JPH0444330B2 - - Google Patents

Info

Publication number
JPH0444330B2
JPH0444330B2 JP61096949A JP9694986A JPH0444330B2 JP H0444330 B2 JPH0444330 B2 JP H0444330B2 JP 61096949 A JP61096949 A JP 61096949A JP 9694986 A JP9694986 A JP 9694986A JP H0444330 B2 JPH0444330 B2 JP H0444330B2
Authority
JP
Japan
Prior art keywords
thin film
recording
substrate
alloy
gepbte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61096949A
Other languages
Japanese (ja)
Other versions
JPS62256241A (en
Inventor
Teruo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Columbia Co Ltd
Original Assignee
Nippon Columbia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Columbia Co Ltd filed Critical Nippon Columbia Co Ltd
Priority to JP61096949A priority Critical patent/JPS62256241A/en
Publication of JPS62256241A publication Critical patent/JPS62256241A/en
Publication of JPH0444330B2 publication Critical patent/JPH0444330B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ビームを用いて情報が記録される光
情報記録媒体に関し、特に小さい光エネルギーに
て情報を記録することができる記録薄膜に関する
ものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an optical information recording medium in which information is recorded using a light beam, and particularly to a recording thin film that can record information with small optical energy. It is.

(従来の技術及び問題点) 光情報記録媒体において、記録薄膜に光ビーム
を照射し、記録薄膜を構成する材料の非晶質.結
晶質転移による反射率変化を成起せしめ、情報を
記録する方法が知られている。この記録膜材料と
してはテルル低級酸化物TeOx(0<x<2)や
三セレン化アンチモンSb2Se3が知られているが、
光ビーム照射前後の反射率変化量が小さかつた
り、光エネルギー吸収層を積層する必要がある等
の欠点がある。本出願人は、先にかゝる欠点を解
消する材料としてテルル化ゲルマニウムGeTe薄
膜を特願昭59−13745号により提案した。GeTe
は光ビーム照射前後の反射率変化量が大きくしか
も単層で記録膜を構成できる利点があるが、非晶
質−結晶質転移を生じさせるには該薄膜を440〓
以上になるよう光エネルギーを与える必要があつ
た。そのため高感度記録、例えばビデオ信号を実
時間で記録する際には、光ビーム装置は高出力の
ものが必要になり、記録再生装置が高価になる欠
点があつた。
(Prior Art and Problems) In an optical information recording medium, a recording thin film is irradiated with a light beam, and the material constituting the recording thin film is amorphous. A method of recording information by causing a change in reflectance due to crystalline transition is known. As recording film materials, tellurium lower oxide TeOx (0<x<2) and antimony triselenide Sb 2 Se 3 are known.
There are drawbacks such as a small amount of change in reflectance before and after irradiation with a light beam, and the need to laminate a light energy absorbing layer. The present applicant previously proposed a germanium telluride GeTe thin film in Japanese Patent Application No. 13745/1983 as a material to overcome the above-mentioned drawbacks. GeTe
has the advantage of having a large change in reflectance before and after light beam irradiation and being able to form a recording film with a single layer, but in order to produce an amorphous-crystal transition, the thin film must be
It was necessary to provide light energy to achieve this. Therefore, for high-sensitivity recording, for example, when recording video signals in real time, a high-output light beam device is required, which has the drawback of making the recording and reproducing device expensive.

(問題点を解決する為の手段) 本発明はGeTe記録薄膜の上述の欠点を解消
し、小さい光エネルギーにて情報を記録再生する
ことのできる光情報記録媒体を提供することを目
的とするもので、その特徴は記録薄膜がGe、Pb
及びTeを主成分とする金属薄膜であり、Ge、Pb
及びTeがGe1-xPbxTe(0<x≦0.5)なる組成
(アトミツク比)であることにある。
(Means for Solving the Problems) An object of the present invention is to eliminate the above-mentioned drawbacks of the GeTe recording thin film and to provide an optical information recording medium that can record and reproduce information with small optical energy. The feature is that the recording thin film is made of Ge and Pb.
It is a metal thin film whose main components are Te and Ge, Pb.
and Te has a composition (atomic ratio) of Ge 1-x PbxTe (0<x≦0.5).

(実施例) 以下実施例に従つて詳細に説明する。(Example) A detailed explanation will be given below based on examples.

光情報記録媒体に使用される基板は熱伝導度が
小さく、該基板表面が平滑でキズが少ないことが
必要で、又例えば光ビームを基板を通して記録薄
膜に照射する場合は該光ビームに対して透過性で
なければならない。このような基板には記録再生
レーザー光に対し透明な合成樹脂、例えばポリメ
チルメタクリレート、ポリカーボネート、ポリ塩
化ビニル、ポリスルホンなどや、ガラスが用いら
れる。
The substrate used for optical information recording media has low thermal conductivity, and the surface of the substrate must be smooth and free from scratches. Must be transparent. For such a substrate, a synthetic resin transparent to recording and reproducing laser light, such as polymethyl methacrylate, polycarbonate, polyvinyl chloride, polysulfone, etc., or glass is used.

情報記録薄膜は前記基板上に接して設けること
もできるが、前記基板上に低熱伝導物質からなる
熱遮断性薄膜、前記基板上に存在するキズを除去
する高分子塗膜又は光ビーム反射性薄膜を介して
設けることもできる。金属記録薄膜は公知の技
術、例えば真空蒸着、スパツタリング、イオンプ
レーテイング等によつて前記基板上に被着させる
ことができる。
The information recording thin film can be provided in contact with the substrate, but it is also possible to provide a heat-blocking thin film made of a low thermal conductivity material on the substrate, a polymer coating film to remove scratches existing on the substrate, or a light beam reflective thin film. It can also be provided via. The metal recording film can be deposited on the substrate by known techniques such as vacuum deposition, sputtering, ion plating, etc.

本実施例においては前記記録薄膜は真空蒸着法
にて基板上に被着させた。真空蒸着法により
Ge1-xPbxTe(以下GePbTeと記載する場合もあ
る)合金薄膜を作製するにはGePbTe合金を蒸発
源とする一元蒸発法あるいはGeTe、PbTeを蒸
発源とする二元同時蒸着法を用いることができ本
発明にはいずれも有効であつた。
In this example, the recording thin film was deposited on the substrate by vacuum deposition. By vacuum evaporation method
To produce a Ge 1-x PbxTe (hereinafter sometimes referred to as GePbTe) alloy thin film, it is possible to use a single evaporation method using a GePbTe alloy as an evaporation source or a binary simultaneous evaporation method using GeTe and PbTe as an evaporation source. All of these were effective for the present invention.

一元蒸発法に用いられる合金は以下のように作
製した純度99.99%以上のGe、Pb及びTeを所望
の合金組成となるよう秤量し、石英ガラス管内に
入れ真空封止を行つた。この石英ガラス管を1000
℃、5時間加熱の後急冷してGePbTe合金を得
た。GePbTe合金は、抵抗加熱法、電子ビーム加
熱法いずれの方法によつても蒸発させることがで
きる。なお蒸発源合金組成と薄膜合金組成との差
異は抵抗加熱法において少し認められたので、こ
のことを考慮して前記合金組成を変化させること
により所望の合金組成を持つGePbTe薄膜を得る
ことができる。一方電子ビーム加熱法においては
蒸発源合金組成と薄膜合金組成との差は認められ
なかつた。
The alloys used in the one-source evaporation method were prepared as follows: Ge, Pb, and Te with a purity of 99.99% or higher were weighed to give the desired alloy composition, and placed in a quartz glass tube and vacuum-sealed. This quartz glass tube is 1000
℃ for 5 hours and then rapidly cooled to obtain a GePbTe alloy. GePbTe alloy can be evaporated by either resistance heating method or electron beam heating method. Note that a slight difference between the evaporation source alloy composition and the thin film alloy composition was observed in the resistance heating method, so by taking this into consideration and changing the alloy composition, a GePbTe thin film with the desired alloy composition can be obtained. . On the other hand, in the electron beam heating method, no difference was observed between the evaporation source alloy composition and the thin film alloy composition.

次に第1図は二次元同時蒸発法を示す図で真空
槽11の中に回転する基板ホルダー12が設けら
れておりその下方に基板13を取り付ける。基板
13の下方には蒸発源14および15がありそれ
ぞれにGeTeおよびPbTeが斜線の如く充填され
る。蒸発源14および15は独立に制御可能な電
源16および17を有し、蒸発源14および15
に供給される電力を変化させることにより、作製
されるGePbTe薄膜中のGeとPbの比を変化させ
所望の合金組成をもつGePbTe薄膜を得た。なお
合金組成定量は螢光X線分折装置を使用して行つ
た。
Next, FIG. 1 is a diagram showing a two-dimensional simultaneous evaporation method, in which a rotating substrate holder 12 is provided in a vacuum chamber 11, and a substrate 13 is attached below it. Below the substrate 13 are evaporation sources 14 and 15, each filled with GeTe and PbTe as indicated by diagonal lines. Evaporation sources 14 and 15 have independently controllable power supplies 16 and 17;
By changing the power supplied to the GePbTe thin film, the ratio of Ge to Pb in the produced GePbTe thin film was changed, and a GePbTe thin film with a desired alloy composition was obtained. The alloy composition was determined using a fluorescent X-ray spectrometer.

第2図実線21は、Ge1-xPbxTe合金薄膜にお
いて種々のxの値の薄膜を作製し非結晶−結晶、
転移点を測定した結果である。測定はガラス基板
上にGePbTe合金薄膜を被着させた試料を加熱
し、薄膜の反射率あるいは透過率の光学的性質が
大きく変化する点を転移点とした。又、第2図実
線22は、基板上に被着されたGe1-xPbxTe薄膜
に、波長〓=830nmの半導体レーザー光を200ns
間照射した時、該Ge1-xPbTe薄膜のレーザー光
被照射部の反射率を、大きく変化させるに必要な
記録エネルギー(レーザーパワー)の相対値を示
す。第2図に見られるごとくGe1-xPbxTe薄膜は
GeTeの薄膜に比較するならば、Ge1-xPbxTe薄
膜中のXの値が大きくなるにつれ非結晶−結晶転
移点が下がり、例えばx=0.2で394〓、x=0.4
で330〓となり、情報を記録するに必要な光エネ
ルギーはx=0.2のとき75%、x=0.4のときは40
%であり、GeTe薄膜に比しそれぞれ33%、60%
の光エネルギーを節約できる。
The solid line 21 in Fig. 2 shows the results of forming Ge 1-x PbxTe alloy thin films with various values of x.
This is the result of measuring the transition point. The measurement was carried out by heating a sample with a GePbTe alloy thin film deposited on a glass substrate, and the transition point was defined as the point where the optical properties of the thin film's reflectance or transmittance changed significantly. In addition, the solid line 22 in Fig. 2 shows that the Ge 1-x PbxTe thin film deposited on the substrate is exposed to semiconductor laser light with a wavelength = 830 nm for 200 ns.
The graph shows the relative value of the recording energy (laser power) required to significantly change the reflectance of the laser beam irradiated area of the Ge 1-x PbTe thin film when irradiated for a period of time. As seen in Figure 2, the Ge 1-x PbxTe thin film is
Compared to a GeTe thin film, as the value of X in a Ge 1-x PbxTe thin film increases, the amorphous-crystal transition point decreases;
Therefore, the light energy required to record information is 75% when x = 0.2, and 40% when x = 0.4.
%, respectively 33% and 60% compared to GeTe thin film.
can save light energy.

本実施例においてはGePbTeの合金薄膜は真空
蒸着法にて作製されたが、該GePbTe薄膜は真空
蒸着法に限らず公知の技術であるスパツタリンク
法で作製しても同様の結果が得られた。ただし、
この場合GePbTe薄膜の非結晶−結晶転移点は、
真空蒸着法に比してGe1-xPbxTe薄膜中のxの値
にかゝわらず20〜40〓高くなつた。しかしスパツ
タ法により作製したGeTe薄膜の転移点は480〓
であつたので、Ge1-xPbxTe薄膜の転移点はxの
値にかゝわらずGeTe薄膜の転移点より低く、x
の値の増大と共に転移点が下がる効果は真空蒸着
法を用いた前記実施例と同じであつた。又、前記
実施例は光ビームとして半導体レーザーを用いた
が、光ビームは半導体レーザーに限定されること
なく、He−Neレーザ、Arレーザー等のレーザ
ー光、キヤノンランプ、タングステンランプを用
いることができる。なぜならGePbTe薄膜は
GeTe薄膜と同様に光学的性質の波長依存性がゆ
るやかで、該薄膜の膜厚を記録光ビーム波長に応
じて最適化できるからである。
In this example, the GePbTe alloy thin film was produced by a vacuum evaporation method, but the same results could be obtained not only by the vacuum evaporation method but also by the well-known sputter link method. Ta. however,
In this case, the amorphous-crystalline transition point of the GePbTe thin film is
Compared to the vacuum evaporation method, the value of x in the Ge 1-x PbxTe thin film was 20 to 40 times higher, regardless of the value of x. However, the transition point of the GeTe thin film fabricated by the sputtering method is 480〓
Therefore, the transition point of the Ge 1-x PbxTe thin film is lower than that of the GeTe thin film regardless of the value of x;
The effect of lowering the transition point with increasing value of is the same as in the previous example using the vacuum evaporation method. Further, although a semiconductor laser was used as the light beam in the above embodiment, the light beam is not limited to a semiconductor laser, and a laser beam such as a He-Ne laser or an Ar laser, a Canon lamp, or a tungsten lamp can be used. . Because GePbTe thin film
This is because, like the GeTe thin film, the wavelength dependence of the optical properties is gentle, and the thickness of the thin film can be optimized depending on the recording light beam wavelength.

本発明においてGe1-xPbxTe合金薄膜の組成を
0<x≦0.5とした理由は以下の通りである。
Ge1-xPbxTe合金薄膜においてxが大きくなるに
つれて該薄膜の非結晶−結晶転移温度は低くなり
x=0.5のときには該転移点は310〓となり室温よ
りわずかに高いが、x>0.5のときは、作製した
上記合金薄膜は室温にてすでに結晶質に転移して
いることになり、情報を記録することができなく
なるからである。従つて周囲温度が室温より高く
なる可能性がある場合は、転移温度を例えば350
〓程度に設定すればよく、この為には0<x≦
0.35とすればよい。
The reason why the composition of the Ge 1-x PbxTe alloy thin film is set to 0<x≦0.5 in the present invention is as follows.
In a Ge 1-x PbxTe alloy thin film, as x increases, the amorphous-crystalline transition temperature of the thin film decreases.When x=0.5, the transition point is 310〓, which is slightly higher than room temperature, but when x>0.5, This is because the produced thin alloy film has already transformed into a crystalline state at room temperature, making it impossible to record information. Therefore, if the ambient temperature is likely to be higher than room temperature, the transition temperature should be set to 350, for example.
It is sufficient to set it to about 〓, and for this purpose, 0<x≦
It should be 0.35.

(効果) 以上詳述したように、基体と該基体上に形成さ
れた薄膜を有し、該薄膜へ光ビームを照射し情報
を記録する光情報記録媒体において、上記薄膜が
Ge、Pb及びTeを主成分とする薄膜であり、該
Ge、Pb、Teは、Ge1-xPbxTe(0<x≦0.5)な
る組成であることを特徴とする光情報記録媒体は
小さな光エネルギーにて情報を記録することがで
き、安価な記録再生装置にて高感度記録を実現す
ることができる。
(Effects) As detailed above, in an optical information recording medium that has a base and a thin film formed on the base and records information by irradiating the thin film with a light beam, the thin film is
It is a thin film whose main components are Ge, Pb and Te.
The optical information recording medium, which is characterized by the composition of Ge, Pb, and Te as Ge 1-x PbxTe (0<x≦0.5), can record information with small optical energy and is inexpensive to record and reproduce. High-sensitivity recording can be achieved with the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明光情報記録媒体を作製する装置
の1例を示し、第2図は本発明による記録媒体の
組成と非晶質−結晶質転移点及び記録光エネルギ
ーの関係を示す図である。 11……真空槽、13……基板、14,15…
…蒸発源。
FIG. 1 shows an example of an apparatus for producing the optical information recording medium of the present invention, and FIG. 2 is a diagram showing the relationship between the composition of the recording medium according to the present invention, the amorphous-crystalline transition point, and the recording light energy. be. 11... Vacuum chamber, 13... Substrate, 14, 15...
...evaporation source.

Claims (1)

【特許請求の範囲】[Claims] 1 基体と該基体上に形成された薄膜を有し、該
薄膜へ光ビームを照射し情報を記録する光情報記
録媒体において、上記薄膜がゲルマニウム、鉛、
テルルを主成分としGe1−xPbxTe(0<x≦0.5)
なる組成であることを特徴とする光情報記録媒
体。
1. An optical information recording medium that has a substrate and a thin film formed on the substrate, and records information by irradiating the thin film with a light beam, wherein the thin film is made of germanium, lead,
Ge 1 −xPbxTe (0<x≦0.5) with tellurium as the main component
An optical information recording medium characterized by having a composition.
JP61096949A 1986-04-28 1986-04-28 Optical information recording medium Granted JPS62256241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61096949A JPS62256241A (en) 1986-04-28 1986-04-28 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61096949A JPS62256241A (en) 1986-04-28 1986-04-28 Optical information recording medium

Publications (2)

Publication Number Publication Date
JPS62256241A JPS62256241A (en) 1987-11-07
JPH0444330B2 true JPH0444330B2 (en) 1992-07-21

Family

ID=14178547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61096949A Granted JPS62256241A (en) 1986-04-28 1986-04-28 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPS62256241A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217287A (en) * 1985-03-25 1986-09-26 Nippon Columbia Co Ltd Optical information-recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217287A (en) * 1985-03-25 1986-09-26 Nippon Columbia Co Ltd Optical information-recording medium

Also Published As

Publication number Publication date
JPS62256241A (en) 1987-11-07

Similar Documents

Publication Publication Date Title
US5580632A (en) Information recording medium
Fujimori et al. Crystallization process of Sb‐Te alloy films for optical storage
KR890004231B1 (en) Optical information recording member
EP0294932B1 (en) A method for recording and erasing information
EP0184452A2 (en) Optical information memory medium and methods and apparatus using such a medium
JP2990036B2 (en) Optical recording medium and manufacturing method thereof
JPH0473387B2 (en)
JPH10166738A (en) Optical recording material and optical recording medium
JPH0327974B2 (en)
JPS62246788A (en) Information recording medium
JPS61501762A (en) optical information storage
JPH0444330B2 (en)
JPH01169751A (en) Phase transition recording medium
JPH0582838B2 (en)
JP2781421B2 (en) Manufacturing method of optical recording medium
JP2001209970A (en) Information recording medium, method of producing the same and method of recording and reproducing the same
JPH0226299B2 (en)
JPS63167440A (en) Method for recording or recording and erasing information
JPS63155437A (en) Information recording medium
JPH0869636A (en) Optical information recording medium
JP2867407B2 (en) Information recording medium
JPS61283049A (en) Production of optical disk
JPH02219689A (en) Information recording medium
JPH01251331A (en) Information recording medium
JPH01191344A (en) Optical information recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees