JPH044369B2 - - Google Patents

Info

Publication number
JPH044369B2
JPH044369B2 JP28213886A JP28213886A JPH044369B2 JP H044369 B2 JPH044369 B2 JP H044369B2 JP 28213886 A JP28213886 A JP 28213886A JP 28213886 A JP28213886 A JP 28213886A JP H044369 B2 JPH044369 B2 JP H044369B2
Authority
JP
Japan
Prior art keywords
cooling
cooling rate
silicon steel
cold
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP28213886A
Other languages
Japanese (ja)
Other versions
JPS63137122A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP28213886A priority Critical patent/JPS63137122A/en
Publication of JPS63137122A publication Critical patent/JPS63137122A/en
Publication of JPH044369B2 publication Critical patent/JPH044369B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、磁気特性の優れた無方向性けい素
鋼板の製造方法に関し、とくに仕上げ焼鈍時にお
ける冷却過程に工夫を加えることによつて磁気特
性の効果的な向上を図つたものである。 (従来の技術) 無方向性けい素鋼板は、発電機、変圧器および
電動機等の鉄心材料として多用され、磁気特性と
くに鉄損特性および磁束密度に優れていることが
重要とされる。かかる無方向性けい素鋼板の製造
において、最終の仕上げ焼鈍はその磁気特性にお
よぼす影響が殊に外大きく、たとえば特開昭57−
35626号、同59−100218号および同52−96919号各
公報などにおいて種々の改善技術が提案されてい
る。中でも特開昭52−96919号公報に示されてい
る冷却速度制御法は冷却時の歪を低減し、磁気特
性を向上させるのに有効で、高級グレード材にお
いて特に重要な技術である。 (発明が解決しようとする問題点) ところで近年とみに生産性向上が価格競争力を
得る上で重要とされているが、上記技術では膨大
な設備投資を必要とする長大な冷却帯を必要とす
るか又はきわめて低速度での生産を余儀無くされ
るところに問題を残していた。すなわち従来の無
方向性けい素鋼板の製造においては、その仕上げ
焼鈍の冷却を歪無しでしかも短いラインで高生産
性の下に行なうことは、磁性確保と合い入れない
という問題であつたのである。 この発明は、上記の問題を有利に解決するもの
で、優れた磁気特性を、設備投資の少ない短いラ
インでしかも高生産性の下に得ることができる無
方向性けい素鋼板の製造方法を提案することを目
的とする。 (問題点を解決するための手段) さて発明者らは、上記の問題を解決すべく鋭意
研究を重ねた結果、冷却時に鋼板内に導入される
冷却歪は、冷却速度そのものよりも冷却中の冷却
速度の変化に大きく依存することの知見を得た。 この発明は、上記の知見に立脚するものであ
る。 すなわちこの発明は、Ci0.01wt%(以下単に%
で示す)以下、Si:4.0%以下、Mn:0.1〜1.0%
およびAl:1.0%以下を含有する組成になるけい
素鋼スラブを、熱間圧延し、ついで1回または中
間焼鈍を挟む2回以上の冷間圧延によつて最終板
厚の冷延板とし、しかるのち仕上げ焼鈍を施す一
連の工程よりなる無方向性けい素鋼板の製造方法
において、仕上げ焼鈍工程の冷却過程における冷
却速度変化を10℃/s2以下に抑制することから成
る磁気特性の優れた無方向性けい素鋼板の製造方
法である。 以下この発明を具体的に説明する。 まずこの発明において、素材スラブの成分組成
を上記の範囲に限定した理由について説明する。 Cは、不純物元素であり、磁性の時効劣化を生
じるため極力少ない方が好ましく、0.01%を超え
ると脱炭に長時間を必要とするため、0.01%以下
の範囲に限定した。 Siは、電気抵抗を上げ鉄損を下げる有用な元素
であるが、4.0%を超えると冷延性が著しく劣化
するので、4.0%以下に限定した。 Mnは、熱延時におけるMnSの微細析出の防止
および熱延脆化割れ防止のために少なくとも0.1
%を必要とするが、1.0%を超える多量添加は磁
性に有害であるため、含有量は0.1〜1.0%の範囲
に限定した。 Alも、Si同様電気抵抗を上げると共に集合組
織を改善し鉄損を下げるために有効に寄付する
が、1.0%を超えると冷延性が悪化するため1.0%
以下に限定した。 さて上記の好適組成に調整した合金スラブは、
常法に従つて熱間圧延したのち、必要に応じて熱
延板焼鈍を施し、ついで1回または中間圧延を挟
む2回以上の冷間圧延を施して最終板厚の冷延板
とする。 その後、かくして得られた冷延板に仕上げ焼鈍
を施すわけであるが、この発明ではかかる仕上げ
焼鈍工程の冷却過程における冷却速度変化を10
℃/s2以下に制限することがとくに重要である。 第1図に、Si:3.1%、Al:0.5%、Mn:0.25%
およびC:0.001%を含む組成になる0.50mm厚の
けい素鋼冷延板に、1050℃で30秒間の仕上げ焼鈍
を施し、その後30℃/sの冷却速度で冷却を行う
に当り、均熱から冷却に移る際の冷却速度変化を
1℃/s2から25℃/s2まで種々に変化させたとき
の、冷却速度変化と製品板の磁気特性との関係に
ついて調べた結果を示す。 同図より明らかなように、冷却素度変化が10
℃/s2を超えると磁気特性が急激に劣化してい
る。 なお上記の実験において、冷却速度が30℃/s
と一定になるまでの所用時間は、冷却速度変化が
1℃/s2の場合で約30秒、他方25℃/s2の場合は
1〜2秒であた。またそのときの温度はそれぞれ
1015〜1025℃、1040〜1049℃であつた。 次に第2図に、Si:3.2%、Al:0.3%、Mn:
0.30%およびC:0.003%を含有する組成になる
0.50mm厚のけい素鋼冷延板に、1000℃、60秒間の
仕上げ焼鈍を施したのち冷却するに当り、均熱か
ら冷却に移る際の冷却速度変化が5℃/s2、15
℃/s2の条件下に、1〜30℃/sの種々の冷却速
度で冷却を行つたときの冷却速度と製品板と磁気
特性との関係について調べた結果を、冷却速度変
化をパラメータとして示す。 同図より明らかなように、均熱から冷却に至る
までの冷却速度変化が5℃/s2と小さければ、冷
却速度そのものは従来よりもかなり速い速度であ
つても十分に良好な鉄損特性が得られている。 (作用) この発明に従えば高速度冷却でも鋼板内に歪が
入らない理由は、冷却中に板が受ける冷却歪は、
冷却速度そのものよりも冷却速度変化に大きく影
響され、従つて従来冷却速度の変化が大きく、歪
の導入量も多かつた温度領域では、冷却速度変化
を小さくしてやれば導入歪量も軽減され、かくし
て高速冷却が歪無しで達成されるものと考えられ
る。 なおこの発明は、Si4.0%以下のすべての無方
向性けい素鋼板に適用可能であるが、S6、S7相
当の超高級品の効率生産において特に有効な手段
である。 またこの発明法による冷却速度変化の制御は、
冷却の高温域特に300℃以上の鋼板の強度が低い
ところでとりわけ有効であるけれども、全域をこ
の発明法に従つて制御冷却することが望ましいの
はいうまでもない。 (実施例) 実施例 1 Si:3.4%、Al:0.6%、Mn:0.25%およびC:
0.001%の組成になるけい素鋼スラブを、熱間圧
延して1.9mm厚の熱延板とし、ついで1000℃、40
秒の熱延板焼鈍を施したのち、脱スケール後、冷
間圧延により0.50mmの最終板厚の冷延板とした。
その後この冷却板に、1100℃、10秒の仕上げ焼鈍
をH2:75%N2:25%の雰囲気中で行なつたの
ち、試料Aについてはこの発明に従い冷却速度変
化5℃/s2で30℃/sの冷却速度まで冷却速度を
徐々に上げて冷却し、その後30℃/sの一定速度
で常温まで冷却した。これに対し試料Bは20℃/
s2の冷却速度変化で30℃/sまで冷却速度を上
げ、その後同じく30℃/sの一定速度で常温まで
冷却した。 かくして得られた各製品板の磁気特性について
調べた結果を表1に示す。
(Industrial Application Field) The present invention relates to a method for manufacturing non-oriented silicon steel sheets with excellent magnetic properties, and in particular, the present invention relates to a method for manufacturing non-oriented silicon steel sheets with excellent magnetic properties. It is a diagram. (Prior Art) Non-oriented silicon steel sheets are frequently used as iron core materials for generators, transformers, electric motors, etc., and it is important that they have excellent magnetic properties, particularly iron loss properties and magnetic flux density. In the production of such non-oriented silicon steel sheets, the final finish annealing has a particularly large effect on the magnetic properties.
Various improvement techniques have been proposed in publications such as No. 35626, No. 59-100218, and No. 52-96919. Among them, the cooling rate control method disclosed in JP-A-52-96919 is effective in reducing distortion during cooling and improving magnetic properties, and is a particularly important technique for high-grade materials. (Problem to be solved by the invention) In recent years, improving productivity has become important for gaining price competitiveness, but the above technology requires a long cooling zone that requires a huge investment in equipment. Otherwise, problems remained in that production was forced at extremely low speeds. In other words, in the conventional manufacturing of non-oriented silicon steel sheets, the problem was that cooling the finish annealing without distortion and with high productivity on a short line was not compatible with ensuring magnetism. . This invention advantageously solves the above problems and proposes a method for manufacturing non-oriented silicon steel sheets that can obtain excellent magnetic properties on a short line with little capital investment and with high productivity. The purpose is to (Means for Solving the Problems) As a result of intensive research to solve the above problems, the inventors have found that the cooling strain introduced into the steel plate during cooling is more important than the cooling rate itself. We obtained the knowledge that the cooling rate largely depends on changes in the cooling rate. This invention is based on the above knowledge. In other words, this invention uses Ci0.01wt% (hereinafter simply %
) below, Si: 4.0% or less, Mn: 0.1 to 1.0%
and Al: A silicon steel slab having a composition containing 1.0% or less is hot-rolled, and then cold-rolled once or twice or more with intermediate annealing to form a cold-rolled plate of the final thickness, In the manufacturing method of non-oriented silicon steel sheet, which consists of a series of steps in which finish annealing is then performed, the method of producing non-oriented silicon steel sheets has excellent magnetic properties, which consists of suppressing the cooling rate change in the cooling process of the finish annealing step to 10°C/s 2 or less. This is a method for manufacturing a non-oriented silicon steel sheet. This invention will be explained in detail below. First, in this invention, the reason why the component composition of the material slab is limited to the above range will be explained. C is an impurity element and causes aging deterioration of magnetism, so it is preferably as small as possible.If it exceeds 0.01%, decarburization will take a long time, so it is limited to a range of 0.01% or less. Si is a useful element that increases electrical resistance and reduces iron loss, but if it exceeds 4.0%, cold rollability deteriorates significantly, so it was limited to 4.0% or less. Mn is at least 0.1 to prevent fine precipitation of MnS during hot rolling and to prevent hot rolling embrittlement cracking.
%, but addition of more than 1.0% is harmful to magnetism, so the content was limited to a range of 0.1 to 1.0%. Like Si, Al also effectively contributes to increase electrical resistance, improve texture, and lower iron loss, but if it exceeds 1.0%, cold rollability deteriorates, so 1.0%
Limited to the following. Now, the alloy slab adjusted to the above preferred composition is
After hot rolling according to a conventional method, a hot rolled sheet is annealed if necessary, and then cold rolling is performed once or twice or more with intermediate rolling in between to obtain a cold rolled sheet of final thickness. After that, the thus obtained cold-rolled sheet is subjected to finish annealing, and in this invention, the cooling rate change in the cooling process of the finish annealing process is
It is particularly important to limit the temperature to below ℃/ s2 . Figure 1 shows Si: 3.1%, Al: 0.5%, Mn: 0.25%.
A 0.50 mm thick cold-rolled silicon steel plate with a composition containing 0.001% and C: was subjected to finish annealing at 1050°C for 30 seconds, and then soaked at a cooling rate of 30°C/s. The results of an investigation into the relationship between the cooling rate change and the magnetic properties of the product board when the cooling rate change from 1°C/s 2 to 25°C/s 2 are shown below. As is clear from the figure, the cooling element change is 10
When the temperature exceeds ℃/s 2 , the magnetic properties deteriorate rapidly. In the above experiment, the cooling rate was 30℃/s.
The time required for the cooling rate to become constant was approximately 30 seconds when the cooling rate change was 1°C/ s2 , and 1 to 2 seconds when the cooling rate was 25°C/ s2 . Also, the temperature at that time is
The temperature was 1015-1025℃ and 1040-1049℃. Next, in Figure 2, Si: 3.2%, Al: 0.3%, Mn:
The composition contains 0.30% and C: 0.003%.
When cooling a 0.50 mm thick silicon steel cold-rolled plate after final annealing at 1000°C for 60 seconds, the cooling rate change from soaking to cooling was 5°C/s 2 , 15
The results of investigating the relationship between the cooling rate and the magnetic properties of the product plate when cooling was performed at various cooling rates from 1 to 30°C/s under the condition of ℃/s 2 were calculated using the cooling rate change as a parameter. show. As is clear from the figure, if the change in cooling rate from soaking to cooling is as small as 5°C/ s2 , the iron loss characteristics will be sufficiently good even if the cooling rate itself is much faster than before. is obtained. (Function) According to this invention, the reason why no strain occurs in the steel plate even during high-speed cooling is that the cooling strain that the plate receives during cooling is
The change in cooling rate is more affected than the cooling rate itself, and therefore, in the temperature range where conventionally the change in cooling rate was large and the amount of strain introduced was large, if the change in cooling rate is made small, the amount of introduced strain can be reduced. It is believed that fast cooling is achieved without distortion. Although this invention is applicable to all non-oriented silicon steel sheets with Si4.0% or less, it is a particularly effective means for efficiently producing ultra-high-grade products equivalent to S6 and S7. In addition, the control of cooling rate change by this invention method is as follows:
It goes without saying that it is desirable to controllably cool the entire region according to the method of the present invention, although it is particularly effective in the high temperature region of cooling, particularly in the region of 300° C. or higher where the strength of the steel plate is low. (Example) Example 1 Si: 3.4%, Al: 0.6%, Mn: 0.25% and C:
A silicon steel slab with a composition of 0.001% was hot rolled into a 1.9 mm thick hot rolled plate, and then heated at 1000℃ for 40 minutes.
After the hot-rolled plate was annealed for 2 seconds, it was descaled and cold-rolled to obtain a cold-rolled plate with a final thickness of 0.50 mm.
After that, this cooling plate was subjected to finish annealing at 1100°C for 10 seconds in an atmosphere of H 2 : 75% N 2 : 25%, and then sample A was annealed at a cooling rate of 5°C/s 2 according to the present invention. The cooling rate was gradually increased to a cooling rate of 30°C/s, and then the temperature was cooled to room temperature at a constant rate of 30°C/s. On the other hand, sample B is 20℃/
The cooling rate was increased to 30° C./s by changing the cooling rate of s 2 , and then cooled to room temperature at the same constant rate of 30° C./s. Table 1 shows the results of investigating the magnetic properties of each product board thus obtained.

【表】 実施例 2 Si0.5%、Al0.001%、Mn0.25%およびC0.002%
を含有する組成になるけい素鋼スラブを、熱間圧
延して2.4mm厚の熱延板とし、ついで脱スケール
後、1回の冷延で0.50mm厚の冷延板としたのち、
860℃、15秒の仕上げ焼鈍をH2:60%、N2:40
%の雰囲気中で行なつたのち、その冷却処理につ
き、試料Cは7℃/s2の冷却速度変化でまた試料
Dは25℃/s2の冷却素度変化で両方とも30℃/s
まで冷却速度を上げ、その後30℃/sの一定速度
で常温まで冷却した。 かくして得られた各製品板の磁気特性について
調べた結果を表2に示す。
[Table] Example 2 Si0.5%, Al0.001%, Mn0.25% and C0.002%
A silicon steel slab having a composition containing is hot rolled into a 2.4 mm thick hot rolled plate, then descaled and made into a 0.50 mm thick cold rolled plate by one cold rolling.
Finish annealing at 860℃ for 15 seconds in H2 :60%, N2 :40
% atmosphere, and the cooling process was performed at 30°C/s for sample C with a cooling rate change of 7°C/s 2 and for sample D with a cooling rate change of 25°C/s 2 .
The cooling rate was then increased to 30° C./s, and then cooled to room temperature at a constant rate of 30° C./s. Table 2 shows the results of investigating the magnetic properties of each product board thus obtained.

【表】 (発明の効果) かくしてこの発明によれば、無方向性けい素鋼
板の製造工程中、とくに仕上げ焼鈍工程の冷却過
程において、均熱温度から所定の冷却速度に至る
までの冷却速度変化を10℃/s2以下に抑制するこ
とにより、その後高速で冷却を施したとしても十
分満足のいく磁気特性を得ることができ、従つて
長大な冷却帯を必要とすることなしに高冷却速度
で高生産性の下に優れた磁気特性を有する無方向
性けい素鋼板を容易に得ることができる。
[Table] (Effects of the Invention) Thus, according to the present invention, during the manufacturing process of non-oriented silicon steel sheets, especially in the cooling process of the finish annealing process, the cooling rate change from the soaking temperature to the predetermined cooling rate is controlled. By suppressing the temperature to 10°C/ s2 or less, it is possible to obtain sufficiently satisfactory magnetic properties even if cooling is subsequently performed at high speed. Therefore, high cooling rates can be achieved without requiring a long cooling zone. With this method, a non-oriented silicon steel sheet having excellent magnetic properties can be easily obtained with high productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、仕上げ焼鈍工程の冷却過程における
冷却速度変化と磁気特性との関係を示したグラ
フ、第2図は、同じく仕上げ焼鈍工程の冷却過程
における冷却速度と磁気特性との関係を冷却速度
変化をパラメータとして示したグラフである。
Figure 1 is a graph showing the relationship between cooling rate changes and magnetic properties during the cooling process of the final annealing process, and Figure 2 is a graph showing the relationship between the cooling rate and magnetic properties during the cooling process of the final annealing process. It is a graph showing changes as parameters.

Claims (1)

【特許請求の範囲】 1 C:0.01wt%以下、 Si:4.0wt%以下、 Mn:0.1〜1.0wt%および Al:1.0wt%以下 を含有する組成になるけい素鋼スラブを、熱間圧
延し、ついで1回または中間焼鈍を挟む2回以上
の冷間圧延によつて最終板厚の冷延板とし、しか
るのち仕上げ焼鈍を施す一連の工程よりなる無方
向性けい素鋼板の製造方法において、 仕上げ焼鈍工程の冷却過程における冷却速度変
化を10℃/s2以下に抑制することを特徴とする、
磁気特性の優れた無方向性けい素鋼板の製造方
法。
[Claims] 1 A silicon steel slab having a composition containing C: 0.01 wt% or less, Si: 4.0 wt% or less, Mn: 0.1 to 1.0 wt%, and Al: 1.0 wt% or less is hot rolled. In a method for producing a non-oriented silicon steel sheet, which comprises a series of steps of: then cold-rolling once or twice or more with intermediate annealing to obtain a cold-rolled sheet of final thickness, and then subjecting it to final annealing. , characterized by suppressing the cooling rate change in the cooling process of the final annealing process to 10°C/s 2 or less,
A method for manufacturing non-oriented silicon steel sheets with excellent magnetic properties.
JP28213886A 1986-11-28 1986-11-28 Production of non-oriented silicon steel sheet having excellent magnetic characteristic Granted JPS63137122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28213886A JPS63137122A (en) 1986-11-28 1986-11-28 Production of non-oriented silicon steel sheet having excellent magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28213886A JPS63137122A (en) 1986-11-28 1986-11-28 Production of non-oriented silicon steel sheet having excellent magnetic characteristic

Publications (2)

Publication Number Publication Date
JPS63137122A JPS63137122A (en) 1988-06-09
JPH044369B2 true JPH044369B2 (en) 1992-01-28

Family

ID=17648603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28213886A Granted JPS63137122A (en) 1986-11-28 1986-11-28 Production of non-oriented silicon steel sheet having excellent magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS63137122A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225724A (en) * 1988-03-04 1989-09-08 Nkk Corp Production of non-oriented flat rolled magnetic steel sheet having excellent low magnetic field magnetic characteristic
KR100316896B1 (en) * 1993-09-29 2002-02-19 에모또 간지 Non-oriented silicon steel sheet having low iron loss and method for manufacturing the same
US6436199B1 (en) 1999-09-03 2002-08-20 Kawasaki Steel Corporation Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor

Also Published As

Publication number Publication date
JPS63137122A (en) 1988-06-09

Similar Documents

Publication Publication Date Title
US3159511A (en) Process of producing single-oriented silicon steel
RU2529258C1 (en) Method to produce sheet from unoriented electrical steel
EP0334223A2 (en) Ultra-rapid heat treatment of grain oriented electrical steel
EP0393508A1 (en) Process for producing grain-oriented electrical steel sheet having superior magnetic characteristic
US3415696A (en) Process of producing silicon steel laminations having a very large grain size after final anneal
EP0475710B1 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characteristics
JPH044369B2 (en)
JPH0623410B2 (en) Method for manufacturing non-oriented electric iron plate with high magnetic flux density
JPH06220537A (en) Production of non-oriented silicon steel sheet
JP3290446B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties and good surface appearance
US3586545A (en) Method of making thin-gauge oriented electrical steel sheet
WO1989008152A1 (en) Process for producing nonoriented electric steel sheet having excellent magnetic properties in lowly magnetic field
JPH0273919A (en) Manufacture of nonoriented electrical steel sheet having excellent magnetic characteristics
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3338238B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP4258028B2 (en) Method for producing non-oriented electrical steel sheet
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH04337050A (en) High tensile strength magnetic material excellent in magnetic property and its production
JP2717009B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
CN117062921A (en) Method for producing oriented electrical steel sheet
JPH01191741A (en) Manufacture of semiprocessing non-oriented electrical steel sheet
JPS60152628A (en) Manufacture of nonoriented silicon steel sheet with small iron loss
JPS62278226A (en) Manufacture of silicon steel plate
CN117203355A (en) Method for producing oriented electrical steel sheet
JP3360236B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees