status (1)

Country Link
JP (1) JPS63218521A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1034494C (en) * 1992-07-11 1997-04-09 武汉工业大学 Glass composition containing sulfure halide
CN1278927A (en) * 1997-11-04 2001-01-03 康宁股份有限公司 Stable cladding glasses for sulphide fibres

Also Published As

Publication number Publication date
JPS63218521A (en) 1988-09-12

Similar Documents

Publication Publication Date Title
JPH0144653B2 (en)
JP4109105B2 (en) Method for producing chalcogenide glass
JP4307076B2 (en) Manufacturing method of quartz glass crucible
HARRISON et al. Reactions in the System TiO2‐P2O5
JPH0444619B2 (en)
JPH04119941A (en) Production of crystallized glass
CALVERT et al. Liquidus Behavior in the Silica‐Rich Region of the System PbO‐SiO2
US4801442A (en) Method for purifying starting materials for fabricating chalchogenide glass
RU2394767C1 (en) Method of preparing mixture of oxide compounds of bismuth and germanium
JPH0575703B2 (en)
US4872894A (en) Method for rapid preparation of halide glasses
JP2522830B2 (en) Quartz glass material for semiconductor heat treatment and manufacturing method thereof
JP3156733B2 (en) Black quartz glass, method for producing the same, and jig using the same
Sakka Compound formation in Alkali Tungstate systems
JPH0444618B2 (en)
Oishi et al. Growth of emerald crystals from PbO· V 2 O 5 flux
US4842631A (en) Method of making carbon dioxide and chlorine free fluoride-based glass
JPH0472780B2 (en)
JPH1143395A (en) Production of quartz glass crucible for pulling up high-purity single crystal silicon
JP3497220B2 (en) Manufacturing method of black quartz glass
JP2512961B2 (en) How to remove tellurium in selenium
Paul et al. A Note on the Study of the As2 O3-As2O5 Equilibrium in Glass
SU712249A1 (en) Composition for chemical polishing of articles made of single-crystals of high-melting oxides
JPH0474723A (en) Production of multi component glass
SU734153A1 (en) Glass