JPS60152628A - Manufacture of nonoriented silicon steel sheet with small iron loss - Google Patents

Manufacture of nonoriented silicon steel sheet with small iron loss

Info

Publication number
JPS60152628A
JPS60152628A JP570184A JP570184A JPS60152628A JP S60152628 A JPS60152628 A JP S60152628A JP 570184 A JP570184 A JP 570184A JP 570184 A JP570184 A JP 570184A JP S60152628 A JPS60152628 A JP S60152628A
Authority
JP
Japan
Prior art keywords
annealing
stage
silicon steel
steel sheet
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP570184A
Other languages
Japanese (ja)
Inventor
Michiro Komatsubara
道郎 小松原
Bunjiro Fukuda
福田 文二郎
Hiroto Nakamura
中村 広登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP570184A priority Critical patent/JPS60152628A/en
Publication of JPS60152628A publication Critical patent/JPS60152628A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To reduce the iron loss by hot rolling a slab for a nonoriented silicon steel sheet contg. specified amounts of C, Si and Al and particles of inclusions restricted to a specified number and by carrying out cold rolling to the final thickness and two-stage annealing under specified conditions. CONSTITUTION:A slab for a nonoriented silicon steel sheet contg. <0.01wt% C, <4wt% Si, <1wt% Al and particles of inclusion of >=5mum size restricted to <=80 per 1mm.<3> steel is hot rolled and cold rolled to the final thickness by a conventional method. The cold rolled steel sheet is subjected to two-stage final annealing, that is, annealing at 750-850 deg.C soaking temp. for 1-4min and annealing at 900-1,000 deg.C soaking temp.

Description

【発明の詳細な説明】 技術分野 鉄損の低い無方向性けい素鋼板の製造方法に関して、こ
の明細書に述べる技術内容は、とくに該鋼板の製造工程
中最終焼鈍処理に工夫を加えるこ1とにより、鉄損全向
上させることに関連している。
[Detailed Description of the Invention] Technical Field Regarding the manufacturing method of non-oriented silicon steel sheets with low core loss, the technical content described in this specification is particularly focused on the addition of a device to the final annealing treatment during the manufacturing process of the steel sheets. This is related to improving overall iron loss.

技術的背景 無方向性けい素鋼板は、主としてモーターの固定子回転
子、水力発電機の固定子および螢光灯の安是器などに使
用されているが、省エネルギーの1”。
Technical background Non-oriented silicon steel sheets are mainly used in motor stators and rotors, hydroelectric generator stators, and fluorescent lamp safety equipment, and are highly energy-saving.

観点から、これらの機器の電力損失をより一層抑えるた
め、無方向性けい素鋼板の鉄損金さらに低減させること
への要請が近年ますます強くなってきている。
From this point of view, in recent years there has been an increasing demand for further reducing the iron loss of non-oriented silicon steel sheets in order to further suppress the power loss of these devices.

無方向性けい素鋼の鉄損全改善する方法の一つl・とじ
て、Si−?Alの添加量を増して固有抵抗を高める方
法があるが、この方法では添加量の増加につれて冷間圧
延性が悪くなυ、また材料の価格も高くなるなどの不利
が伴うので、限度がある。また別の方法として、最終焼
鈍温度を適切に制御し、・・て結晶粒の大きさを適正粒
度にする方法が効果的・であることが知られている。
One of the methods to completely improve the iron loss of non-oriented silicon steel is Si-? There is a method of increasing the specific resistance by increasing the amount of Al added, but this method has its limitations, as the cold rollability worsens as the amount of Al added increases, and the cost of the material also increases. . As another method, it is known to be effective to appropriately control the final annealing temperature to adjust the crystal grain size to an appropriate grain size.

さらに鋼中のO,N、S’(r低減し、鋼中の酸化物、
窒化物、硫化物などの介在物を低減する方法が、鉄損低
域につき極めて有効であることが解明され、最近では製
鋼技術の進歩によりO,N、Sともにa o ppm以
下の高純度の素材が得られるようになったこともあって
、飛躍的に低い鉄損材料が製造されるようになった。
Furthermore, O, N, S' (r) in steel is reduced, and oxides in steel are
It has been discovered that the method of reducing inclusions such as nitrides and sulfides is extremely effective in reducing iron loss, and recent advances in steelmaking technology have made it possible to reduce inclusions such as nitrides and sulfides. Thanks in part to the availability of these materials, materials with significantly lower iron loss have been manufactured.

第1図a、bに、表1に成分組成を示した8種、、。Figures 1a and 1b show eight types, the compositions of which are shown in Table 1.

の鋼を、常法に従って0.86朋の厚みに冷間圧延した
のち、第2図に模式で示した均熱温度が一定の従来の熱
サイクルに従って焼鈍して得た無方向性けい素鋼板の鉄
損特性について調べた結果を示す0 なお表1中の介在物頻度とは、600倍の顕微鏡視野か
ら5μm以上の介在物を数えた時の単位面積当りの個数
i N @/、2とした時、N 個4□8として算出し
た数値であり、単位体積当りの介在物の個数を意味する
This is a non-oriented silicon steel sheet obtained by cold-rolling the steel to a thickness of 0.86mm according to a conventional method, and then annealing it according to a conventional thermal cycle with a constant soaking temperature as schematically shown in Fig. 2. The inclusion frequency in Table 1 is the number of inclusions per unit area when counting inclusions of 5 μm or more from a 600x microscopic field of view. This is a value calculated as N pieces 4□8, and means the number of inclusions per unit volume.

第1図より明らかなように、鋼中介在物を低減1した上
で、焼鈍温度を適正範囲に設定することにより、大幅に
鉄損が低減されることがわかる。同図申告鋼種の適正焼
鈍温度はそれぞれ、鋼l:1000°C5鋼■975°
0および鋼■950℃近傍であるが、かかる処理温度は
、結晶粒径を適正結晶粒径である150=200μmに
調整するのに好適な温度で、介在物頻度の高いもの程、
細粒となり易いので、高温度側に移行している。
As is clear from FIG. 1, it can be seen that by reducing the inclusions in the steel and then setting the annealing temperature within an appropriate range, the iron loss can be significantly reduced. The appropriate annealing temperature for the steel types declared in the same figure is Steel l: 1000° C5 Steel ■ 975°
0 and steel ■, around 950°C, but this treatment temperature is a temperature suitable for adjusting the crystal grain size to the appropriate crystal grain size of 150 = 200 μm, and the higher the frequency of inclusions, the more
Since it tends to become fine particles, it is shifted to the high temperature side.

その他にもかようなけい素鋼の鉄損全改善する1・・方
法として、集合組織の改善を図ったものたとえば容易磁
化軸を多く含む(110)面や(200)面強度を上げ
、逆に<222)面強度は抑えるなどの手法があり、か
かる手法については・より一層の効果を挙げるべく、熱
延板焼鈍を含む冷延1回法や。
In addition, methods for improving the iron loss of silicon steel include improving the texture, for example, increasing the strength of the (110) plane and (200) plane, which contain many easy magnetization axes, and <222) There are methods such as suppressing the surface strength, and these methods include the one-time cold rolling method including hot-rolled plate annealing to achieve even greater effects.

あるいは熱延板を酸洗した後中間焼鈍をはさむ2回冷延
法に関し、その冷間圧下率と焼鈍温度について種々の検
討がなされている。− 解決手段の解明経緯 この発明は、以下に述べるように従来とは全く異なる手
法で集合組織の改善ならびに結晶粒度の゛調整を可能な
らしめることにより、鉄損の一層の低減を実現したもの
である。
Alternatively, various studies have been made regarding the cold rolling reduction rate and annealing temperature regarding a two-time cold rolling method in which a hot rolled sheet is pickled and then subjected to intermediate annealing. − History of the elucidation of the solution As described below, this invention has achieved a further reduction in iron loss by making it possible to improve the texture and adjust the grain size using a method completely different from conventional methods. be.

すなわち発明者らは、無方向性けい素鋼板の鉄損特注を
改善すべく、該鋼板の製造工程につき再5検討を加えた
ところ、最終焼鈍工程においては、まず集合組織の形成
が進み、ついで結晶粒の成長が起きることを見出し、か
かる知見に基いてさらに研究t−重ねたところ、最終焼
鈍を、適正集合組織調整のための前段部と適正結晶粒度
調整のため10の後段部とに分け、かかる2段焼鈍を施
すことによシ、従来に比べ飛躍的な鉄損の低減が達成さ
れ得ることを究明し、この発明を完成させたのである。
In other words, in order to improve the iron loss custom made of non-oriented silicon steel sheets, the inventors reexamined the manufacturing process of the steel sheets, and found that in the final annealing process, the formation of texture first progressed, and then We found that crystal grain growth occurs, and based on this knowledge, we conducted further research and found that the final annealing was divided into a front stage for proper texture adjustment and a rear stage for proper grain size adjustment. They discovered that by performing such two-stage annealing, it was possible to achieve a dramatic reduction in iron loss compared to the conventional method, and completed this invention.

発明の構成 この発明は、0: 0.010重量%(以下単に係で表
わす〕以下、Si : 4.0%以下およびAl: 1
.0チ以下を含む組成になり、かつ6μm以上の大きさ
の鋼中介在物頻度を80 HI3に一以下に抑制した無
方向性けい素鋼用スラブを熱間圧延し、ついで20常法
に従う冷間圧延により最終板厚の冷延鋼板と・したのち
、引き続いて最終焼鈍を施す一連の工程よりなる無方向
性けい素鋼板の製造方法において、上記最終焼鈍を二段
階で行うものとし、前段は750〜850 ”Oの均熱
温度範囲で1−4分間、また後段は900〜1000℃
の均熱温度範囲とする条件下にそれぞれ焼鈍処理を施す
ことを特徴とする、鉄損の低い無方向性けい素鋼板の製
造方法である。
Structure of the Invention The present invention is characterized in that 0: 0.010% by weight (hereinafter simply expressed as a ratio), Si: 4.0% or less, and Al: 1
.. A slab for non-oriented silicon steel which has a composition containing 0% or less and suppresses the frequency of inclusions in the steel with a size of 6 μm or more to 80 HI3 or less is hot rolled and then cooled according to a conventional method. In a method for producing a non-oriented silicon steel sheet, which consists of a series of steps in which a cold-rolled steel sheet has the final thickness by inter-rolling, and then final annealing is performed, the final annealing is performed in two stages, the first stage being Soak for 1-4 minutes at a soaking temperature range of 750-850"O, and at a temperature of 900-1000℃ for the second stage.
This is a method for producing a non-oriented silicon steel sheet with low iron loss, characterized by performing annealing treatment under conditions of a soaking temperature range of .

以下この発明を由来するに至った実験結果に基1・・き
この発明を具体的に説明する。
Hereinafter, based on the experimental results that led to this invention, 1. Kiko's invention will be specifically explained.

さて前掲表1に成分組成を示した8種の冷延板1、II
および■について、第8図に示した熱サイクルになる二
段階の焼鈍を施して、無方向性けい素鋼板を製造した。
Now, the eight types of cold-rolled sheets 1 and II whose component compositions are shown in Table 1 above.
For and ■, two-stage annealing was performed in the thermal cycle shown in FIG. 8 to produce a non-oriented silicon steel plate.

なお同図において、後段の処1理条件を950℃×X分
間としたのは、焼鈍後の結晶粒径が最適範囲である15
0〜200μmとなるようにするには、均熱時間を鋼種
に応じて0.5秒から10分間程度の間で適宜に調整す
る必要があるからである。また焼鈍雰囲気は、H,: 
75%、。
In the same figure, the second processing condition is 950°C for X minutes because the grain size after annealing is in the optimum range.
This is because, in order to obtain a thickness of 0 to 200 μm, it is necessary to adjust the soaking time appropriately between about 0.5 seconds and about 10 minutes depending on the steel type. The annealing atmosphere was H,:
75%.

N2: 25 %の非酸化性雰囲気とした。A non-oxidizing atmosphere with N2: 25% was used.

かくして得られた各鋼板の鉄損特性について調べた結果
を、前段均熱温度と鉄損値との関係で第4図a、bにそ
れぞれ示す。
The results of examining the iron loss characteristics of each steel plate thus obtained are shown in FIGS. 4a and 4b, respectively, in terms of the relationship between the pre-soaking temperature and the iron loss value.

なお同図には比較のため前掲第2図に示した従)未決に
従う熱サイクルで得られた最良鉄損値も併せて示した。
For comparison, the figure also shows the best iron loss value obtained in the heat cycle according to the method shown in Figure 2 above.

第4図から明らかなように、介在物頻度の高いvI41
においては二段焼鈍の効果はほとんど見られなかったけ
れども、介在物の少ない鋼■やIにっ1・;いては、前
段を750〜850”0に下げた二段焼鈍によって極め
て優れた低鉄損材が得られている。
As is clear from Fig. 4, vI41 has a high inclusion frequency.
Although the effect of two-stage annealing was hardly seen in steels with few inclusions, two-stage annealing in which the previous stage was lowered to 750 to 850"0 resulted in extremely superior low-iron steels. Waste material is obtained.

次に第5図a、bおよび第6図a、b、cに、鋼Iおよ
び鋼Iの集合組織の一部をあらゎす(200)極点図を
それぞれ示す。
Next, Fig. 5 a, b and Fig. 6 a, b, c show (200) pole figures showing part of the texture of Steel I and Steel I, respectively.

第5図中(a)は鋼Iに850°0+950℃の二段焼
鈍を施した場合、また同図(b)は1000″Cの台形
焼鈍を施した場合である。そして第6図中(a)は鋼■
に850 ’O+ 950℃の二段焼鈍、また同図巾)
は900℃+950℃の二段焼鈍、さらに同図(o)は
 2、。
In Fig. 5 (a), Steel I is subjected to two-stage annealing at 850°0 + 950°C, and Fig. 5 (b) is the case in which trapezoidal annealing is performed at 1000''C. a) is steel ■
Two-stage annealing at 850'O + 950℃, and the width of the same drawing)
is a two-stage annealing at 900℃+950℃, and the same figure (o) is 2.

o 50 ”Oの台形焼鈍を施した場合である。This is a case where trapezoidal annealing of 50"O was performed.

第5図に示したように、鋼中介在物頻度の高い鋼■の場
合には、全体に(222)面強度が強くなっていて、二
段焼鈍の効果が明瞭には表われていない。この理由は、
介在物が(222)面強度を増す原因となる(111)
粒の核生成の場所となるためと考えられる。
As shown in FIG. 5, in the case of steel (2) with a high frequency of inclusions in the steel, the (222) plane strength is strong overall, and the effect of two-stage annealing is not clearly evident. The reason for this is
Inclusions cause increase in (222) surface strength (111)
This is thought to be because it becomes a place for grain nucleation.

これに対し鋼中介在物の少ない鋼■においては、第6図
に示したように(200)面や(110)面の強度が高
く、(222)面強度は低い。そしてかよ1.。
On the other hand, in steel (2) with few inclusions in the steel, as shown in FIG. 6, the strength of the (200) plane and the (110) plane is high, and the strength of the (222) plane is low. And Kayo 1. .

うな傾向は、とくにこの発明に従う二段焼鈍(第6図a
)を施した・場合に著しい。
This tendency is particularly observed in the two-stage annealing according to the present invention (Fig. 6a).
) is significant in cases where

次にこの発明において、素材の基本成分を前記の範囲に
限定した理由について述べる。
Next, in this invention, the reason why the basic components of the material are limited to the above range will be described.

0は、時効劣化をもたらすので少ない万が好まし1いが
、途中工程で脱炭も可能なので、脱炭効率の良好な0.
010%までなら許容できる。
0 brings about aging deterioration, so it is preferable to have a small number of 1,000, but decarburization is possible in the middle of the process, so 0.0 has good decarburization efficiency.
Up to 0.010% is acceptable.

Siは、固有抵抗を高めて、渦電流損を減らし、鉄損を
向上させるのに有効であるが、過度に添加すると、冷延
性が悪くなるので、4.0 %以下の範囲、。
Si is effective in increasing specific resistance, reducing eddy current loss, and improving iron loss, but if added in excess, cold rollability deteriorates, so Si should be added in a range of 4.0% or less.

に限定した。limited to.

AIは、鋼の脱酸やAJN系の析出物のiを低減するの
に有効に寄与する他、Siと同様、固有抵抗’lrMめ
て、鉄損全向上させる上でも有用な成分であるが、過度
に添加すると冷延性が悪くなるので)1.0%以下の範
囲に限定した。
AI not only contributes effectively to deoxidizing steel and reducing i of AJN-based precipitates, but also, like Si, is a useful component in improving specific resistance 'lrM and overall iron loss. If added in excess, cold rollability deteriorates, so the amount was limited to 1.0% or less.

次に鋼中介在物の頻度については、5μm以上の大きさ
のものが80個4.8を超えて鋼中に存在する場合には
、前述した如くこの発明の二段焼鈍の効果は現われない
ので、5μm以上の大きさの介1・)往動の頻度は80
個4□8以下とした。ただしこの発明における介在物と
は、その測定法からも明らかなことであるが、当然に硫
化物系やA/lNなどの析出物を含むものである。
Next, regarding the frequency of inclusions in the steel, if there are more than 80 inclusions with a size of 5 μm or more in the steel, the effect of the two-stage annealing of the present invention will not appear as described above. Therefore, for particles larger than 5 μm, the frequency of forward movement is 80
The number of pieces was 4□8 or less. However, as is clear from the measurement method, inclusions in this invention naturally include precipitates such as sulfides and A/IN.

なおかような介在物を減少させるためには、鋼1、中N
葉、S量およびO量を低減すればよい。ちなみに介在物
頻度を、この発明に従う適正範囲内に納めるために必要
な上記各成分の許容量は、N≦0.0025%、 S 
50.0015%そしてO≦0.0020 %程度であ
る。
In order to reduce such inclusions, steel 1, medium N
What is necessary is to reduce the amount of leaves, S amount, and O amount. Incidentally, the allowable amounts of each of the above components necessary to keep the inclusion frequency within the appropriate range according to the present invention are N≦0.0025%, S
50.0015% and O≦0.0020%.

さてこの発明では、溶鋼を連続鋳造法もしくはl造塊−
分塊圧延法によってスラブとし、ついで通常の工程で熱
間圧延されるものであるが、上述した如き成分の調整に
よって鋼中の介在物頻度は、5μm以上の大きさのもの
で80個4.8以下に規制される。
Now, in this invention, molten steel is processed by continuous casting method or l ingot making method.
A slab is formed by the blooming method and then hot-rolled in a normal process, but by adjusting the ingredients as described above, the frequency of inclusions in the steel is reduced to 80 with a size of 5 μm or more.4. It is regulated to be 8 or less.

冷間圧延工程は、1回の冷間圧延により製品厚みとする
もの、中間焼鈍をはさんで、2回の冷間圧延により製品
厚みとするもの、あるいは、熱延板を焼鈍し、次いで1
回の冷間圧延によシ、製品l・・厚みとされるもののい
ずれでも良い。
In the cold rolling process, the thickness of the product is obtained by one cold rolling, the thickness of the product is obtained by cold rolling twice with intermediate annealing, or the hot rolled sheet is annealed and then
After cold rolling, the product may have a thickness of 1.

しかるのちこの発明に従って二段階の最終焼鈍を施すわ
けである。
Then, according to the present invention, a two-stage final annealing is performed.

この発明に従う二段焼鈍とは、前掲第8図に示したよう
な前段部と後段部の二段の均熱部と、通1常の短時間焼
鈍における昇温、冷却部からなる熱サイクルからなり、
前述したように前段の低温焼鈍部は集合組織を改善する
ための段階、また後段の高温焼鈍部は結晶粒径を調整す
るための段階である。
The two-stage annealing according to the present invention consists of a thermal cycle consisting of a two-stage soaking section, a front stage and a rear stage, as shown in FIG. Become,
As mentioned above, the first low-temperature annealing section is for improving the texture, and the second high-temperature annealing section is for adjusting the grain size.

かかる二段焼鈍において、前段の均熱温度が ′850
°0よシ高温になると集合組織が劣化して鉄損の悪化が
著しく、−万750°0よす低温では、前段部では再結
晶がほとんど進行せずして後段部のみで再結晶が発達す
るということになって従来・の台形焼鈍と同じ結果とな
るため、集合組織の改善効果に乏しく、鉄損の著しい改
善は期待できない。したがって、前段均熱温度は750
〜850°0とした。また焼鈍時間は、1分未満では適
正集合組織改善効果が顕著でないため均熱1分以上とす
1・・るが、4分を超えて均熱保持しても集合組織改善
効果は飽和に達するので4分以内とした。
In such two-stage annealing, the soaking temperature in the first stage is
At temperatures above 0°, the texture deteriorates and the iron loss deteriorates significantly, while at temperatures below -1,750°, recrystallization hardly progresses in the front stage, and recrystallization develops only in the rear stage. Since the result is the same as that of conventional trapezoidal annealing, the effect of improving the texture is poor and no significant improvement in iron loss can be expected. Therefore, the pre-stage soaking temperature is 750
~850°0. In addition, if the annealing time is less than 1 minute, the proper texture improvement effect will not be noticeable, so the soaking time should be longer than 1 minute. However, even if the soaking time is kept for more than 4 minutes, the texture improvement effect will reach saturation. Therefore, it was set to within 4 minutes.

また後段の高温焼鈍については、均熱温度が900℃よ
り低いと、充分な大きさの結晶粒が得られず、−万10
00”0を超えると結晶粒の粒成長1速度が大きくなっ
て適正な結晶粒に調整することが困難となる。したがっ
て、後段部の均熱温度は900〜1000℃の範囲に限
定した。また焼鈍時間は適正結晶粒度に合せて適宜に調
整すればよく、通常0.6秒〜lO分程度が好適である
In addition, regarding the subsequent high-temperature annealing, if the soaking temperature is lower than 900°C, crystal grains of sufficient size will not be obtained.
If it exceeds 00"0, the grain growth rate of the crystal grains increases and it becomes difficult to adjust the crystal grains to an appropriate size. Therefore, the soaking temperature in the latter stage was limited to a range of 900 to 1000°C. The annealing time may be appropriately adjusted according to the appropriate crystal grain size, and is usually preferably about 0.6 seconds to 10 minutes.

実施例 以下この発明の実施例について説明する。Example Examples of the present invention will be described below.

実施例1 O: 0.0(134係、Si : 8.22係、AJ
 : 0.620%S : 0.0006%、N : 
0.0017係および0 : 0.0009%を含有す
る組成になる鋼スラブを加熱後、熱延して2.0朋厚と
したのち、酸洗してから冷間圧延によ、90.7011
の中間厚みとし、次いで950°0で8分間の中間焼鈍
を施したのち0.85朋の最終厚みに2回目の冷間圧延
を施した。
Example 1 O: 0.0 (134 sections, Si: 8.22 sections, AJ
: 0.620%S: 0.0006%, N:
After heating a steel slab having a composition containing 0.0017% and 0:0.0009%, it was hot rolled to a thickness of 2.0 mm, pickled, and then cold rolled to a 90.7011.
It was then subjected to an intermediate annealing at 950°0 for 8 minutes, and then subjected to a second cold rolling to a final thickness of 0.85 mm.

この冷延板に、■265%、残余N、、霧点θ”0の雰
囲気中で、前段850℃×2分、後段950℃×1分の
熱サイクルになる二段焼鈍を施して無方向性けい素鋼板
を製造した。
This cold-rolled sheet was subjected to two-stage annealing in an atmosphere with ■265%, residual N, and fog point θ"0, with a thermal cycle of 850°C x 2 minutes in the first stage and 950°C x 1 minute in the latter stage, resulting in a non-directional manufactured silicon steel sheets.

得られた鋼板の磁気特注を、25crrLニブスタイl
The magnetic customization of the obtained steel plate was made into a 25 crrL nib style.
.

ン法によって調べた結果を表2に示す。Table 2 shows the results of the investigation using the analysis method.

なお比較のため、上記冷延板を、従来法に従う950℃
×2分の台形熱サイクルで最終焼鈍を施して得たけい素
鋼板についても、同様にして磁気特性t−調べ、その結
果を表2に併記した。
For comparison, the above cold-rolled sheet was heated at 950°C according to the conventional method.
A silicon steel sheet obtained by final annealing in a trapezoidal thermal cycle of ×2 minutes was also examined for magnetic properties (t-) in the same manner, and the results are also listed in Table 2.

表2 同表の結果から明白なように、この発明法に従1・・つ
て得られた無方向性けい素鋼板は、従来材に比べ鉄損特
性ならびに磁束密度とも一段と優れている。
Table 2 As is clear from the results in the table, the non-oriented silicon steel sheets obtained according to the method of the present invention are much better in iron loss characteristics and magnetic flux density than conventional materials.

実施例2 0 : 0.008 %、Si : 3.25 %、A
l: 0−598 % 、1sS : 0.005%、
N : 0.0022%、およびO:0.0012チを
含有する組成になる鋼スラブを、加熱後2.0騙厚に熱
延し、この熱延鋼帯に95m0Xa分の規準を施したの
ち酸洗し、ついで冷間圧延によバ0.85JIl11の
厚みの冷延板とした。この冷延板に、 −・・H265
チ、残余Ng、露点40 ’Qの雰囲気中で前段840
’OX2分、後段1000″OXI分(7)熱サイクル
になる二段焼鈍全施して無方向性けい素鋼板を製造した
Example 2 0: 0.008%, Si: 3.25%, A
l: 0-598%, 1sS: 0.005%,
A steel slab having a composition containing 0.0022% N and 0.0012% O was heated and hot-rolled to a thickness of 2.0mm, and this hot-rolled steel strip was subjected to a standard of 95m0Xa. The sample was pickled and then cold-rolled to obtain a cold-rolled plate having a thickness of 0.85JIl11. To this cold-rolled plate, -...H265
840 in the atmosphere with a residual Ng and a dew point of 40'Q.
A non-oriented silicon steel sheet was manufactured by performing two-stage annealing, which consisted of a thermal cycle of 2 minutes at OXI and 7 minutes at OXI in the second stage.

得られた鋼板の磁気特注を、25CInエプスタイン法
によって測定した結果を表8に示す。
Table 8 shows the results of measuring the magnetic customization of the obtained steel plate using the 25CIn Epstein method.

表 8 同表に示した成績より明らかなように、この発明法に従
って得られたものは、従来材に比べて磁気特性が一段と
改善されている。
Table 8 As is clear from the results shown in the table, the magnetic properties of the materials obtained according to the method of this invention are much improved compared to the conventional materials.

発明の効果 かくしてこの発明によれば、無方向性けい素鋼板の磁気
特性とくに鉄損特性を従来に比べて格段lに改善するこ
とができ、有利である。。
Effects of the Invention Thus, according to the present invention, the magnetic properties, particularly the iron loss properties, of a non-oriented silicon steel sheet can be significantly improved compared to the conventional method, which is advantageous. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bはそれぞれ、従来の熱サイクルに従う最終
焼鈍均熱温度と鉄損値W1515o、W工。に。−・と
の関係を示したグラフ、 第2図は、従来の最終焼鈍における熱サイクルを示した
模式図、 第8図は、この発明に従う二段焼鈍の熱サイクルを示し
た模式図、 第4図a、bはそれぞれ、この発明に従う二段焼鈍を施
して得た製品の、前段均熱温度と鉄損特性”15150
 、W10150との関係を、従来材の特性値と比較し
て示したグラフ、 第5図a、bおよび第6図a、b、cは、それ1、ぞれ
鋼Iおよび鋼Iの(200)極点図である。 −(〜制や)菖 謂− 8 、り、 ミ A (−4物)′シ嘔 (a 第2図 デ 第3図 第4図
Figures 1a and 1b show the final annealing soaking temperature and iron loss value W1515o, respectively, according to the conventional thermal cycle. To. Graph showing the relationship between Figures a and b show the pre-soaking temperature and iron loss characteristics of products obtained by two-stage annealing according to the present invention, respectively.
, W10150 in comparison with the characteristic values of conventional materials, Fig. 5 a, b and Fig. 6 a, b, c are graphs of (200 ) is a pole figure. -(~system) 菖謬- 8, ri, miA (-4 thing)' しょう(a Figure 2, Figure 3, Figure 4)

Claims (1)

【特許請求の範囲】 L O: 0.010重量%以下、 Si: 4.0重量%以下および AI: 1.0重量%以下 を含む組成になり、かつ5μm以上の大きさの鋼中介在
物頻度を8Q gA/A−以下に抑制した無方向性けい
素鋼用スラブを熱間圧延し、つ:・・いて常法に従う冷
間圧延によシ最終板厚の冷延鋼板としたのち、引き続い
て最終焼鈍を施す一連の工程よりなる無方向性けい素鋼
板の製造方法において、 上記最終焼鈍を二段階で行うものとし、前l。 段は750〜850℃の均熱温度範囲で1〜4分間・ま
た後段は900〜1000℃の均熱温度範囲とする条件
下にそれぞれ焼鈍処理を施すことを特徴とする、鉄損の
低い無方向性けい素鋼板の製造方法。
[Claims] Inclusions in steel having a composition containing L O: 0.010% by weight or less, Si: 4.0% by weight or less, and AI: 1.0% by weight or less, and having a size of 5 μm or more A slab for non-oriented silicon steel with a frequency suppressed to 8Q gA/A- or less was hot rolled, and then cold rolled according to a conventional method to obtain a cold rolled steel plate of the final thickness. In a method for manufacturing a non-oriented silicon steel sheet, which includes a series of steps of successively performing final annealing, the final annealing is performed in two stages, and the above-mentioned final annealing is performed in two stages. The stage is annealed at a soaking temperature range of 750-850°C for 1-4 minutes, and the latter stage is annealed at a soaking temperature range of 900-1000°C. Method for manufacturing grain-oriented silicon steel sheet.
JP570184A 1984-01-18 1984-01-18 Manufacture of nonoriented silicon steel sheet with small iron loss Pending JPS60152628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP570184A JPS60152628A (en) 1984-01-18 1984-01-18 Manufacture of nonoriented silicon steel sheet with small iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP570184A JPS60152628A (en) 1984-01-18 1984-01-18 Manufacture of nonoriented silicon steel sheet with small iron loss

Publications (1)

Publication Number Publication Date
JPS60152628A true JPS60152628A (en) 1985-08-10

Family

ID=11618408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP570184A Pending JPS60152628A (en) 1984-01-18 1984-01-18 Manufacture of nonoriented silicon steel sheet with small iron loss

Country Status (1)

Country Link
JP (1) JPS60152628A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655509A1 (en) * 1993-09-29 1995-05-31 Kawasaki Steel Corporation Non-oriented silicon steel sheet and method
WO1997022723A1 (en) * 1995-12-19 1997-06-26 Pohang Iron & Steel Co., Ltd. Process for producing nondirectional electrical steel sheet excellent in close adhesion of insulating film
JPH1088298A (en) * 1996-09-19 1998-04-07 Nkk Corp Nonoriented silicon steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655509A1 (en) * 1993-09-29 1995-05-31 Kawasaki Steel Corporation Non-oriented silicon steel sheet and method
WO1997022723A1 (en) * 1995-12-19 1997-06-26 Pohang Iron & Steel Co., Ltd. Process for producing nondirectional electrical steel sheet excellent in close adhesion of insulating film
US5803988A (en) * 1995-12-19 1998-09-08 Pohang Iron & Steel Co., Ltd. Method for manufacturing non-oriented electrical steel sheet showing superior adherence of insulating coated layer
JPH1088298A (en) * 1996-09-19 1998-04-07 Nkk Corp Nonoriented silicon steel sheet

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS6256225B2 (en)
JP3537339B2 (en) Grain-oriented electrical steel sheet having excellent film properties and magnetic properties and method for producing the same
JPH08188824A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JPS60152628A (en) Manufacture of nonoriented silicon steel sheet with small iron loss
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH055126A (en) Production of nonoriented silicon steel sheet
JP4239456B2 (en) Method for producing grain-oriented electrical steel sheet
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3390109B2 (en) Low iron loss high magnetic flux density
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2556599B2 (en) Method for manufacturing corrosion-resistant soft magnetic steel sheet
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JP3294367B2 (en) Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon
JPH0897023A (en) Manufacture of nonoriented silicon steel plate of excellent iron-loss characteristics
JP3020810B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH1180835A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and extremely low iron loss