JPH0443803A - Control method for combined cycle electric power plant - Google Patents

Control method for combined cycle electric power plant

Info

Publication number
JPH0443803A
JPH0443803A JP15112890A JP15112890A JPH0443803A JP H0443803 A JPH0443803 A JP H0443803A JP 15112890 A JP15112890 A JP 15112890A JP 15112890 A JP15112890 A JP 15112890A JP H0443803 A JPH0443803 A JP H0443803A
Authority
JP
Japan
Prior art keywords
pressure
pressure drum
low
steam
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15112890A
Other languages
Japanese (ja)
Inventor
Shigenobu Katagiri
片桐 重信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15112890A priority Critical patent/JPH0443803A/en
Publication of JPH0443803A publication Critical patent/JPH0443803A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To shorten starting time as the whole electric power plant by connecting together the high pressure drum and the low pressure drum of an exhaust heat boiler through a connecting pipe, and providing a control valve on the way of the connecting pipe. CONSTITUTION:A combined-cycle electric power plant is constituted out of a gas turbine l, a steam turbine 15, and an exhaust heat boiler 2. The high pressure drum 17 and the low pressure drum 11 of the exhaust heat boiler 2 are connected together through a connecting pipe 30. A control valve 31 is provided on the way of the connecting pipe 30. By circulating water between the low pressure drum 11 and the high pressure drum at starting, rise of steam pressure and temperature of the low pressure drum 11 can be quickened. By decrease of the water flow from a high pressure circulating pump 18 to a high pressure evaporator 4, heat absorption of the high pressure evaporator 4 is decreased and the heat absorbing quantity of a low pressure evaporator 7 is increased by the portion. In this way, the rising speed of steam pressure and temperature of the low pressure drum is quickened, the warming time of the exhaust heat boiler can be shortened, and the starting time as the whole plant can be shortened.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ガスタービン、蒸気タービンおよび排熱ボイ
ラーより構成される複合サイクル発電プラントの起動特
性の改善方法に関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for improving the startup characteristics of a combined cycle power plant consisting of a gas turbine, a steam turbine, and a waste heat boiler. .

(従来の技術) 最近の火力発電プラントとしては、エネルギー効率の向
上を図るため、ガスタービンの排ガスを排熱ボイラーに
導いて蒸気を加熱し、蒸気タービンを回転させる複合サ
イクル発電プラントが多用される傾向にある。
(Conventional technology) In order to improve energy efficiency, recent thermal power plants often use combined cycle power plants in which exhaust gas from a gas turbine is guided to an exhaust heat boiler to heat steam and rotate a steam turbine. There is a tendency.

第2図は、従来の一軸形複合サイクル発電プラントの構
成を示すもので、ガスタービン1で仕事を終えたガスは
、排熱ボイラー2に導入される。
FIG. 2 shows the configuration of a conventional single-shaft combined cycle power plant. Gas that has finished its work in a gas turbine 1 is introduced into an exhaust heat boiler 2.

排熱ボイラーには、過熱器3、高圧蒸発器4、脱硝触媒
5、高圧節炭器6、低圧蒸発器7および低圧節炭器8が
内蔵されており、ガスタービン1からの排ガスは、排熱
ボイラー2内を流れる間に冷却および脱硝され、大気中
へ放出される。
The waste heat boiler has a built-in superheater 3, a high-pressure evaporator 4, a denitration catalyst 5, a high-pressure economizer 6, a low-pressure evaporator 7, and a low-pressure economizer 8, and the exhaust gas from the gas turbine 1 is While flowing through the heat boiler 2, it is cooled and denitrated, and then released into the atmosphere.

一方、復水器9に貯えられた水は低圧給水ポンプ10に
よって加圧され、低圧節炭器8内を流れた後、低圧ドラ
ム11に貯えられる。低圧ドラム11に貯えられた水の
一部は、低圧循環ポンプ12によって加圧され、低圧蒸
発器7内を流れて過熱された後、再び低圧ドラム11に
戻る。低圧ドラム11内で水から分離された蒸気は低圧
蒸気管13および低圧蒸気弁14を通して蒸気タービン
15の途中段落へ導かれる。また、低圧ドラム11に貯
えられた水の一部は、高圧循環ポンプ16によって加圧
され、高圧節炭器6内を流れて加熱され、高圧ドラム1
7に導かれる。
On the other hand, the water stored in the condenser 9 is pressurized by the low-pressure water supply pump 10, flows through the low-pressure economizer 8, and is then stored in the low-pressure drum 11. A portion of the water stored in the low-pressure drum 11 is pressurized by the low-pressure circulation pump 12, flows through the low-pressure evaporator 7, is superheated, and then returns to the low-pressure drum 11 again. Steam separated from water in the low pressure drum 11 is guided to an intermediate stage of the steam turbine 15 through a low pressure steam pipe 13 and a low pressure steam valve 14. In addition, a part of the water stored in the low pressure drum 11 is pressurized by the high pressure circulation pump 16, flows through the high pressure economizer 6, is heated, and is heated by the high pressure drum 11.
Guided by 7.

高圧ドラム17に貯えられた水の一部は、高圧循環ポン
プ18によって加圧され、高圧蒸発器4内を流れて加熱
された後、再び高圧ドラム17に戻り、水と蒸気に分離
される。
A portion of the water stored in the high-pressure drum 17 is pressurized by the high-pressure circulation pump 18, flows through the high-pressure evaporator 4 and is heated, then returns to the high-pressure drum 17 again and is separated into water and steam.

高圧ドラム17に貯えられ−た蒸気は高圧蒸気管19お
よび加熱器3を経て過熱された後、高圧蒸気弁20を通
して蒸気タービン15の第一段落へ送りこまれる。
The steam stored in the high-pressure drum 17 is superheated through the high-pressure steam pipe 19 and the heater 3, and then sent through the high-pressure steam valve 20 to the first stage of the steam turbine 15.

これによって、蒸気タービン15およびガスタービン1
が回転し、発電a121を駆動する。
As a result, the steam turbine 15 and the gas turbine 1
rotates and drives the power generation a121.

以上が複合サイクル発電プラントの定常運転時の動作で
ある。
The above is the operation of the combined cycle power plant during steady operation.

第3図は、前述の一軸形複合サイクル発電プラントの起
動時における特性を示すもので、起動装置(図示せず)
によりガスタービンが起動して定格回転数の約15%に
達すると、ガスタービンに燃料が導入され、点火されて
回転数が上昇する。
Figure 3 shows the characteristics of the above-mentioned single-shaft combined cycle power plant at startup, and shows the startup device (not shown).
When the gas turbine starts up and reaches about 15% of the rated rotation speed, fuel is introduced into the gas turbine and ignited, increasing the rotation speed.

これに伴ってガスタービンの排気流量と温度が上昇し、
排熱ボイラーに流入するガス温度も上昇する。ガスター
ビン軸と蒸気タービン軸は直結されているので、ガスタ
ービンの回転数が上昇すると蒸気タービン軸の回転数も
上昇する。
As a result, the gas turbine exhaust flow rate and temperature increase,
The temperature of the gas flowing into the waste heat boiler also increases. Since the gas turbine shaft and the steam turbine shaft are directly coupled, as the rotation speed of the gas turbine increases, the rotation speed of the steam turbine shaft also increases.

この状態では、排熱ボイラー内の蒸気は蒸気タービンに
送気できるほど温度と圧力が上昇しておらず、蒸気ター
ビンはガスタービンによって空転せしめられることにな
る。
In this state, the temperature and pressure of the steam in the waste heat boiler have not risen enough to send it to the steam turbine, and the steam turbine is forced to idle by the gas turbine.

上述の空転状態では、蒸気タービンの羽根、特に後段の
長い羽根には風損のため熱が発生し、温度が許容値以上
に上昇する恐れがある。
In the above-mentioned idling state, heat is generated in the blades of the steam turbine, especially the long blades in the rear stage, due to wind damage, and there is a possibility that the temperature may rise beyond a permissible value.

このため、排熱ボイラー内の温度が上昇し、蒸気が発生
して、冷却用の蒸気を蒸気タービンに流せるようになる
まで、ガスタービンの回転数を所定値以内に保持し、排
熱ボイラーのウオーミングを行う。
For this reason, the rotation speed of the gas turbine is maintained within a predetermined value until the temperature inside the waste heat boiler rises, steam is generated, and the cooling steam can flow to the steam turbine. Warm up.

(発明が解決しようとする課題) 実際の蒸気タービンの冷却蒸気は低圧ドラムより流して
おり、低圧ドラムがある圧力(実例では約2.5kg/
cd)になるまで定格回転数の約半分の回転数でウオー
ミングのため保持される。
(Problem to be Solved by the Invention) Cooling steam in an actual steam turbine flows from a low-pressure drum, and the low-pressure drum has a certain pressure (in the actual example, about 2.5 kg/kg).
The rotation speed is maintained at approximately half of the rated rotation speed for warming until the rotation speed reaches cd).

しかしながら排熱ボイラーは熱容量が大きく、ウオーミ
ングの開始当初は、高圧蒸発器4や脱硝触媒5に熱を奪
われてしまい、第3図に示すように、排熱ボイラーの入
口ガス温度は上昇するが、低圧蒸発器の前ガス温度はな
かなか上昇せず、従って、低圧ドラム内の蒸気圧力と温
度も上昇が遅く、排熱ボイラーのウオーミングに60分
〜90分もの時間を要し、この間のエネルギー損失も大
きい。
However, the exhaust heat boiler has a large heat capacity, and at the beginning of warming, heat is taken away by the high-pressure evaporator 4 and the denitrification catalyst 5, and as shown in Figure 3, the inlet gas temperature of the exhaust heat boiler increases. The pre-gas temperature of the low-pressure evaporator does not rise easily, so the steam pressure and temperature inside the low-pressure drum also rise slowly, and it takes 60 to 90 minutes to warm up the waste heat boiler, resulting in energy loss during this time. It's also big.

本発明は、従来技術における上述のような不都合を除去
すべくなされたもので、排熱ボイラーのウオーミング時
間を大幅に短縮できる複合サイクル発電プラントの制御
方法を提供することを目的とするものである。
The present invention was made in order to eliminate the above-mentioned disadvantages in the conventional technology, and an object of the present invention is to provide a control method for a combined cycle power plant that can significantly shorten the warming time of a waste heat boiler. .

[発明の構成コ (課題を解決するための手段) 本発明の複合サイクル発電プラントの制御方法は、ガス
タービン、蒸気タービンおよび排熱ボイラーよりなる複
合サイクル発電プラントにおいて、排熱ボイラーの高圧
ドラムと低圧ドラムを連絡管で連絡し、この連絡管の途
中に調節弁を設置し、起動時に前記高圧ドラムと低圧ド
ラムの間に水を循環させて低圧蒸気の発生を早めること
を特徴とする。
[Configuration of the Invention (Means for Solving the Problem) The method for controlling a combined cycle power plant of the present invention is a combined cycle power plant comprising a gas turbine, a steam turbine, and a waste heat boiler. The low-pressure drums are connected by a connecting pipe, and a control valve is installed in the middle of the connecting pipe, and water is circulated between the high-pressure drum and the low-pressure drum at startup to accelerate the generation of low-pressure steam.

(作用) 上述のように構成した本発明の方法によれば起動時に調
節弁を開き、前記高圧ドラムと低圧ドラムの間に水を循
環させることにより低圧蒸気の発生を早めているので、
プラントの起動時間を短縮することができる。
(Function) According to the method of the present invention configured as described above, the control valve is opened at startup and water is circulated between the high-pressure drum and the low-pressure drum, thereby accelerating the generation of low-pressure steam.
Plant startup time can be reduced.

(実施例) 次に、第1図を参照しながら本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail with reference to FIG.

なお、第1図において、第2図におけると同一部分には
同一符号を付し、重複する部分の説明は省略する。
Note that in FIG. 1, the same parts as in FIG. 2 are given the same reference numerals, and explanations of overlapping parts will be omitted.

第1図において、高圧ドラム17から高圧蒸発器4に至
る配管の途中には、高圧循環ポンプ18の下流側から、
連結管30が分岐しており、この連結管の他端側は低圧
ドラム11に連結されている。連結管30の途中には調
節弁31が介挿されている。圧力演算器32は、低圧蒸
気管13の圧力を検出し、予め定めた圧力設定値と比較
して調節弁31の開度を制御する。
In FIG. 1, in the middle of the piping from the high-pressure drum 17 to the high-pressure evaporator 4, from the downstream side of the high-pressure circulation pump 18,
A connecting pipe 30 is branched, and the other end of this connecting pipe is connected to the low pressure drum 11. A control valve 31 is inserted in the middle of the connecting pipe 30. The pressure calculator 32 detects the pressure of the low-pressure steam pipe 13, compares it with a predetermined pressure setting value, and controls the opening degree of the control valve 31.

他の構成は第2図におけると同じである。The other configurations are the same as in FIG.

上述のように構成した本発明の複合サイクル発電プラン
トの制御方法においては、第3図の起動特性に示すよう
に、高圧ドラムの蒸気圧力・温度の上昇が、低圧ドラム
の蒸気圧力・温度に比較して早いことに看目し、圧力演
算器32の設定値を排熱ボイラーウオーミング完了圧力
(例えば2.5Kg/cj)に設定しておき、起動時の
低圧ドラム11内の圧力が上記設定値より低い場合には
、調節弁31が開くようにし、起動時には高圧循環ポン
プ18の出口の水の一部を調節弁31を通して低圧ドラ
ム11に流す。
In the control method for the combined cycle power plant of the present invention configured as described above, as shown in the startup characteristics in Figure 3, the rise in steam pressure and temperature in the high-pressure drum is greater than that in the low-pressure drum. In order to avoid this problem, the set value of the pressure calculator 32 is set to the exhaust heat boiler warming completion pressure (for example, 2.5 Kg/cj), and the pressure inside the low pressure drum 11 at startup is set to the above set value. If it is lower, the regulating valve 31 is opened, and at startup, part of the water at the outlet of the high-pressure circulation pump 18 flows through the regulating valve 31 to the low-pressure drum 11.

低圧ドラム11に流入した水はドラム内の水と混合し、
低圧ドラム内の水の温度上昇を早める。
The water flowing into the low pressure drum 11 mixes with the water inside the drum,
Speed up the temperature rise of the water in the low pressure drum.

また、低圧ドラム11内の水の一部は、高圧給水ポンプ
16および高圧節炭器6を通って高圧ドラム17に戻る
Further, a part of the water in the low pressure drum 11 returns to the high pressure drum 17 through the high pressure water supply pump 16 and the high pressure economizer 6.

このように、低圧ドラム11と高圧ドラム17の間に水
を循環させることにより、低圧ドラムの蒸気圧力・温度
の上昇を早めることができる。また、高圧循環ポンプ1
8から高圧蒸発器4へ流れる水の量が減ることにより、
高圧蒸発器の熱吸収が減り、その分、低圧蒸発器7の熱
吸収量が増える。
By circulating water between the low-pressure drum 11 and the high-pressure drum 17 in this manner, the rise in steam pressure and temperature in the low-pressure drum can be accelerated. In addition, high pressure circulation pump 1
By reducing the amount of water flowing from 8 to high pressure evaporator 4,
The amount of heat absorbed by the high-pressure evaporator decreases, and the amount of heat absorbed by the low-pressure evaporator 7 increases accordingly.

以上の2つの作用により、低圧ドラムの蒸気圧力・温度
の上昇速度が早くなり、排熱ボイラーのウオーミング時
間が短縮でき、従ってプラント全体の起動時間を短縮す
ることができる。
Due to the above two effects, the rate of increase in the steam pressure and temperature in the low pressure drum becomes faster, the warming time of the waste heat boiler can be shortened, and the startup time of the entire plant can therefore be shortened.

第4図は本発明の方法を採用した複合サイクル発電プラ
ントの起動特性を示すもので、低圧ドラムの圧力・温度
の上昇速度が第3図の場合に比較して早く、従って、排
熱ボイラーウオーミングの時間が短くなり、起動時間が
短縮されていることが分る。
Figure 4 shows the start-up characteristics of a combined cycle power plant employing the method of the present invention. The rate of rise in pressure and temperature of the low pressure drum is faster than in the case of Figure 3, and therefore the exhaust heat boiler warming It can be seen that the startup time is shortened.

なお、以上の説明では、本発明を竪形強制循環式排熱ボ
イラーに適用した例について述べたが、本発明はこれに
限定されるものではなく、自然循環式排熱ボイラーにも
容易に適用することができる。
Although the above explanation describes an example in which the present invention is applied to a vertical forced circulation type waste heat boiler, the present invention is not limited to this, and can easily be applied to a natural circulation type waste heat boiler. can do.

[発明の効果] 本発明の複合サイクル発電プラントにおいては低圧ドラ
ムの蒸気圧力・温度の上昇速度が早く、従って、排熱ボ
イラーウオーミングの時間が短くなり、発電プラント全
体としての起動時間を短縮することができる。
[Effects of the Invention] In the combined cycle power plant of the present invention, the rate of increase in steam pressure and temperature in the low pressure drum is fast, so the time for warming the exhaust heat boiler is shortened, and the startup time of the power plant as a whole is shortened. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の複合サイクル発電プラントの実施例を
示す系統図、第2図は従来の一輪形複合サイクル発電プ
ラントの構成を示す系統図、第3図は従来の一輪形複合
サイクル発電プラントの起動特性図、第4図は本発明の
複合サイクル発電プラントの起動特性図である。 1・・・・・・ガスタービン 2・・・・・・排熱ボイラー 3・・・・・・過熱器 4・・・・・・高圧蒸発器 5・・・・・・脱硝触媒 6・・・・・・高圧節炭器 7・・・・・・低圧蒸発器 8・・・・・・低圧節炭器 9・・・・・・復水器 0・・・・・・低圧給水ポンプ ト・・・低圧ドラム 2・・・・・・低圧循環ポンプ 3・・低圧蒸気管 4・・・・・低圧蒸気弁 5・・・・・・蒸気タービン 6・・・・・−高圧給水ポンプ 7・・・・・・高圧ドラム 8・・・・・・高圧循環ポンプ 9・・・・・高圧蒸気管 0・・・・・・高圧蒸気弁 1・・・・・・発電機 0・・・・・・連絡管 ・・・・・・調節弁 2・・・・・・圧力演算器
Figure 1 is a system diagram showing an embodiment of the combined cycle power plant of the present invention, Figure 2 is a system diagram showing the configuration of a conventional single-wheel combined cycle power plant, and Figure 3 is a conventional single-wheel combined cycle power plant. Fig. 4 is a starting characteristic diagram of the combined cycle power plant of the present invention. 1... Gas turbine 2... Exhaust heat boiler 3... Superheater 4... High pressure evaporator 5... Denitration catalyst 6... ...High pressure energy saver 7...Low pressure evaporator 8...Low pressure energy saver 9...Condenser 0...Low pressure water supply pump ...Low pressure drum 2 ...Low pressure circulation pump 3 ...Low pressure steam pipe 4 ...Low pressure steam valve 5 ...Steam turbine 6 ... - High pressure water supply pump 7 ... High pressure drum 8 ... High pressure circulation pump 9 ... High pressure steam pipe 0 ... High pressure steam valve 1 ... Generator 0 ... ...Connection pipe...Control valve 2...Pressure calculator

Claims (1)

【特許請求の範囲】[Claims] ガスタービンと、蒸気タービンと、排熱ボイラーとから
なる複合サイクル発電プラントにおいて、前記排熱ボイ
ラーの高圧ドラムと低圧ドラムを連絡管で連絡し、この
連絡管には調節弁を介挿し、起動時に前記調節弁を開い
て高圧ドラムと低圧ドラムの間に水を循環させ、低圧蒸
気の発生を早めることを特徴とする複合サイクル発電プ
ラントの制御方法。
In a combined cycle power generation plant consisting of a gas turbine, a steam turbine, and a waste heat boiler, the high-pressure drum and low-pressure drum of the waste heat boiler are connected by a connecting pipe, and a control valve is inserted in the connecting pipe, so that the A method for controlling a combined cycle power plant, comprising opening the control valve to circulate water between a high-pressure drum and a low-pressure drum to accelerate the generation of low-pressure steam.
JP15112890A 1990-06-08 1990-06-08 Control method for combined cycle electric power plant Pending JPH0443803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15112890A JPH0443803A (en) 1990-06-08 1990-06-08 Control method for combined cycle electric power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15112890A JPH0443803A (en) 1990-06-08 1990-06-08 Control method for combined cycle electric power plant

Publications (1)

Publication Number Publication Date
JPH0443803A true JPH0443803A (en) 1992-02-13

Family

ID=15511979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15112890A Pending JPH0443803A (en) 1990-06-08 1990-06-08 Control method for combined cycle electric power plant

Country Status (1)

Country Link
JP (1) JPH0443803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2752566A4 (en) * 2011-09-15 2015-05-06 Mitsubishi Hitachi Power Sys Gas turbine cooling system, and gas turbine cooling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2752566A4 (en) * 2011-09-15 2015-05-06 Mitsubishi Hitachi Power Sys Gas turbine cooling system, and gas turbine cooling method

Similar Documents

Publication Publication Date Title
US5473898A (en) Method and apparatus for warming a steam turbine in a combined cycle power plant
JP2593578B2 (en) Combined cycle power plant
US20040045300A1 (en) Method and apparatus for starting a combined cycle power plant
JP4923014B2 (en) 2-shaft gas turbine
JPH0436244B2 (en)
KR20040004644A (en) A brayton cycle nuclear power plant and a method of starting the brayton cycle
CN207278308U (en) Combination circulation steam turbine cold start pre-warming system
JP2971378B2 (en) Hydrogen combustion gas turbine plant and operation method thereof
US6286297B1 (en) Steam cooled type combined cycle power generation plant and operation method thereof
JP2000130108A (en) Starting method for combined cycle power plant
JPH10306708A (en) Combined cycle generating plant
JP3559574B2 (en) Startup method of single-shaft combined cycle power plant
JPH0968006A (en) Gas turbine plant
JPH0443803A (en) Control method for combined cycle electric power plant
KR102546449B1 (en) Nuclear power load response generation system using thermal energy storage system
JP2019173697A (en) Combined cycle power generation plant and operation method of the same
JPH11257096A (en) Gas turbine power plant
JP3559573B2 (en) Startup method of single-shaft combined cycle power plant
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPH02259301A (en) Waste heat recovery boiler
JPS5926765B2 (en) Control method and device for a turbine plant having a turbine bypass line
CN105041388B (en) A kind of synchronized method of generating equipment and generating equipment
JPH02163402A (en) Compound electric power plant and its operation
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPS6280492A (en) Condensate recirculating device