JPH0444375B2 - - Google Patents

Info

Publication number
JPH0444375B2
JPH0444375B2 JP16341981A JP16341981A JPH0444375B2 JP H0444375 B2 JPH0444375 B2 JP H0444375B2 JP 16341981 A JP16341981 A JP 16341981A JP 16341981 A JP16341981 A JP 16341981A JP H0444375 B2 JPH0444375 B2 JP H0444375B2
Authority
JP
Japan
Prior art keywords
cathode
base metal
cathode sleeve
sleeve
reflective member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16341981A
Other languages
Japanese (ja)
Other versions
JPS5866230A (en
Inventor
Yukio Takanashi
Tooru Yakabe
Shoji Nakayama
Shigekazu Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56163419A priority Critical patent/JPS5866230A/en
Publication of JPS5866230A publication Critical patent/JPS5866230A/en
Publication of JPH0444375B2 publication Critical patent/JPH0444375B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment

Description

【発明の詳細な説明】 本発明は陰極線管に使用される陰極構体の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a cathode assembly used in a cathode ray tube.

陰極線管例えばカラー受像管においては電源を
入れたのち螢光面上に出画する時間を早めるため
に速動形の陰極構体が使用されている。
In cathode ray tubes, such as color picture tubes, a fast-acting cathode assembly is used in order to speed up the time it takes for an image to appear on a fluorescent surface after the power is turned on.

まず、このような速動形の陰極構体の1例を第
1図によつて説明する。先ずニクロム合金からな
る陰極スリーブ12の上端部に円板状の基本金属
11を圧入固定し、この陰極スリーブ12の下端
部の開放端部15近傍に120゜間隔で3本の支持部
材13が固定されたものを例えば露点20℃の水分
添加水素雰囲気中で約1000℃、30分間の熱処理を
行ない、陰極スリーブ12を黒化する。次に支持
部材13を陰極支持筒14の上端部141に陰極
スリーブ12と陰極支持筒14とを同一軸線を有
するように固定し、陰極構体が完成する。
First, an example of such a rapid-acting cathode structure will be explained with reference to FIG. First, a disk-shaped base metal 11 is press-fitted into the upper end of a cathode sleeve 12 made of a nichrome alloy, and three supporting members 13 are fixed at 120° intervals near the open end 15 at the lower end of this cathode sleeve 12. The cathode sleeve 12 is then heat treated for 30 minutes at about 1000° C. in a water-added hydrogen atmosphere with a dew point of 20° C., for example, to blacken the cathode sleeve 12. Next, the support member 13 is fixed to the upper end 141 of the cathode support tube 14 so that the cathode sleeve 12 and the cathode support tube 14 have the same axis, thereby completing the cathode structure.

現在、前述した構造の陰極構体はカラー受像管
に作用されており、陰極構体1個当り例えば
1.26Wのヒータ電力を要し、出画時間は約4秒で
ある。ところで、省エネルギー型のカラー受像管
では、最近偏向電力を節約するためネツク径が細
くなつており、陰極構体周辺の温度上昇を出来る
だけ少なくする必要があり、ヒータ消費電力の小
さなことが要求されるようになつてきた。この場
合単にヒータ消費電力を少なくすると、まず出画
時間が遅くなり、さらに基体金属11及びその上
に被着された熱電子放射物質層の温度を低下さ
せ、熱電子の放出が少なくなり、陰極構体として
正常な動作ができなくなる。即ち、ここで問題と
なるのは陰極構体、特に基本金属11の温度を保
持しながら如何にして出画時間を早くするかと云
うことにある。
At present, the cathode structure having the above-mentioned structure is used in a color picture tube, and each cathode structure has, for example,
It requires 1.26W of heater power and the image output time is about 4 seconds. By the way, in energy-saving color picture tubes, the diameter of the net has recently become smaller in order to save deflection power, and it is necessary to minimize the temperature rise around the cathode structure, which requires low heater power consumption. It has become like that. In this case, if the heater power consumption is simply reduced, the image output time will be delayed, and the temperature of the base metal 11 and the thermionic emissive material layer deposited thereon will be lowered, the emission of thermionic electrons will be reduced, and the cathode The structure will no longer be able to function normally. That is, the problem here is how to speed up the image output time while maintaining the temperature of the cathode structure, especially the basic metal 11.

一般に出画時間とヒータの消費電力及び陰極ス
リーブ12と基本金属11からなる所謂陰極の熱
容量との間には下式の関係がある。
In general, the following relationship exists between the image output time, the power consumption of the heater, and the heat capacity of the so-called cathode made of the cathode sleeve 12 and the basic metal 11.

t=kCth/Ph 但し、t:出画時間、Cth:熱容量、Ph:ヒー
タ電力、k:比例定数。
t=kCth/Ph where t: image output time, Cth: heat capacity, Ph: heater power, k: proportionality constant.

この式からわかるように出画時間を速くするに
は、陰極本体の熱容量を小さくするか、ヒータか
らの熱を有効に利用することが必要である。この
うち熱容量を小さくすることは陰極本体の形状を
小形にすること、つまり基本金属11の外径及び
陰極スリーブ12を小さくし、肉厚を薄くするこ
とによつてなされる。またヒータからの熱を有効
に利用することは放射熱エネルギーを有効に捕え
ることであり、第1の従来例は第1図のような陰
極構体において、陰極スリーブ12の開放端部1
5よりの熱放射を防止するため陰極スリーブ12
の長さを長くすること、或いは熱吸収を高めるた
め、陰極スリーブ12の内面を黒化することによ
つてなされる。また低ヒータ入力電力にて基本金
属の温度を所望の動作温度に保つためには、陰極
の熱放射面積を少なくする理由から陰極構体の小
形化と陰極スリーブ12の外面に於ける熱放射を
小さくすることが必要である。陰極スリーブ12
の外面の熱放射を小さくし、内面の熱吸収を大き
くすることは、陰極スリーブ12の内面をクロム
合金とし、外面をニツケル金属として露点20℃の
水分添加水素雰囲気で内面のみ黒化処理すること
によつて可能である。しかしながら、この様な材
料を使用した場合は、陰極構体を稼動している間
に、徐々にニツケル金属表面、即ち、陰極スリー
ブ12の外面の熱放射特性を変え、基本金属温度
を低下させる欠点がある。またニツケル金属はニ
クロム合金より熱伝導率が高いため、支持部材を
介して放熱され易く基本金属の温度が低くなる欠
点がある。
As can be seen from this equation, in order to speed up the image output time, it is necessary to reduce the heat capacity of the cathode body or to effectively utilize the heat from the heater. Among these, the heat capacity can be reduced by making the shape of the cathode body smaller, that is, by making the outer diameter of the basic metal 11 and the cathode sleeve 12 smaller, and by making the wall thickness thinner. Further, to effectively utilize the heat from the heater means to effectively capture radiant heat energy, and the first conventional example is a cathode assembly as shown in FIG.
Cathode sleeve 12 to prevent heat radiation from 5
This can be done by increasing the length of the cathode sleeve 12 or by blackening the inner surface of the cathode sleeve 12 to increase heat absorption. In addition, in order to maintain the temperature of the base metal at the desired operating temperature with low heater input power, the cathode structure must be made smaller and the heat radiation from the outer surface of the cathode sleeve 12 must be reduced in order to reduce the heat radiation area of the cathode. It is necessary to. Cathode sleeve 12
In order to reduce heat radiation on the outer surface and increase heat absorption on the inner surface, the inner surface of the cathode sleeve 12 is made of a chromium alloy, the outer surface is made of nickel metal, and only the inner surface is blackened in a moisture-added hydrogen atmosphere with a dew point of 20°C. It is possible by However, when such a material is used, the disadvantage is that during operation of the cathode assembly, the heat radiation characteristics of the nickel metal surface, that is, the outer surface of the cathode sleeve 12, gradually change and the basic metal temperature decreases. be. Furthermore, since nickel metal has higher thermal conductivity than nichrome alloy, it has the disadvantage that heat is easily radiated through the support member, lowering the temperature of the base metal.

次に本発明の説明に必要な熱ピーク部の求め方
を第2図により説明する。例えば第1図に示すよ
うな陰極構体の陰極スリーブ12内にヒータ16
を装着し、このヒータ16に電流を流し、陰極ス
リーブ12表面の放射エネルギーを陰極支持筒1
4にスリツト孔部を設け、このスリツト孔部より
放射温度計によつて測定した結果、第2図bに示
すような曲線17を得たとする。この曲線17の
最高値18に対応する陰極スリーブ12の点19
を熱放射ピーク部と称する。
Next, a method for determining the thermal peak portion necessary for explaining the present invention will be explained with reference to FIG. 2. For example, a heater 16 is installed in the cathode sleeve 12 of the cathode assembly as shown in FIG.
A current is applied to the heater 16, and the radiant energy on the surface of the cathode sleeve 12 is transferred to the cathode support tube 1.
4 is provided with a slit hole, and as a result of measurement using a radiation thermometer from this slit hole, a curve 17 as shown in FIG. 2b is obtained. A point 19 on the cathode sleeve 12 corresponding to the highest value 18 of this curve 17
is called the heat radiation peak part.

次に前述した欠点を改良した本発明者らが出願
した先願の陰極構体を第3図により説明する。
Next, the cathode structure of the previous application filed by the present inventors will be explained with reference to FIG. 3, which improves the above-mentioned drawbacks.

先ず、両端部が開放された陰極スリーブ22の
上端部の外周に装着可能な所望長さの筒状反射部
材25の一方の端部に円板状の基本金属21を圧
入固定し、この筒状反射部材25を陰極スリーブ
22の上端部近傍の外壁を取り囲むように装着す
る。次に、この陰極スリーブ22と筒状反射部材
25を固着点26に於て、溶接などの手段により
固定する。
First, a disk-shaped basic metal 21 is press-fitted and fixed to one end of a cylindrical reflecting member 25 of a desired length that can be attached to the outer periphery of the upper end of the cathode sleeve 22, which is open at both ends. The reflective member 25 is attached to surround the outer wall near the upper end of the cathode sleeve 22. Next, the cathode sleeve 22 and the cylindrical reflecting member 25 are fixed at a fixing point 26 by means such as welding.

また陰極スリーブ22の他端部に120゜間隔で3
本の支持部材23の一端部を溶接し、これを露点
20℃の水分添加水素雰囲気中で約1000℃、30分間
の熱処理を行ない、陰極スリーブ22をクロム酸
化物で覆い表面を黒化する。次に支持部材23の
他端部を筒状反射部材からなる陰極支持筒24の
肩部、即ち、上端部241に固定する。この場合、
図を見てもわかるように陰極スリーブ22と支持
部材23とは鋭角を持つようになつており、かつ
陰極スリーブ23と、陰極支持筒24とは同一軸
線を有するようになつている。
Also, at the other end of the cathode sleeve 22, there are three
One end of the book support member 23 is welded and the dew point
A heat treatment is performed at approximately 1000° C. for 30 minutes in a hydrated hydrogen atmosphere at 20° C., and the cathode sleeve 22 is covered with chromium oxide to blacken the surface. Next, the other end of the support member 23 is fixed to the shoulder, ie, the upper end 24 1 of the cathode support tube 24 made of a cylindrical reflective member. in this case,
As can be seen from the figure, the cathode sleeve 22 and the support member 23 form an acute angle, and the cathode sleeve 23 and the cathode support tube 24 have the same axis.

この様に陰極スリーブ22外周に筒状反射部材
25を配置することにより、実質的に陰極スリー
ブ22の外面の熱放射を少なくすることが可能と
なる。尚、筒状反射部材25があることは熱容量
を増加させ出画時間を速めるためには不利な要因
となるが筒状反射部材25は陰極構体の他の部品
と異なり機械的強度、熱衝撃強度を心配すること
なく薄くすることが出来るので熱容量の増加は実
用上あまり問題とはならない。
By arranging the cylindrical reflecting member 25 around the outer periphery of the cathode sleeve 22 in this manner, it is possible to substantially reduce heat radiation from the outer surface of the cathode sleeve 22. Although the presence of the cylindrical reflection member 25 is a disadvantageous factor in increasing heat capacity and speeding up the image output time, the cylindrical reflection member 25 differs from other parts of the cathode structure in that it has mechanical strength and thermal shock strength. The increase in heat capacity does not pose much of a problem in practice, since it can be made thinner without worrying about heat capacity.

なお稼動中における筒状反射部材25に生じる
結晶成長は、基体金属21の下端から筒状反射部
材25と陰極スリーブ22との固定点26の範囲
に限られる。従つて可能な限り固定点26は基体
金属21に近接させ、筒状反射部材25の長さの
半分以内または基体金属21の上端面より0.5mm
以内とすることにより結晶成長を部分的におさえ
ることができ、それにより熱伝導率の経時的変化
が殆んどなくなり陰極構体の寿命を長くすること
ができる。また本例においては筒状反射部材25
はその構造からもわかるようにヒートダムの役割
はなく、単なる熱反射板であり、この筒状反射部
材25の結晶成長は熱伝導には寄与しないため陰
極温度の上昇は生じない。
Note that the crystal growth that occurs in the cylindrical reflection member 25 during operation is limited to the range from the lower end of the base metal 21 to the fixed point 26 between the cylindrical reflection member 25 and the cathode sleeve 22. Therefore, the fixing point 26 should be placed as close to the base metal 21 as possible, within half the length of the cylindrical reflective member 25 or 0.5 mm from the upper end surface of the base metal 21.
By setting the value within the range, crystal growth can be partially suppressed, thereby almost eliminating changes in thermal conductivity over time and extending the life of the cathode structure. Further, in this example, the cylindrical reflecting member 25
As can be seen from its structure, the cylindrical reflecting member 25 does not play the role of a heat dam, but is merely a heat reflecting plate, and the crystal growth of this cylindrical reflecting member 25 does not contribute to heat conduction, so that the cathode temperature does not rise.

次に陰極スリーブ22の熱放射ピーク部と陰極
支持筒24との関係について述べる。
Next, the relationship between the heat radiation peak portion of the cathode sleeve 22 and the cathode support cylinder 24 will be described.

一般に陰極スリーブ22は前記したようにニク
ロム合金からなり、露点20℃の水分添加水素雰囲
気中で熱処理して黒化されるが、この黒化は陰極
スリーブ22の表面にクロムの酸化物が形成され
ているためである。従つて黒化した陰極スリーブ
からの熱放射は不良導体からの熱放射に相当す
る。この不良導体からの熱放射能は平面角で垂線
より60゜まではほぼ均一な値であるが60゜を越える
と急激に減少する。このことはE.SchmidとE.
EckertがForsch Gebiete Ingenieurw 6175
(1935)に示している。
Generally, the cathode sleeve 22 is made of a nichrome alloy as described above, and is blackened by heat treatment in a water-added hydrogen atmosphere with a dew point of 20°C, but this blackening is caused by the formation of chromium oxide on the surface of the cathode sleeve 22. This is because The heat radiation from the blackened cathode sleeve therefore corresponds to the heat radiation from a bad conductor. Thermal radiation from this poor conductor has a nearly uniform value up to 60° from the perpendicular in plane angle, but sharply decreases when the angle exceeds 60°. This is explained by E. Schmid and E.
Eckert Forsch Gebiete Ingenieurw 6175
(1935).

即ち本例は上記性質を利用して筒状反射部材2
5と陰極支持筒24との間に位置関係をもたせて
いる。即ち、第4図に示す陰極スリーブ22の熱
放射エネルギー曲線27の最高値28に対応する
熱放射ピーク部29と陰極支持筒24の上端部2
1の開口内縁とを結ぶ直線30と陰極スリーブ
22とのなす角θ1が30゜以下になるよう筒状反射
部材の長さを決め陰極スリーブ22からの熱放射
がほぼ陰極支持筒24方向に向けられるようにし
たものである。
That is, in this example, the cylindrical reflecting member 2 is
5 and the cathode support cylinder 24. That is, the thermal radiation peak portion 29 corresponding to the maximum value 28 of the thermal radiation energy curve 27 of the cathode sleeve 22 shown in FIG. 4 and the upper end portion 2 of the cathode support tube 24
4. The length of the cylindrical reflective member is determined so that the angle θ 1 between the straight line 30 connecting the inner edge of the opening of 1 and the cathode sleeve 22 is 30° or less, so that the heat radiation from the cathode sleeve 22 is directed almost toward the cathode support tube 24. It was designed so that it could be directed towards.

然るに前述した従来例の欠点及び先願において
は第1図及び第3図における陰極スリーブ12,
22と基体金属11,21を固定後、陰極スリー
ブ12,22を酸化させることにある。この条件
は前述のように約1000℃の水分添加水素炉で処理
するため基本金属11,21中に含まれる還元剤
のMgなどが拡散し、表面から消失し、またMgO
などの酸化物となつて還元性を失なう結果とな
る。その結果表面から12μm程度の欠乏帯を生じ
Mgの平均濃度は当初0.03%のものが0.01%程度
となる。この状態の陰極構体は管球製作直後に於
けるエミツシヨン特性の低下を来たすため、前例
では基体金属11,21の表面を10〜20μm程度
削り取つていた。しかしこの切削加工を加えるこ
とにより、基本金属表面に応力歪を残し、この歪
が開放される時、酸素分圧が高い排気過程で微細
粒層を生じ長時間にわたる還元作用を防害するこ
とになる。
However, the disadvantages of the conventional example described above and the cathode sleeve 12 in FIGS. 1 and 3 in the prior application,
22 and the base metals 11, 21 are fixed, the cathode sleeves 12, 22 are oxidized. As mentioned above, this condition is such that the reducing agent Mg contained in the basic metals 11 and 21 diffuses and disappears from the surface, and the MgO
This results in the formation of oxides such as and loss of reducibility. As a result, a depletion zone of about 12 μm from the surface occurs.
The average concentration of Mg is initially 0.03% but becomes about 0.01%. Since the cathode structure in this state deteriorates the emission characteristics immediately after the tube is manufactured, in the previous example, the surface of the base metals 11 and 21 was ground down by about 10 to 20 μm. However, by adding this cutting process, stress strain is left on the basic metal surface, and when this strain is released, a fine grain layer is created during the exhaust process where the oxygen partial pressure is high, preventing the long-term reduction action. .

従つて水素処理と云えども高温処理は陰極基体
としては不適である。しかし、ニツケル・クロム
合金中のクロムを酸化クロムとして表面に被覆さ
せるには1000℃程度の温度が必要であり、陰極ス
リーブと基体金属の処理温度とが矛盾すると云う
問題点がある。
Therefore, even though it is hydrogen treatment, high temperature treatment is not suitable for use as a cathode substrate. However, a temperature of about 1000° C. is required to coat the chromium in the nickel-chromium alloy on the surface as chromium oxide, and there is a problem that the processing temperatures of the cathode sleeve and the base metal are inconsistent.

本発明はこの矛盾を解決し、初期の電子放出特
性及び長期的電子放出特性を良好とすることが可
能な陰極構体の製造方法を提供することを目的と
している。
An object of the present invention is to solve this contradiction and provide a method for manufacturing a cathode assembly that can improve initial electron emission characteristics and long-term electron emission characteristics.

次に本発明の実施の対象となる陰極構体の一例
の構造を第5図、その製造方法を第6図乃至第1
1図に示し、その特徴を説明する。
Next, FIG. 5 shows the structure of an example of the cathode structure to which the present invention is applied, and FIGS. 6 to 1 show the manufacturing method thereof.
It is shown in Figure 1 and its characteristics will be explained.

先ず第6図に示すように両端部が開放された陰
極スリーブ32を露点20℃の水分添加水素雰囲気
中で1000℃、30分間の熱処理を行ない陰極スリー
ブ32をクロム酸化物で覆い表面を黒化する。ま
たこの陰極スリーブ32の外周に装着可能な第7
図に示すよう所定長の筒状反射部材35を準備
し、更に第8図に示すようにこの陰極スリーブ3
2の上端部近傍の内部に装着可能な円板状の基体
金属31を適当な条件で光輝焼鈍する。
First, as shown in Fig. 6, the cathode sleeve 32 with both ends open is heat treated at 1000°C for 30 minutes in a water-added hydrogen atmosphere with a dew point of 20°C, and the cathode sleeve 32 is covered with chromium oxide to blacken the surface. do. In addition, a seventh device that can be attached to the outer periphery of this cathode sleeve 32
As shown in the figure, a cylindrical reflecting member 35 of a predetermined length is prepared, and as shown in FIG.
A disk-shaped base metal 31 that can be mounted inside near the upper end of the base metal 31 is brightly annealed under appropriate conditions.

組立は第9図に示すように筒状反射部材35の
中に黒化処理を終つた陰極スリーブ32を内装
し、この陰極スリーブ32の内径よりやや径小の
円板状基体金属31を挿入し基体金属31の上面
で陰極スリーブ32、筒状反射部材35の上端部
をほぼそろえて保持し、次に陰極スリーブ32中
に圧縮用のパンチ61を入れ、基体金属31の上
面との間に圧力Pをかけ基体金属31を膨出させ
ることにより径大として第10図に示すようにこ
の基体金属31と陰極スリーブ32を嵌着させる
と共に陰極スリーブ32の上端部近傍に膨出部3
1を形成してこの膨出部321を介して筒状反射
部材35に密接させる。次にレーザ光60で、こ
の筒状反射部材35、陰極スリーブ32、基体金
属31の重ね合せ部位を溶接する。この場合、陰
極スリーブ32は表面が酸化クロムとなつている
ため、従来の抵抗溶接では不可であり、レーザ光
を利用した溶接方法が適切である。次に陰極スリ
ーブ32の他端部に120゜間隔で3本の支持部材3
3の一端部を溶接するが、これも前述したのと同
様な理由でレーザ光60で溶接を行なう。
As shown in FIG. 9, the assembly is carried out by placing a blackened cathode sleeve 32 inside a cylindrical reflective member 35, and inserting a disk-shaped base metal 31 whose diameter is slightly smaller than the inner diameter of this cathode sleeve 32. The upper ends of the cathode sleeve 32 and the cylindrical reflective member 35 are held substantially aligned on the upper surface of the base metal 31, and then a compression punch 61 is inserted into the cathode sleeve 32 to apply pressure between the upper surface of the base metal 31 and By applying P and making the base metal 31 bulge, the diameter is increased and the base metal 31 and the cathode sleeve 32 are fitted together as shown in FIG.
2 1 is formed and brought into close contact with the cylindrical reflecting member 35 via this bulged portion 32 1 . Next, a laser beam 60 is used to weld the overlapping portion of the cylindrical reflecting member 35, the cathode sleeve 32, and the base metal 31. In this case, since the surface of the cathode sleeve 32 is made of chromium oxide, conventional resistance welding is not possible, and a welding method using laser light is appropriate. Next, three supporting members 3 are attached to the other end of the cathode sleeve 32 at 120° intervals.
3 is welded using a laser beam 60 for the same reason as described above.

次に支持部材33の他端部を反射部材からなる
陰極支持筒34の肩部、即ち上端部341に固定
し第5図のような陰極構体が得られる。この時、
図のように陰極スリーブ32と支持部材33とは
鋭角になつており、かつ陰極スリーブ32と陰極
支持筒34とは同一軸線となるようになつてい
る。
Next, the other end of the support member 33 is fixed to the shoulder, ie, the upper end 341 , of the cathode support tube 34 made of a reflective member, to obtain a cathode assembly as shown in FIG. At this time,
As shown in the figure, the cathode sleeve 32 and the support member 33 form an acute angle, and the cathode sleeve 32 and the cathode support tube 34 are coaxial.

また第3図のものと同様な熱反射ピーク部39
と陰極支持筒34の上端部341の開口部縁を結
ぶ直線40と陰極スリーブ32とのなす角θ1
30゜以下になるように筒状反射部材35の長さを
決定する。
Also, a heat reflection peak portion 39 similar to that in FIG.
The angle θ 1 between the cathode sleeve 32 and the straight line 40 connecting the opening edge of the upper end 34 1 of the cathode support cylinder 34 is
The length of the cylindrical reflecting member 35 is determined so that it is 30 degrees or less.

このような製造方法による本発明の陰極構体の
主要点は第10図に示す溶接点36近傍の断面部
分にある。即ち、筒状反射部材35、陰極スリー
ブ32、基体金属31を重ね、基体金属31に圧
力を加えて膨出させて陰極スリーブ32と基体金
属31の隙間37及び陰極スリーブ32と筒状反
射部材35との隙間38を無くし、その後レーザ
光60による溶接を行なうものである。この必要
性は例えば陰極スリーブ32と筒状反射部材35
はいずれも10〜30μm程度の厚さであり、極めて
変形し易く、この切口のかえりなどを考慮する
と、2者の嵌合度を10μm以下に押えることはむ
ずかしい。そしてレーザ光での溶接は抵抗溶接と
異なり、レーザ光の入力方向から溶解し、すり鉢
状のナゲツトを形成する。この際、隙間38があ
ると筒状反射部材35が先ず溶解し、これが隙間
38に落ちこみ筒状反射部材35に穴があくか、
または溶解点周辺に極めて薄い部分をつくる。こ
のことは隙間37についても同様である。
The main point of the cathode assembly of the present invention produced by such a manufacturing method is the cross-sectional portion near the welding point 36 shown in FIG. That is, the cylindrical reflective member 35, the cathode sleeve 32, and the base metal 31 are overlapped, and the base metal 31 is bulged by applying pressure, thereby forming a gap 37 between the cathode sleeve 32 and the base metal 31, and a gap 37 between the cathode sleeve 32 and the cylindrical reflective member 35. The gap 38 is eliminated, and then welding is performed using a laser beam 60. This necessity is, for example, due to the cathode sleeve 32 and the cylindrical reflective member 35.
Both have a thickness of about 10 to 30 μm, and are extremely easily deformed. Considering the burrs of the cut, etc., it is difficult to suppress the degree of fit between the two to 10 μm or less. Unlike resistance welding, laser beam welding melts from the input direction of the laser beam, forming a mortar-shaped nugget. At this time, if there is a gap 38, the cylindrical reflective member 35 will first melt and fall into the gap 38, creating a hole in the cylindrical reflective member 35, or
Or create an extremely thin section around the melting point. This also applies to the gap 37.

従つてレーザ光による溶接は隙間38,37を
可能な限り無くすることが望ましい。このため本
発明の陰極構体の製造方法においては基体金属3
1に圧力を加えた膨出させ、隙間を無くすること
を可能とした。
Therefore, it is desirable to eliminate the gaps 38 and 37 as much as possible when welding using laser light. Therefore, in the method for manufacturing a cathode structure of the present invention, the base metal 3
1 was expanded under pressure, making it possible to eliminate gaps.

次に本発明の第2の実施例を第12図により説
明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

先ず両端部が開放された陰極スリーブ42を水
分添加水素炉で酸化させる。またこの陰極スリー
ブ42の外周に挿入可能な所要長さの筒状反射部
材45を準備する。次に陰極スリーブ42と筒状
反射部材45を組合せて、予め光輝焼純した円板
状の基体金属41を内部に入れ、上面を基準とし
て基体金属41を加工膨出させて、陰極スリーブ
42及び筒状反射部材45を密接させる。次にレ
ーザ光によりこの密接部46を筒状反射部材45
側から溶接する。このように密接部を溶接すれば
筒状反射部材45に穴があくことはない。
First, the cathode sleeve 42 with both ends open is oxidized in a moisture-adding hydrogen furnace. Further, a cylindrical reflecting member 45 of a required length that can be inserted into the outer periphery of this cathode sleeve 42 is prepared. Next, the cathode sleeve 42 and the cylindrical reflection member 45 are combined, a disk-shaped base metal 41 that has been brightly fired in advance is placed inside, and the base metal 41 is processed to bulge based on the upper surface, and the cathode sleeve 42 and The cylindrical reflecting member 45 is brought into close contact with each other. Next, this close contact portion 46 is exposed to the cylindrical reflecting member 45 using a laser beam.
Weld from the side. If the close contact parts are welded in this way, there will be no hole in the cylindrical reflecting member 45.

次に予めセラミツクスなどの基板47に膨出部
44a,44bを介して固定された反射部材から
なる陰極支持筒44の下端部に切り込みを入れて
内側に向つて折り曲げて形成した支持部44cと
陰極スリーブ42とを溶接点42aにおいてレー
ザ光で溶接する。この場合、陰極スリーブ42と
陰極支持筒44は同一軸線を有するように固定し
て陰極構体を形成する。前述した陰極構体におい
て、熱放射ピーク部49と陰極支持筒44の上端
縁部441を結ぶ線50と陰極スリーブ42の長
手方向のなす角θ2は30゜以下となるように筒状反
射部材45の長さ及び陰極支持筒44との相対位
置を決定する。
Next, a support part 44c and a cathode are formed by making a notch in the lower end of the cathode support tube 44 made of a reflective member fixed to a substrate 47 made of ceramics or the like via bulges 44a and 44b, and bending it inward. The sleeve 42 is welded with a laser beam at a welding point 42a. In this case, the cathode sleeve 42 and the cathode support cylinder 44 are fixed so as to have the same axis to form a cathode assembly. In the cathode assembly described above, the cylindrical reflective member is arranged so that the angle θ 2 formed by the line 50 connecting the thermal radiation peak portion 49 and the upper edge 44 1 of the cathode support cylinder 44 in the longitudinal direction of the cathode sleeve 42 is 30° or less. 45 and its relative position with the cathode support cylinder 44 are determined.

本発明の最も重要な点は第1の実施例及び第2
の実施例共に陰極の基本となる基体金属を過度な
処理温度にさらさないことにある。即ち基体金属
には還元剤であるMg、Si等を含んでいるが、こ
れを高温処理すると、拡散蒸発して基体金属の表
面に還元剤の消失した層をつくる。基体金属を高
温にすることは表面のMgを欠乏させることにな
り、またこのMgは水分添加の水素気流中では酸
化され、表面で酸化マグネシウムとして沈着す
る。この沈着した酸化マグネシウムは酸化バリウ
ムと複合酸化物層となり、この複合酸化物層は陰
極の動作時間と共に増加し陰極劣化の原因とな
る。従つて初期において不要の酸化マグネシウム
層を厚く形成することは好ましくない。
The most important points of the present invention are the first embodiment and the second embodiment.
In both embodiments, the base metal, which is the basis of the cathode, is not exposed to excessive processing temperatures. That is, the base metal contains reducing agents such as Mg and Si, but when these are treated at high temperatures, they diffuse and evaporate, creating a layer on the surface of the base metal in which the reducing agent has disappeared. Raising the base metal to a high temperature causes Mg to be depleted on the surface, and this Mg is oxidized in a hydrogen stream containing water and deposits as magnesium oxide on the surface. This deposited magnesium oxide forms a composite oxide layer with barium oxide, and this composite oxide layer increases with the operating time of the cathode, causing deterioration of the cathode. Therefore, it is not preferable to form a thick unnecessary magnesium oxide layer in the initial stage.

また基体金属は電子放射性物質材料である
(Ba、Sr、Ca)CO3を塗布する前に、ある程度の
粒成長をさせておく必要がある。この理由は電子
放射性物質材料が分解し、CO2を発生させ、この
酸素が基体金属中に拡散し、基体金属中に含まれ
るMg、Si等と結合し酸化物となり、BaOと結合
して複合酸化物層をつくる。この複合酸化物層は
基体金属の粒界に析出するから、粒が成長してい
ない状態、即ち、圧延上りの基体金属のまま電子
放射性物質材料を塗布し、管球製作中に分解した
CO2により酸素がこの微細粒に拡散すると、微細
な網目状の粒界を生じ、基体金属の表面を覆い、
この粒界に複合酸化物がつまり、この粒界は金属
Mg、Siは拡散しにくいので電子放射性物質であ
る(Ba、Sr、Ca)Oと反応しにくいために電子
放射が低下する。このため基体金属は蒸発によ
り、還元剤が表面から消失しない範囲に粒成長さ
せておく必要がある。
Furthermore, the base metal needs to undergo some grain growth before applying CO 3 , which is an electron radioactive material (Ba, Sr, Ca). The reason for this is that the electron radioactive material decomposes and generates CO 2 , and this oxygen diffuses into the base metal, combines with Mg, Si, etc. contained in the base metal to form an oxide, and combines with BaO to form a composite. Creates an oxide layer. Since this composite oxide layer precipitates at the grain boundaries of the base metal, the electron radioactive material is applied in a state where the grains have not grown, that is, as the base metal is rolled, and decomposed during tube manufacture.
When oxygen diffuses into these fine grains due to CO2 , it creates a fine network of grain boundaries, covering the surface of the base metal,
This grain boundary is clogged with composite oxide, and this grain boundary is metal.
Since Mg and Si are difficult to diffuse, they are difficult to react with (Ba, Sr, Ca)O, which is an electron emitting substance, resulting in a decrease in electron emission. For this reason, it is necessary to allow grain growth of the base metal to such an extent that the reducing agent does not disappear from the surface due to evaporation.

本発明において、基体金属は予め適切な条件下
で熱処理を加え、粒成長をさせておき、その後レ
ーザ光で溶接するために基体金属は理想状態で、
その後の電子放射性物質材料を塗布したのち排気
活性化工程を経て完成している。
In the present invention, the base metal is heat-treated in advance under appropriate conditions to cause grain growth, and then welded with laser light, so the base metal is in an ideal state.
After that, an electron radioactive substance material is applied and an exhaust activation process is completed.

以上説明したように本発明によれば、筒状反射
部材及び陰極スリーブを両者の先端部が同じ位置
となるように嵌合するとともに、その内側に基体
金属を挿入しこの基体金属を径方向に膨出させて
これら基体金属、陰極スリーブ及び筒状反射部材
を密接させたうえで、筒状反射部材の外側からレ
ーザ溶接するので、確実で安定な溶接状態が得ら
れる。とくに黒化処理した陰極スリーブや、嵌合
したままでは〓間が生じる寸法の陰極スリーブ及
び筒状反射部材を使用しても、相互の〓間をなく
してレーザ溶接するので、十分な溶接強度で組立
てることができる。また、製造ラインの自動化も
容易に可能である。
As explained above, according to the present invention, a cylindrical reflecting member and a cathode sleeve are fitted together so that their tips are in the same position, and a base metal is inserted inside the member, and this base metal is radially moved. Since the base metal, the cathode sleeve, and the cylindrical reflective member are brought into close contact with each other by bulging, and laser welding is performed from the outside of the cylindrical reflective member, a reliable and stable welding state can be obtained. In particular, even if you use a blackened cathode sleeve, or a cathode sleeve or cylindrical reflective member that has dimensions that will leave gaps when they are fitted, sufficient welding strength will be achieved because the laser welding eliminates the gaps between each other. Can be assembled. Furthermore, automation of the production line is also easily possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の陰極構体の1例を示す断面図、
第2図は熱放射ピーク部を説明する図であり、a
図は基体金属を固定した陰極スリーブにヒータを
内装した状態を示す断面図、b図はa図に対応す
る熱放射エネルギーの変化を示す曲線図、第3図
は先願の陰極構体の一例を示す断面図、第4図は
第3図の例の熱放射ピーク部を説明する図であ
り、a図は基体金属を固定した筒状反射部材、陰
極スリーブ及びヒータを示す断面図、b図はa図
に対応する熱放射エネルギーの変化を示す曲線
図、第5図は本発明の陰極構体の第1の実施例を
示す一部切欠側面図、第6図乃至第11図は製造
工程の要部を示す図であり、第6図は黒化した陰
極スリーブの断面図、第7図は筒状反射部材の断
面図、第8図は基体金属の断面図、第9図は基体
金属、陰極スリーブ、筒状反射部材を組立てパン
チにより基体金属に圧力をかける工程を示す断面
図、第10図は基体金属を径大とし、陰極スリー
ブを膨出させ筒状反射部材に圧接し、レーザ光で
溶接する工程を示す要部拡大図、第11図は支持
部材を固定する工程を示す説明図、第12図は本
発明の第2の実施例を示す一部切欠側面図であ
る。 11,21,31,41……基体金属、12,
22,32,42……陰極スリーブ、25,3
5,45……筒状反射部材、19,29,39,
49……熱放射ピーク部。
FIG. 1 is a sectional view showing an example of a conventional cathode structure;
FIG. 2 is a diagram explaining the heat radiation peak part, a
The figure is a cross-sectional view showing a state in which a heater is installed in a cathode sleeve to which a base metal is fixed, figure b is a curve diagram showing changes in thermal radiation energy corresponding to figure a, and figure 3 is an example of the cathode structure of the earlier application. FIG. 4 is a diagram illustrating the heat radiation peak portion of the example shown in FIG. 3, FIG. FIG. 5 is a partially cutaway side view showing the first embodiment of the cathode structure of the present invention, and FIGS. 6 to 11 are diagrams showing the main points of the manufacturing process. FIG. 6 is a cross-sectional view of a blackened cathode sleeve, FIG. 7 is a cross-sectional view of a cylindrical reflective member, FIG. 8 is a cross-sectional view of a base metal, and FIG. 9 is a cross-sectional view of a blackened cathode sleeve. Figure 10 is a sectional view showing the process of assembling the sleeve and the cylindrical reflective member and applying pressure to the base metal with a punch. FIG. 11 is an explanatory view showing the step of fixing the support member, and FIG. 12 is a partially cutaway side view showing the second embodiment of the present invention. 11, 21, 31, 41...Base metal, 12,
22, 32, 42... cathode sleeve, 25, 3
5, 45... Cylindrical reflective member, 19, 29, 39,
49...Heat radiation peak part.

Claims (1)

【特許請求の範囲】[Claims] 1 所定長の筒状反射部材と、この筒状反射部材
に内装され前記筒状反射部材の上端部とほぼ同じ
位置に上端部を有する陰極スリーブと、この陰極
スリーブの前記上端部近傍に挿入固定された円板
状の基体金属とを有する陰極構体の製造方法にお
いて、前記陰極スリーブを水分添加水素雰囲気中
で黒化させる工程と、その後前記陰極スリーブに
前記筒状反射部材をそれぞれ上端部がほぼ同じ位
置となるように内装すると共に前記基体金属を前
記陰極スリーブの上端部内側に挿入する工程と、
前記基体金属を径方向に膨出させて該基体金属、
陰極スリーブ及び筒状反射部材の上端部を密接さ
せる工程と、この膨出部に対応する前記筒状反射
部材の外部からレーザ光を当てて前記筒状反射部
材、陰極スリーブ及び基体金属を溶接固定する工
程とを具備することを特徴とする陰極構体の製造
方法。
1 A cylindrical reflective member of a predetermined length, a cathode sleeve that is internally housed in the cylindrical reflective member and has an upper end at approximately the same position as the upper end of the cylindrical reflective member, and is inserted and fixed near the upper end of the cathode sleeve. In the method of manufacturing a cathode structure having a disc-shaped base metal, the cathode sleeve is blackened in a water-added hydrogen atmosphere, and then the cylindrical reflective member is attached to the cathode sleeve so that the upper end thereof is approximately a step of inserting the base metal inside the upper end portion of the cathode sleeve while arranging the base metal so that they are in the same position;
the base metal by bulging the base metal in the radial direction;
A step of bringing the cathode sleeve and the upper end of the cylindrical reflective member into close contact with each other, and welding and fixing the cylindrical reflective member, the cathode sleeve, and the base metal by applying laser light from the outside of the cylindrical reflective member corresponding to the bulge. A method for manufacturing a cathode assembly, comprising the steps of:
JP56163419A 1981-10-15 1981-10-15 Cathode frame and its manufacturing method Granted JPS5866230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56163419A JPS5866230A (en) 1981-10-15 1981-10-15 Cathode frame and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56163419A JPS5866230A (en) 1981-10-15 1981-10-15 Cathode frame and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5866230A JPS5866230A (en) 1983-04-20
JPH0444375B2 true JPH0444375B2 (en) 1992-07-21

Family

ID=15773535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56163419A Granted JPS5866230A (en) 1981-10-15 1981-10-15 Cathode frame and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5866230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101413103B1 (en) * 2012-12-03 2014-07-02 대한민국 A sytem for detecting germs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101413103B1 (en) * 2012-12-03 2014-07-02 대한민국 A sytem for detecting germs

Also Published As

Publication number Publication date
JPS5866230A (en) 1983-04-20

Similar Documents

Publication Publication Date Title
EP0022201B2 (en) Cathode assembly
JPH0444375B2 (en)
JPH0113188B2 (en)
JPS5842141A (en) Pierce type electron gun
US5422536A (en) Thermionic cathode with continuous bimetallic wall having varying wall thickness and internal blackening
US5698855A (en) Electron gun assembly with improved heat resistance
JP2871499B2 (en) Manufacturing method of cold cathode fluorescent lamp
KR970003351B1 (en) The structure and the manufacturing method of a cathode
KR100407956B1 (en) Cathode for Cathode Ray Tube and Method of manufacturing the same
US4305188A (en) Method of manufacturing cathode assembly
KR910001562Y1 (en) Cathode heated indirectly by heater
KR950013862B1 (en) Cathod manufacture method
KR0179129B1 (en) Cathode structure for cathode ray tube and manufacturing method therefor
JP3137406B2 (en) Manufacturing method of cathode assembly
JPS58176844A (en) Quick action type cathode and its production method
KR850000083B1 (en) Electron-tube
JPH103846A (en) Manufacture of impregnated negative electrode for cathode-ray tube
JPS62217525A (en) Impregnated cathode
JPH07169385A (en) Impregnated cathode structural body and manufacture thereof
JPS6047692B2 (en) Fast acting cathode structure
US20020101146A1 (en) Metal cathode for electron tube
JPS63211534A (en) Impregnated type cathode structure body
JPH0139615B2 (en)
JPH06223732A (en) Cathode-ray tube
JPH01319227A (en) Manufacture of electron tube cathode