JPS6047692B2 - Fast acting cathode structure - Google Patents

Fast acting cathode structure

Info

Publication number
JPS6047692B2
JPS6047692B2 JP52066745A JP6674577A JPS6047692B2 JP S6047692 B2 JPS6047692 B2 JP S6047692B2 JP 52066745 A JP52066745 A JP 52066745A JP 6674577 A JP6674577 A JP 6674577A JP S6047692 B2 JPS6047692 B2 JP S6047692B2
Authority
JP
Japan
Prior art keywords
sleeve
cathode
fixed
intermediate sleeve
base metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52066745A
Other languages
Japanese (ja)
Other versions
JPS542650A (en
Inventor
幸雄 高梨
貞雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52066745A priority Critical patent/JPS6047692B2/en
Publication of JPS542650A publication Critical patent/JPS542650A/en
Publication of JPS6047692B2 publication Critical patent/JPS6047692B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Description

【発明の詳細な説明】 本発明は、連動型陰極構体に関するものである。[Detailed description of the invention] The present invention relates to an interlocking cathode assembly.

一般に、陰極線管用電子銃の第1グリッドに装着される
連動型陰極構体は第1図に示すように構成されている。
Generally, an interlocking cathode assembly mounted on the first grid of an electron gun for a cathode ray tube is constructed as shown in FIG.

同図において、2はヒータ、3はこのヒータ2が収納さ
れるカソードスリーブであり、Ni−Cr合金で肉薄円
筒に形成される。このカソードスリーブ3の頭部の開口
端を閉塞するように電子放射物質5の塗布された基体金
属4を圧入し溶接固定する。また、このカソードスリー
ブ3の下方にはこのスリーブ3と後述する外側スリーブ
6との間に介在し、かん合支持する中間スリーブ10が
溶接固定される。この中間スリーブ10はNiを主成分
とした合金で、上記カソードスリーブ3よりやや肉厚で
短尺の円筒状に形成されている。また、この中間スリー
ブ10は、図示しない電子銃の第1グリッドに装着され
た例えばセラミックスの絶縁物7に固定された外側スリ
ーブ6と固着される。この外側スリーブ6は通常Niを
主体としてCrあるいはW等が含まれる合金て形成され
、上記絶縁物7の中央透孔に嵌挿されてカシメ加工によ
つて強固に固定される。また、外側スリーブ6は下端部
の所定の位置(通常1200間隔て3分割された位置)
に切込みを入れて切開部11を設け、この切開部11を
内側に圧潰し、上記中間スリーブ10に接触させて溶接
固定されている。このように構成された陰極構体はその
連動性を向上させるため、カソードスリーブ3の内外表
面に黒化膜を形成し、ヒータ2からの熱を効率よく吸収
させ、ヒータをスイッチオンしてからカソードスリーブ
3の表面温度が出画するのに必要な温度に達するまての
時間を短縮している。かかる黒化膜は、カソードスリー
ブにのみ選択的に形成されるもので、カソードスリーブ
中に含まれるCrを酸化させた黒色の酸化クロム層てあ
る。この酸化クロム層が上記中間スリーブと溶接される
べき部分を含む全面に形成されると、通常の抵抗溶接で
は中間スリーブとカソードスリーブは接合しにくく、溶
接の作業性ならびに隔極構体の信頼性を低下させてしま
う。そこで中間スリーブをカソードスリーブに接合して
一体化したものを湿潤水素雰囲気中で高温処理するとカ
ソードスリーブの表面に存在するクロムが酸素と反応し
やすいため、カソードスリーブの表面に黒色の酸化被膜
が形成される。一方、中間スリーブはNiを主成分とし
ているのて酸化被膜は形成されない。しかしながら、一
般に黒化膜形成処理はかなりの高温(9000〜110
0′C)で行われるもので、また、量産性のかねあいか
らカソードスリーブ、中間スリーブ、基体金属を一体化
したものを多数個まとめて同時に処理しており、カソー
ドスリーブと中間スリーブを一体化したもの(以下、カ
ソード本体とも呼ぶ)どうしが互いに接触した状態で湿
潤水素雰囲気中を通過させるため次のような欠点を生ず
る。すなわち、中間スリーブの主成分であるニッケルの
ような金属では、上記の如く一体化された多数のカソー
ド本体のとくに中間スリーブどうしが溶着し易く、溶着
したものを剥しても表面に凹凸ができたり、筒体が変形
したり等の不良となり、従つて歩留りが悪く作業性も低
いものであつた。また、上記黒化膜形成処理は中間スリ
ーブのアニール温度(650℃前後)よりも高い温度で
行われるため、カソードスリーブと溶接した後の中間ス
リーブが熱歪を起こしがちで、陰極構体の組立精度が低
下し均一な電子ビームが放射されなくなる。本発明は上
記欠点を解消するためになされたもので、通常の湿潤水
素雰囲気中で高温黒化処理する際に金属スリーブどうし
が表面溶着を起こさないような、かつ、高温黒化処理後
他の金属と強固に溶接接合できるような極く薄い酸化膜
を生じ、,カソードスリーブの保持材として好適なる材
質で中間スリーブを形成したことにより陰極構体の製造
における歩留りを向上させると共に高精度の速動型陰極
構体を提供するものてある。
In the figure, 2 is a heater, and 3 is a cathode sleeve in which the heater 2 is housed, and is formed into a thin cylinder made of Ni-Cr alloy. The base metal 4 coated with the electron emitting material 5 is press-fitted so as to close the open end of the head of the cathode sleeve 3 and fixed by welding. Further, below this cathode sleeve 3, an intermediate sleeve 10 is welded and fixed to be interposed between this sleeve 3 and an outer sleeve 6, which will be described later, and to be engaged and supported. The intermediate sleeve 10 is made of an alloy containing Ni as a main component, and is formed into a cylindrical shape that is slightly thicker and shorter than the cathode sleeve 3. Further, this intermediate sleeve 10 is fixed to an outer sleeve 6 fixed to an insulator 7 made of ceramic, for example, which is attached to a first grid of an electron gun (not shown). The outer sleeve 6 is usually formed of an alloy mainly composed of Ni and containing Cr or W, and is fitted into the central through hole of the insulator 7 and firmly fixed by caulking. In addition, the outer sleeve 6 is placed at a predetermined position at the lower end (usually at a position divided into three parts at intervals of 1200 mm).
An incision 11 is provided by making a cut in the sleeve 10, and the incision 11 is crushed inward, and is brought into contact with the intermediate sleeve 10 and fixed by welding. In order to improve the interlocking performance of the cathode assembly configured in this way, a blackened film is formed on the inner and outer surfaces of the cathode sleeve 3 to efficiently absorb heat from the heater 2, and the cathode is switched on after the heater is turned on. The time required for the surface temperature of the sleeve 3 to reach the temperature required for image output is shortened. This blackened film is selectively formed only on the cathode sleeve, and is a black chromium oxide layer obtained by oxidizing Cr contained in the cathode sleeve. When this chromium oxide layer is formed on the entire surface including the part to be welded to the intermediate sleeve, it becomes difficult to join the intermediate sleeve and the cathode sleeve with normal resistance welding, which reduces welding workability and the reliability of the separator structure. It will lower it. Therefore, when the intermediate sleeve is joined to the cathode sleeve and integrated and treated at high temperature in a humid hydrogen atmosphere, the chromium present on the surface of the cathode sleeve easily reacts with oxygen, forming a black oxide film on the surface of the cathode sleeve. be done. On the other hand, since the intermediate sleeve is mainly composed of Ni, no oxide film is formed thereon. However, the blackening film forming process is generally performed at a considerably high temperature (9000 to 110
0'C), and for the sake of mass production, a large number of integrated cathode sleeves, intermediate sleeves, and base metals are processed at the same time. Since the objects (hereinafter also referred to as cathode bodies) are passed through a wet hydrogen atmosphere while in contact with each other, the following disadvantages occur. In other words, when using a metal such as nickel, which is the main component of the intermediate sleeve, it is easy for the intermediate sleeves to weld to each other, especially when the multiple cathode bodies are integrated as described above, and even if the welded parts are removed, there may be unevenness on the surface. This resulted in defects such as deformation of the cylindrical body, resulting in poor yield and low workability. In addition, since the above-mentioned blackening film forming process is performed at a temperature higher than the annealing temperature of the intermediate sleeve (around 650°C), the intermediate sleeve tends to be thermally distorted after welding with the cathode sleeve, and the assembly accuracy of the cathode structure is decreases and a uniform electron beam is no longer emitted. The present invention has been made in order to eliminate the above-mentioned drawbacks, and is designed to prevent surface welding of metal sleeves during high-temperature blackening treatment in a normal humid hydrogen atmosphere, and to provide a method that prevents surface welding between metal sleeves and other methods after high-temperature blackening treatment. The intermediate sleeve is made of a material that forms an extremely thin oxide film that can be firmly welded to metal, and is suitable as a holding material for the cathode sleeve. This improves the yield in manufacturing the cathode structure and enables high-precision, rapid movement. Some provide a type cathode structure.

以下、図面を参照して本発明の実施例を説明す・る。Embodiments of the present invention will be described below with reference to the drawings.

なお、第1図と同一部分は、同一番号で示す。第2図は
本発明にかかる速動型陰極構体のカソード本体を示すも
ので4は、MgまたはSi等を環元剤として含むN1合
金を円盤状に形成した基体金属であり、その表面には酸
化バリウムおよび酸化ストロンチウム等の電子放射性物
質5が形成される。上記基体金属4は、Ni−Cr合金
で肉薄の円筒に形成されたカソードスリーブ3の頭部側
開口端に圧入固定する。このカソードスリーブ3は内部
にヒータ2を有し、下端部にはこれより短い筒状の中間
スリーブ15が固着される。この中間スリーブ15は重
量比がFe54%、Ni29%、COl7%、Si,M
n,C等からなるコバールで形成され、上記カソードス
リーブ3に嵌合固定されている。このように、カソード
スリーブ3、基体金属牡中間スリーブ15が組立て一体
化されたカソード本体16を湿潤水素雰囲気中で従来と
同様に1100゜C前後の高温に設定し、約2吟間程黒
化処理をする。この黒化処理によつてカソードスリーブ
3の内外表面には黒色の酸化クロム層14が形成され、
一方中間スリーブ15は、上記コバール中に含まれるS
1等が表面に拡散酸化してその表面に極く薄い酸化膜1
3(以下、酸化薄膜とも呼ぶ)が形成される。そのため
、湿濶水素雰囲気中で多数のカソード本体どうしが接触
した状態で処理しても、それぞれの表面に酸化クロム層
14および酸化薄膜13が形成され、かりにカソード本
体どうしが接していてもその間に上記酸化薄膜が介在す
ることになり、中間スリーブ15どうしの表面溶着を防
止する。このように黒化処理した後、上記中間スリーブ
15の外周壁に外側スリーブ(第1図に示したリング状
絶縁物7に固定され切開部11をもつスリーブ6に相当
)が溶接固定される。従つて、中間スリーブ15は酸化
薄膜13が形成されているが、この酸化薄膜13は上述
のように高温の水素雰囲気中で中間スリーブ15どうし
が表面溶着を起こさないと同時に、外側スリーブと溶接
可能でなければならない。この点上記コバールを用いる
と上述したようにSj等が表面に拡散酸化してスリーブ
どうしの溶着を防止し、通常の溶接手段て他の金属と充
分強固に固定てきるものである。また、従来の中間スリ
ーブに較べ機械的強度が大なる合金であり、熱的影響に
対しても丈夫なものである。従つて、カソードスリーブ
と一体固定した後の高温処理や外側スリーブと溶接する
際の温度あるいは押圧力に充分に耐え得るものでその組
立精度を向上させることができ、また陰極構体の高温動
作時の変形も抑制される。また、中間スリーブを前述の
ようにシリコン、マンガン及び炭素を微量含む鉄、ニッ
ケル及びコバルトを主体とする鉄合金(コバール)で形
成されその表面に薄いシリコン酸化膜が形成されている
ので、このコバールはニッケルや鉄に比べて熱伝導率が
およそ113〜115と小さく、しかもこのシリコン酸
化膜はほぼ透明に近いのでこの中間スリーブからの熱輻
射損失が抑制され、基体金属部分の温度上昇効率が高く
速動性がすぐれている。またこの中間スリーブは熱膨張
係数もニッケルや鉄に比べておよそ1/2.5程度てあ
り、陰極線管などに組込んだ場合の電子放射物層とこれ
に近接する第1グリッドとの間隙の変動が少なく、電子
ビーム量の変動抑制効果がすぐれている。以上説明した
ように本発明によれば、この陰極構体の製造における多
数個同時の高温処理工程でのカソード本体どうしの不所
望な接着現象を抑止できるとともに、陰極構体としてそ
の中間スリーブの材質により高温動作時の変形が抑制さ
れ、またこの中間スリーブからの熱輻射損失が抑制され
て基体金属部分の温度上昇効率が高く速動性がすぐれて
いる。
Note that the same parts as in FIG. 1 are indicated by the same numbers. FIG. 2 shows the cathode body of the rapid-acting cathode assembly according to the present invention. 4 is a base metal formed into a disk shape of N1 alloy containing Mg or Si as a ring agent; Electron emissive substances 5 such as barium oxide and strontium oxide are formed. The base metal 4 is press-fitted and fixed into the open end of the cathode sleeve 3 on the head side, which is formed into a thin cylinder made of Ni--Cr alloy. This cathode sleeve 3 has a heater 2 inside, and a shorter cylindrical intermediate sleeve 15 is fixed to its lower end. This intermediate sleeve 15 has a weight ratio of 54% Fe, 29% Ni, 7% CO1, Si, M
It is made of Kovar made of n, c, etc., and is fitted and fixed to the cathode sleeve 3. In this way, the cathode body 16, in which the cathode sleeve 3 and the base metal intermediate sleeve 15 were assembled and integrated, was heated to a high temperature of around 1100°C in a humid hydrogen atmosphere as in the past, and was blackened for about 2 gin. Process. Through this blackening treatment, a black chromium oxide layer 14 is formed on the inner and outer surfaces of the cathode sleeve 3.
On the other hand, the intermediate sleeve 15 is made of S contained in the Kovar.
1 is diffused and oxidized on the surface, and a very thin oxide film 1 is formed on the surface.
3 (hereinafter also referred to as an oxide thin film) is formed. Therefore, even if a large number of cathode bodies are processed in a wet hydrogen atmosphere in contact with each other, a chromium oxide layer 14 and a thin oxide film 13 will be formed on each surface, and even if the cathode bodies are in contact with each other, there will be The presence of the oxide thin film prevents surface welding of the intermediate sleeves 15 to each other. After the blackening treatment has been carried out in this manner, an outer sleeve (corresponding to the sleeve 6 fixed to the ring-shaped insulator 7 and having the cutout 11 shown in FIG. 1) is fixed by welding to the outer peripheral wall of the intermediate sleeve 15. Therefore, the oxide thin film 13 is formed on the intermediate sleeve 15, and this oxide thin film 13 prevents surface welding of the intermediate sleeves 15 to each other in a high-temperature hydrogen atmosphere as described above, and at the same time can be welded to the outer sleeve. Must. In this respect, when Kovar is used, as mentioned above, Sj and the like are diffused and oxidized on the surface, preventing the sleeves from welding together, and can be sufficiently firmly fixed to other metals by ordinary welding means. Additionally, the alloy has greater mechanical strength than conventional intermediate sleeves, and is resistant to thermal effects. Therefore, it can sufficiently withstand high temperature treatment after being integrally fixed with the cathode sleeve, the temperature or pressure when welding with the outer sleeve, and can improve assembly accuracy. Deformation is also suppressed. In addition, as mentioned above, the intermediate sleeve is made of an iron alloy (Kovar) mainly consisting of iron, nickel, and cobalt containing small amounts of silicon, manganese, and carbon, and a thin silicon oxide film is formed on its surface. has a low thermal conductivity of approximately 113 to 115 compared to nickel or iron, and since this silicon oxide film is almost transparent, heat radiation loss from this intermediate sleeve is suppressed, and the temperature increase efficiency of the base metal part is high. Excellent speed. The thermal expansion coefficient of this intermediate sleeve is also approximately 1/2.5 compared to nickel or iron, and when incorporated into a cathode ray tube, etc., the gap between the electron emitter layer and the first grid adjacent thereto is small. There is little fluctuation, and the effect of suppressing fluctuations in the amount of electron beam is excellent. As explained above, according to the present invention, it is possible to suppress the undesirable adhesion phenomenon between cathode bodies during the simultaneous high-temperature treatment process of a large number of cathode bodies in the production of the cathode assembly, and also to prevent the cathode assembly from being exposed to high temperatures due to the material of the intermediate sleeve. Deformation during operation is suppressed, and thermal radiation loss from the intermediate sleeve is suppressed, resulting in high efficiency in temperature rise of the base metal portion and excellent speed.

さらにまたこの中間スリーブは熱膨張係数が比較的小さ
いので陰極線管などの電子ビーム制御電極に近接して組
込んだ場合の電子ビーム量の変動抑制効果がすぐれてい
る。
Furthermore, since this intermediate sleeve has a relatively small coefficient of thermal expansion, it has an excellent effect of suppressing fluctuations in the amount of electron beam when it is installed in close proximity to an electron beam control electrode of a cathode ray tube or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の速動型陰極構体を説明する一部断面図、
第2図は、本発明による速動型陰極構体のカソード本体
の一部断面図である。 2・・・・・・ヒータ、3・・・・・・カソードスリー
ブ、4・・・・・・基体金属、13・・・・・酸化薄膜
、14・・・・・酸化クロム層、15・・・・中間スリ
ーブ。
FIG. 1 is a partial cross-sectional view illustrating a conventional fast-acting cathode structure.
FIG. 2 is a partial cross-sectional view of the cathode body of the fast-acting cathode assembly according to the present invention. 2... Heater, 3... Cathode sleeve, 4... Base metal, 13... Oxide thin film, 14... Chrome oxide layer, 15... ...Middle sleeve.

Claims (1)

【特許請求の範囲】[Claims] 1 電子放射物質が被着された基体金属と、上端部に前
記基体金属が接合され且つ内部にヒータが収納されたカ
ソードスリーブと、リング状絶縁物に固定された外側ス
リーブと、上記カソードスリーブの下端部に嵌合されて
該カソードスリーブを支持し且つ上記外側スリーブに固
着された中間スリーブとを具備する速動型陰極構体にお
いて、上記カソードスリーブは、ニッケルおよびクロム
を主体とする合金で形成されるとともにその表面に酸化
クロムの黒化膜が形成されてなり、上記中間スリーブは
、シリコン、マンガン、及び炭素を微量含む鉄、ニッケ
ル及びコバルトを主体とする鉄合金(コバール)で形成
され、その表面に薄いシリコン酸化膜が形成されてなる
ことを特徴とする速動型陰極構体。
1. A base metal to which an electron emitting material is adhered, a cathode sleeve to which the base metal is bonded to the upper end and a heater is housed inside, an outer sleeve fixed to a ring-shaped insulator, and the cathode sleeve. A quick-acting cathode assembly comprising an intermediate sleeve fitted to the lower end to support the cathode sleeve and fixed to the outer sleeve, wherein the cathode sleeve is made of an alloy mainly consisting of nickel and chromium. At the same time, a blackened film of chromium oxide is formed on the surface of the intermediate sleeve. A fast-acting cathode structure characterized by a thin silicon oxide film formed on the surface.
JP52066745A 1977-06-08 1977-06-08 Fast acting cathode structure Expired JPS6047692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52066745A JPS6047692B2 (en) 1977-06-08 1977-06-08 Fast acting cathode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52066745A JPS6047692B2 (en) 1977-06-08 1977-06-08 Fast acting cathode structure

Publications (2)

Publication Number Publication Date
JPS542650A JPS542650A (en) 1979-01-10
JPS6047692B2 true JPS6047692B2 (en) 1985-10-23

Family

ID=13324710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52066745A Expired JPS6047692B2 (en) 1977-06-08 1977-06-08 Fast acting cathode structure

Country Status (1)

Country Link
JP (1) JPS6047692B2 (en)

Also Published As

Publication number Publication date
JPS542650A (en) 1979-01-10

Similar Documents

Publication Publication Date Title
JP2002063870A (en) Infrared-ray emitting device
EP0022201B2 (en) Cathode assembly
JPS6047692B2 (en) Fast acting cathode structure
JPH04233136A (en) Cathode structure for electronic tube an manfacture thereof
JP2548923Y2 (en) Cathode structure for electron tube
JPS61140023A (en) Cathode structure of magnetron
JP2588288B2 (en) Impregnated cathode structure
JPH04303536A (en) Manufacture of impregnated type cathode
KR950013862B1 (en) Cathod manufacture method
JPH02181347A (en) Cathode of electron gun and manufacture thereof
KR910005814B1 (en) Manufacturing method of a cathode of electron gun in crt
JPH0433635Y2 (en)
KR940006919Y1 (en) Radiation type cathode structure for electron tube
JPS60138828A (en) Cathode structure for cathode-ray tube
JPS62145621A (en) Impregnated cathode
JPS58225528A (en) Cathode structure
KR0121240Y1 (en) Cathode structure of an electron gun
JPS6151724A (en) Electron tube cathode structure
JPH0444375B2 (en)
KR0179129B1 (en) Cathode structure for cathode ray tube and manufacturing method therefor
KR920010358B1 (en) Cathode structure for electron tube
KR100259421B1 (en) Structure of electrode for crt
KR900000548Y1 (en) Cathode for crt
US7439664B2 (en) Low consumption cathode structure for cathode ray tubes
US3492524A (en) Electron tube getter structure