JPH0442724A - Overcurrent protective unit for power converter - Google Patents

Overcurrent protective unit for power converter

Info

Publication number
JPH0442724A
JPH0442724A JP14593490A JP14593490A JPH0442724A JP H0442724 A JPH0442724 A JP H0442724A JP 14593490 A JP14593490 A JP 14593490A JP 14593490 A JP14593490 A JP 14593490A JP H0442724 A JPH0442724 A JP H0442724A
Authority
JP
Japan
Prior art keywords
signal
current
voltage
circuit
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14593490A
Other languages
Japanese (ja)
Other versions
JP2800374B2 (en
Inventor
Yasuhiro Takabayashi
泰弘 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP14593490A priority Critical patent/JP2800374B2/en
Publication of JPH0442724A publication Critical patent/JPH0442724A/en
Application granted granted Critical
Publication of JP2800374B2 publication Critical patent/JP2800374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To realize overcurrent protection and abnormal voltage protection corresponding to the characteristics of a battery power supply, without causing increase of the size and the cost, by outputting a control signal for blocking overcurrent when a current signal exceeds the level of a set signal. CONSTITUTION:A current signal generating circuit 30 outputs a current signal C in which a set signal b from a setter 31 is added, as a bias voltage, to a detection signal (a) of current If. A set signal (h) is reverse proportional to a voltage Vf and overall level can be regulated based on a bias voltage (f). The current signal C and the set signal (h) are fed to the comparator 41 at a control section 40 and when the current signal C exceeds the level of the set signal (h), a trigger signal (i) is fed to a flipflop 42 thus producing a control signal (i) for commanding overcurrent protection. The control signal (i) turns an inverter driving signal OFF and provides a trip signal to a trip coil 53 thus interrupting a circuit breaker 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池や太陽電池など出力電流の増加に
対する出力電圧降下が大きいt池を電源に持つインバー
タなどの電力変換器において、スイッチング用半導体素
子を過電流、またはこれKよって生ずるサージ電圧から
保護する過電流保護装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is useful for switching purposes in power converters such as fuel cells and solar cells, which have a T-cell as a power source, which has a large output voltage drop with respect to an increase in output current. The present invention relates to an overcurrent protection device that protects semiconductor devices from overcurrent or surge voltage caused by overcurrent.

〔従来の技術〕[Conventional technology]

従来、電力変換器の過電流保Fjは、過電流の保護レベ
ルを定格電流の120%から150%程度の範囲の一定
値に設定した、例えば過を流継電器等を設け、設定値を
超える過電流が発生したとき、スイッチング素子の通流
を停止させるか、あるいは遮断器ヲトリップさせること
によって保障する方法が知られている。
Conventionally, the overcurrent protection Fj of power converters has been implemented by setting the overcurrent protection level to a constant value in the range of 120% to 150% of the rated current, for example by installing an overcurrent relay, etc. It is known to ensure that when a current occurs, the switching element stops flowing or the circuit breaker trips.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第4図は電力変換器に用いられるヌイツチング半導体素
子の一般的な電流および電圧波形図であシ、電流工fヲ
オン・オフ制御すると、電流工fのスイッチングオフ時
にサージ電圧Vが定常電圧Vf K重畳して発生し、両
電圧の和Vf十Vからなる異常電圧が図中破線で示す素
子耐電圧の限界レベルを超えるとスイッチング半導体素
子が破損することが知られている。また、このときのサ
ージ電圧Vの大きさは、回路のインダクタンスをLとし
た場合、v=L −dif /dtで表わされることが
知られている。
Figure 4 is a typical current and voltage waveform diagram of a switching semiconductor device used in a power converter. When the current generator f is controlled on and off, the surge voltage V changes to the steady voltage Vf K when the current generator f is switched off. It is known that the switching semiconductor element will be damaged if the abnormal voltage generated in a superimposed manner and consisting of the sum of both voltages Vf1V exceeds the limit level of the element withstand voltage shown by the broken line in the figure. Furthermore, it is known that the magnitude of the surge voltage V at this time is expressed by v=L −dif /dt, where L is the inductance of the circuit.

第5図は燃料電池の出力電圧−電流特性(Vf−■f%
性)を短絡電流Ifs  と対比して示す特性線図であ
り、燃料電池の出力電圧VfFi無負荷状態で最も高く
、出力電流工fの増加とともに急勾配で低下する右下が
りの特性を示すことが知られているが、負荷回路が短絡
したとき流れる短絡電流Ifsも、Vf−工f特性とほ
ぼ相似な右下がりの曲線で表わされ、無負荷時または軽
負荷状態で大きな短絡電流が流れるのに対し、定格負荷
時など出力電流工fが大きb状態では短絡電流工fsが
逆に小さくなることが、本願出願人等によって明らかに
されている。
Figure 5 shows the output voltage-current characteristics (Vf-■f%) of the fuel cell.
This is a characteristic diagram showing the short-circuit current Ifs in comparison with the short-circuit current Ifs, and shows a downward-sloping characteristic where the output voltage VfFi of the fuel cell is highest in the no-load state and decreases steeply as the output current f increases. It is well known that the short-circuit current Ifs that flows when a load circuit is short-circuited is also represented by a downward-sloping curve that is almost similar to the Vf-F characteristic, and that a large short-circuit current flows in no-load or light-load conditions. On the other hand, the applicant of the present invention has revealed that in a state b where the output current f is large and the short-circuit current fs becomes small, such as during a rated load.

一方、スイッチング半導体素子力;スイッチングオフす
る際発生するサージ電圧Vは、素子電流工fの時間変化
に比例して大きくなるものでちゃ、電源としての燃料電
池の短絡電流工fs を考慮した場合、軽負荷時に短絡
が生じた場合の方か定負荷時に短絡が生じた場合よシミ
圧のはねJc夛Vが大きくなることが予想され、かつ軽
負荷時には燃料電池の出力電圧Vfも高い走め、両電圧
の和である異常電圧vt” +vがスイッチング素子の
耐電圧限界金超えてしまう危険性が高くなると推定され
る。
On the other hand, the switching semiconductor element power; the surge voltage V generated when switching off increases in proportion to the time change of the element current f. Considering the short circuit current fs of the fuel cell as a power source, If a short circuit occurs under light load or under constant load, it is expected that the stain pressure jump Jc 夛V will be large, and the output voltage Vf of the fuel cell will also be high when the load is light. , it is estimated that there is a high risk that the abnormal voltage vt''+v, which is the sum of both voltages, will exceed the withstand voltage limit of the switching element.

上述の検討結果に基づbて従来の過電流保護の仕方を考
察すると、過電流の保護レベルを定格電流よシ大きい一
定値に保持したのでは、軽負荷時には保護レベルが高す
ぎ、短絡によって生ずる異常電圧によりスイッチング素
子が損傷する危険性を十分には回避できないという事態
が予想される。
Considering the conventional method of overcurrent protection based on the above study results, if the overcurrent protection level was kept at a constant value larger than the rated current, the protection level would be too high at light loads, and short circuits could occur. It is expected that the risk of damage to the switching elements due to the abnormal voltage that occurs cannot be sufficiently avoided.

また、このような事態を回避するために、スナバの容量
を増したp、it電圧界値の高いスイッチング半導体素
子を用いたジすることも可能であるが、これらの対策は
電力変換装置の大型化やコスト上昇を招くという欠点が
ある。
In addition, in order to avoid this situation, it is possible to use a switching semiconductor element with increased snubber capacity and a high p,it voltage threshold, but these measures are difficult to implement due to the large size of the power converter. The drawback is that it leads to increased costs and increased costs.

この発明の目的は、装置の大型化やコスト上昇を招くこ
となく、電池電源の特性に対応した過電流保護および異
常電圧保護が行える通電流保護装置を得ることにある。
An object of the present invention is to obtain a current carrying protection device that can perform overcurrent protection and abnormal voltage protection corresponding to the characteristics of a battery power source without increasing the size of the device or increasing costs.

〔課題を解決するための手段〕[Means to solve the problem]

上記昧題全解決するために、この発明によれば、出力電
流に対する電圧降下の大きい電池電源の出力側に遮断器
を介して接続されて出力電力を制御する電力変換器を、
前記電池電源の短絡電流特性で決まる保護レベルに基づ
いて保護するものであって、前記電力変換器の入力側に
配された電流検出器および電圧検出器と、この電圧検出
器の検出電圧に調整可能な逆極性のバイアス電圧を加え
て逆l性に並行移動した後反転し、過電流保護レベルの
設定信号として出力する設定信号の発生回路濾a、 と、前記電流【定器の検出電流に調整可能な同極性のバ
イアス電圧を加えて出力する電流信号の発生回路と、こ
の電流信号を前記設定信号と比較し、電流信号が設定信
号のレベルを超えたとき過電流を阻止する制御信号を前
記電力変換器または遮断器の制御部忙向けて出力する制
御回路とを備えてなるものとする。
In order to solve all of the above problems, the present invention provides a power converter that is connected to the output side of a battery power source with a large voltage drop with respect to the output current via a circuit breaker to control the output power.
The protection is based on the protection level determined by the short-circuit current characteristics of the battery power source, and includes a current detector and a voltage detector arranged on the input side of the power converter, and an adjustment to the detected voltage of the voltage detector. a setting signal generation circuit filter a that applies a bias voltage of possible opposite polarity, moves in parallel in reverse l-polarity, and then inverts and outputs it as a setting signal for the overcurrent protection level; A current signal generation circuit that outputs a current signal by applying an adjustable bias voltage of the same polarity, and a control signal that compares this current signal with the setting signal and prevents overcurrent when the current signal exceeds the level of the setting signal. and a control circuit that outputs an output to the control section of the power converter or circuit breaker.

〔作用〕[Effect]

この発明の構成において、設的信号の発生回路が出力す
る過電流保護レベルの設定信号は電池電源の電圧−電流
特性にほぼ逆比例するものであり、これは電池電源の短
絡電流対負荷電流特性にも逆比例するものとなる。した
がって、ti倍信号発生回路の出力信号が前記設定信号
レベルを超えたことを制御回路が検知し、その出力制御
信号によって電力変換器の通流制御を行うことにより、
出力電圧および短絡を流の大きい軽負荷領域では過電流
を低いレベルで早期に検出して異常電圧保護を行い、定
常電流が大きb定格負荷状態では過電流を高いレベルで
検出することKなり、短絡電流や定常電流の大きさに対
応した過電流制御を行えるとともに、軽負荷時に大きく
なるスイッチングオフ時の異常電圧を早期に抑制してス
イッチング素子の損傷を未然に防止することができる。
In the configuration of the present invention, the overcurrent protection level setting signal output by the design signal generation circuit is approximately inversely proportional to the voltage-current characteristic of the battery power source, and this is inversely proportional to the short-circuit current versus load current characteristic of the battery power source. It is also inversely proportional to Therefore, the control circuit detects that the output signal of the ti-fold signal generation circuit exceeds the set signal level, and controls the flow of the power converter using the output control signal.
In light load areas where the output voltage and short circuit are large, overcurrent is detected early at a low level to provide abnormal voltage protection, and when the steady current is large and the rated load is high, overcurrent is detected at a high level. It is possible to perform overcurrent control corresponding to the magnitude of short-circuit current and steady-state current, and to prevent damage to switching elements by early suppressing abnormal voltage at the time of switching off, which increases when the load is light.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図はこの発明の実施例になる電力変換器の過電流保
護装置の構成を示す接続図、第2図は第1図に示す装置
各部の信号を電流の時間変化に対応して示すタイムチャ
ートでちゃ、以下両図に基づき装置の構成および動作を
併せて説明する0図において、燃料電池1は図示しない
反応ガスの供給系から供給される燃料ガスおよび酸化剤
ガスが電解質を挟持した一対の電極で電気化学反応を起
こすことによって起電反応を行う本のであシ、その発電
電力は遮断器2を介して電力変換器としての例えばイン
バータ6に供給され、インバータ制御回路7がANDゲ
ート9全介してベース駆動回路8に送る指令信号に基づ
き、インバータ3のスイッチング半導体素子の通流制御
が行われる。またインバータ3の出力はフィルタ4で波
形整形された後変圧器5で電圧調整され、負荷6に供給
される。
Fig. 1 is a connection diagram showing the configuration of an overcurrent protection device for a power converter according to an embodiment of the present invention, and Fig. 2 is a time diagram showing the signals of each part of the device shown in Fig. 1 in response to time changes in current. In Figure 0, the structure and operation of the device will be explained based on both figures below. In Figure 0, a fuel cell 1 is a pair of fuel gas and oxidant gas supplied from a reactant gas supply system (not shown) with an electrolyte sandwiched between them. The generated power is supplied to an inverter 6 as a power converter via a circuit breaker 2, and an inverter control circuit 7 is connected to an AND gate 9. Based on the command signal sent to the base drive circuit 8 through the entire inverter 3, current flow control of the switching semiconductor elements of the inverter 3 is performed. Further, the output of the inverter 3 is waveform-shaped by a filter 4, voltage-adjusted by a transformer 5, and then supplied to a load 6.

一方、燃料電池1の出力側にはインバータ3の入力電流
工fの検出器11および入力電圧Vfの検出器12が設
けられる。過電流保護装置は、電流検出器11の検出電
流工f(信号a)を入力信号とする電流信号の発生回路
60と、電圧検出器12の検出電圧Vf (信号d)t
−人力信号とする過電流保護レベルの設定信号の発生回
路20と、電流信号が保護レベルを超えたとき通電流保
Sを指令する制御信号jを発する制御部40とで構成さ
れる。
On the other hand, on the output side of the fuel cell 1, a detector 11 for the input current f of the inverter 3 and a detector 12 for the input voltage Vf are provided. The overcurrent protection device includes a current signal generation circuit 60 that receives the detected current f (signal a) of the current detector 11 as an input signal, and a detected voltage Vf (signal d) t of the voltage detector 12.
- It is composed of a generation circuit 20 which generates an overcurrent protection level setting signal as a human input signal, and a control section 40 which generates a control signal j that instructs to keep the current flowing S when the current signal exceeds the protection level.

いま、電流検出器11によって検出される電流工fの検
出信号aが第2図に示すように時間とともに直線的に増
加したと仮定する。○Pアンプ32からなる電流信号の
発生回路30は、設定器31の設定信号b=2バイアス
電圧として検出信号aに加えた信号を電流信号Cとして
出力する。一方電圧検出器が検出した電圧Vfの検出信
号dは、第2図に示すように電流工fの増加に逆比例し
て減少する曲線となる。この検出信号dは設定信号りの
発生回路20の初段のOPアンプ21で増幅され、次段
のOPアング26で設定器22の負極性の設定電圧でか
バイアス電圧として加算されることにより、検出信号d
を負側に平行移動した信号gとなり、さらに3段目のO
Fアンプで極性が反転した設定信号りとして出力される
。すなわち設定信号りは電圧Vfに逆比例し、かつバイ
アス電圧fによって全体のレベル調整(平行移動)が可
能な信号となり、さらに第5図に基づいてすでに説明し
たように燃料電池の短絡電流に対しても逆比例関係を有
する信号となる。
Assume now that the detection signal a of the current f detected by the current detector 11 increases linearly with time as shown in FIG. A current signal generation circuit 30 comprising a P amplifier 32 outputs a signal added to the detection signal a as a current signal C as a setting signal b=2 bias voltage of the setting device 31. On the other hand, the detection signal d of the voltage Vf detected by the voltage detector becomes a curve that decreases in inverse proportion to the increase in the current factor f, as shown in FIG. This detection signal d is amplified by the first-stage OP amplifier 21 of the setting signal generation circuit 20, and is added as a bias voltage with the negative polarity setting voltage of the setting device 22 in the next-stage OP amplifier 26. signal d
The signal g is obtained by moving parallel to the negative side, and the third stage O
It is output as a setting signal with the polarity reversed by the F amplifier. In other words, the setting signal is inversely proportional to the voltage Vf, and the overall level can be adjusted (translated) by the bias voltage f. Furthermore, as already explained based on FIG. 5, the setting signal is inversely proportional to the voltage Vf. However, the signal has an inverse proportional relationship.

両発生回路の出力信号である電流信号Cおよび設定信号
りは制御部40のコンパレータ41に入力され、第2図
に示すように、電流信号Cが設定信号りのレベルを超え
たときトリガー信号1が出力される。例えば、tx 時
点で負荷回路に短絡事故が発生し、電流工fが第2図に
破線で示す短絡電流工fs  に急増したと仮定する。
The current signal C and the setting signal R, which are the output signals of both generation circuits, are input to the comparator 41 of the control unit 40, and as shown in FIG. 2, when the current signal C exceeds the level of the setting signal R, a trigger signal 1 is generated. is output. For example, assume that a short-circuit accident occurs in the load circuit at time tx, and the current factor f rapidly increases to the short-circuit current factor fs shown by the broken line in FIG.

このとき、電流信号CもCBに急増してコンパレータ4
1で信号りく信号CBなる条件が成シ立ち、トリガー信
号1が7リツプフロツプ42に入力されるので、リセッ
トスイッチ43によってリセット状態にあった7リツプ
フロツプ42Fi)リガー信号1によってセットされ、
通電流保護を指令する制御信号j 2>E得られる。し
たかって、制御信号jをANDゲートに供給してインバ
ータの駆動信号をオンし、インバータの出力を停止する
とともに、リレー51を介してトリップコイル53にト
リップ信号を送り、遮断器2を遮断する保護動作が行わ
れる。
At this time, the current signal C also rapidly increases to CB and the comparator 4
1 satisfies the condition that the signal CB is set, and the trigger signal 1 is input to the 7 lip-flop 42, so the 7 lip-flop 42Fi, which was in the reset state by the reset switch 43, is set by the trigger signal 1,
A control signal j2>E that instructs current protection is obtained. Therefore, the control signal j is supplied to the AND gate to turn on the inverter drive signal and stop the inverter output, and at the same time, a trip signal is sent to the trip coil 53 via the relay 51 to shut off the circuit breaker 2. An action is taken.

上述のように、実施例の特長は設定信号の発生回路20
で発生し、コンパレータ41Km電流保護レベルの設定
信号として供給される信号りが、燃料電池の出力電圧V
fまたは短絡電流工f8  に逆比例して変化するよう
回路が構成されるとともに、バイアス電圧すまたはfに
よって設定信号りおよび電流信号Cのレベル調整を可能
圧した点にある。すなわち、定常電圧Vf、短絡電流工
fsが共に大きく、シたがって発生する異常電圧Vf十
vも大きい軽負荷領域では設定信号りのレベルが低く、
短絡電流工fsを小さなレベルで早期にとらえて保護動
作が行われ、定格負荷領域では設定信号りのレベルが高
く、短絡電流工fa が定格電R,t−超えた時点でと
らえて保護動作を行うことになり、軽負荷領域で高い異
常電圧を生じ易い燃料電池等の電池特性に好適な過電流
保護およびスイッチング素子の異常電圧保護を行うこと
ができる。
As mentioned above, the feature of the embodiment is that the setting signal generation circuit 20
The signal generated at the output voltage V of the fuel cell and supplied as the setting signal for the comparator 41Km current protection level
The circuit is configured to vary in inverse proportion to f or the short-circuit current f8, and the level of the setting signal and current signal C can be adjusted by the bias voltage f or f. That is, in a light load region where the steady voltage Vf and the short circuit current fs are both large and the abnormal voltage Vf 10V generated is also large, the level of the setting signal is low.
A protective action is performed by detecting the short-circuit current fs at a small level at an early stage, and a protective action is performed by detecting the short-circuit current fa when it exceeds the rated current R,t- due to the high level of the setting signal in the rated load area. This makes it possible to perform overcurrent protection and abnormal voltage protection for switching elements suitable for battery characteristics such as fuel cells that tend to generate high abnormal voltages in light load regions.

第3図F!実施例における保護レベルを示す特性線図で
あり、短絡電流工fsが時間tに対して図に示すような
傾斜で立ち上がった場合、軽負荷時には保護装置が短絡
電流工fBt−小さなレベルエfslでとらえて保護動
作を行い、定格負荷領域では大きな短絡電流工fa、で
とらえて保護動作を行うことになり、軽負荷領域では短
絡電流が小さいtl  時点で保護動作が行われること
によ夕1発生する異常電圧も低く、シたがって異常電圧
によるスイッチング素子の故障を未然に防止することが
できる。また、動作点はバイアス電圧によって調整可能
であり、電池電源の特性や電力変換器の素子構成に好適
な動作点を容易に選択することができる。
Figure 3 F! It is a characteristic diagram showing the protection level in the example. When the short-circuit current fs rises at a slope as shown in the figure with respect to time t, the protection device detects the short-circuit current fBt - small level fsl at light load. In the rated load area, the protective operation is performed by detecting a large short-circuit current fa, and in the light load area, the protective operation is performed at the point in time when the short-circuit current is small. The abnormal voltage is also low, thus making it possible to prevent failure of the switching elements due to abnormal voltage. Further, the operating point can be adjusted by the bias voltage, and an operating point suitable for the characteristics of the battery power source and the element configuration of the power converter can be easily selected.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、検出電圧に逆比例する設定信
号と電流信号とを比較して後者が前者を超えたとき過電
流保護動作を行うよう構成した。
As described above, the present invention is configured to compare a current signal with a setting signal that is inversely proportional to the detected voltage, and perform an overcurrent protection operation when the latter exceeds the former.

その結果、軽負荷領域で電圧が高く、かつ短絡電流やこ
れによって生ずるスイッチングオフ時のはね上り電圧も
大きい性質を有する燃料電池や太陽電池などの電池電源
の特性に対応して、短絡電流等の異常電流を軽負荷領域
ではこと忙低いレベル問題となった軽負荷領域で高いサ
ージ電圧が発生しやすいことによって生ずるスイッチン
グ素子の損傷を回避することができるとともに、上記問
題を回避するためにスナバ容量を増したり、あるいは耐
電圧の高いスイッチング素子を用いるなどの対策が不要
になり、シたがって電力変換器の大型化やコスト上昇を
招くことなく電池電源の特性に適合した過電流保護およ
び過電圧保護を行える信頼性の高い過電流保護装置を備
えた電力変換器を提供することができる。また、保護レ
ベルの調整をバイアス電圧設定器により容易に行えるの
で、電池電源の特性や電力変換器の素子構成などに対応
して最適な保護レベルを自由に選択できる利点が得られ
る。
As a result, in response to the characteristics of battery power sources such as fuel cells and solar cells, which have a high voltage in the light load range and a high short-circuit current and resulting jump-up voltage at switching off, the short-circuit current It is possible to avoid damage to the switching elements caused by the high surge voltage that is likely to occur in the light load region, which has become a problem when the abnormal current is at a low level in the light load region. There is no need to take measures such as increasing capacity or using switching elements with high withstand voltage, and therefore overcurrent protection and overvoltage that match the characteristics of battery power sources can be achieved without increasing the size or cost of the power converter. A power converter equipped with a highly reliable overcurrent protection device that can provide protection can be provided. Furthermore, since the protection level can be easily adjusted using the bias voltage setting device, an advantage is obtained in that the optimum protection level can be freely selected in accordance with the characteristics of the battery power source, the element configuration of the power converter, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

t41図はこの発明の実施例になる電力変換器の通電流
保護装置の構成を示す接続図、第2図は実施例における
各部信号の変化を示すタイムチャート、第3図は実施例
における過電流保護の動作点を示す特性線図、第4図は
電力変換器のスイッチング素子における一般的な電流、
電圧波形図、第5図Fit池電源としての燃料電池にお
けるV−1特性線図である。 1・・・燃料電池(電池電源)、2・・・遮断器、3・
・・インバータ(電力変換器)、11・・・電流検出器
、12・・・電圧検出器、20・・・保護レベル設定信
号の発生回路、21,23,24,32・・・○Pオン
プ、22.31・・・バイアス電圧の設定器、60・・
・電流信号の発生回路、40・・・制御部、41・・・
コンノ(レータ、42・・・7リツプフロツプ、51・
・・リレー56・・・トリップコイル、If・9.燃料
電池の出力電流、Vf・・・燃料電池の出力電圧、工f
s・・・短絡電流、■・・・はね上り電圧(サージ電圧
)、a・・・電流検出信号、C・・・電流信号、h・・
・保護レベルの設定信号、代理人弁理士 山 口  鳳
 ・・7:モtこ9 第4図 gAg劃
Figure t41 is a connection diagram showing the configuration of a current protection device for a power converter according to an embodiment of the present invention, Figure 2 is a time chart showing changes in signals at each part in the embodiment, and Figure 3 is an overcurrent diagram in the embodiment. A characteristic diagram showing the operating point of protection, Figure 4 shows the typical current in the switching element of a power converter,
FIG. 5 is a voltage waveform diagram and a V-1 characteristic diagram in a fuel cell as a fuel cell power source. 1... Fuel cell (battery power supply), 2... Circuit breaker, 3...
...Inverter (power converter), 11...Current detector, 12...Voltage detector, 20...Protection level setting signal generation circuit, 21, 23, 24, 32...○P on-pull , 22.31... Bias voltage setting device, 60...
-Current signal generation circuit, 40...control unit, 41...
Conno (later, 42...7 lipflop, 51...
...Relay 56...Trip coil, If 9. Output current of the fuel cell, Vf... Output voltage of the fuel cell, f
s...Short circuit current, ■...Spring voltage (surge voltage), a...Current detection signal, C...Current signal, h...
・Protection level setting signal, representative patent attorney Otori Yamaguchi ・7: Motoko 9 Figure 4 gAg

Claims (1)

【特許請求の範囲】[Claims] 1)出力電流に対する電圧降下の大きい電池電源の出力
側に遮断器を介して接続されて出力電力を制御する電力
変換器を、前記電池電源の短絡電流特性で決まる保護レ
ベルに基づいて保護するものであって、前記電力変換器
の入力側に配された電流検出器および電圧検出器と、こ
の電圧検出器の検出電圧に調整可能な逆極性のバイアス
電圧を加えて逆極性に並行移動した後反転し、過電流保
護レベルの設定信号として出力する設定信号の発生回路
と、前記電流検出器の検出電流に調整可能な同極性のバ
イアス電圧を加えて出力する電流信号の発生回路と、こ
の電流信号を前記設定信号と比較し、電流信号が設定信
号のレベルを超えたとき過電流を阻止する制御信号を前
記電力変換器または遮断器の制御部に向けて出力する制
御回路とを備えてなることを特徴とする電力変換器の過
電流保護装置。
1) A power converter that is connected via a circuit breaker to the output side of a battery power source that has a large voltage drop with respect to the output current and controls the output power, is protected based on a protection level determined by the short-circuit current characteristics of the battery power source. and a current detector and a voltage detector arranged on the input side of the power converter, and after applying an adjustable bias voltage of opposite polarity to the detected voltage of the voltage detector and moving it in parallel to the opposite polarity. a setting signal generation circuit that inverts and outputs it as an overcurrent protection level setting signal; a current signal generation circuit that adds an adjustable bias voltage of the same polarity to the detected current of the current detector and outputs the detected current; a control circuit that compares the signal with the setting signal and outputs a control signal to the control section of the power converter or circuit breaker to prevent overcurrent when the current signal exceeds the level of the setting signal. An overcurrent protection device for a power converter, characterized in that:
JP14593490A 1990-06-04 1990-06-04 Power converter overcurrent protection device Expired - Fee Related JP2800374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14593490A JP2800374B2 (en) 1990-06-04 1990-06-04 Power converter overcurrent protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14593490A JP2800374B2 (en) 1990-06-04 1990-06-04 Power converter overcurrent protection device

Publications (2)

Publication Number Publication Date
JPH0442724A true JPH0442724A (en) 1992-02-13
JP2800374B2 JP2800374B2 (en) 1998-09-21

Family

ID=15396455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14593490A Expired - Fee Related JP2800374B2 (en) 1990-06-04 1990-06-04 Power converter overcurrent protection device

Country Status (1)

Country Link
JP (1) JP2800374B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105703334A (en) * 2015-11-27 2016-06-22 深圳市英威腾电气股份有限公司 Three-level inverter protection device and three-level inverter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105703334A (en) * 2015-11-27 2016-06-22 深圳市英威腾电气股份有限公司 Three-level inverter protection device and three-level inverter
CN105703334B (en) * 2015-11-27 2018-05-22 深圳市英威腾光伏科技有限公司 The protective device and three-level inverter of a kind of three-level inverter

Also Published As

Publication number Publication date
JP2800374B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
US9972997B2 (en) Circuit interruption device
JP2782854B2 (en) Fuel cell protection device
US20110194216A1 (en) Protection Circuit for Protecting an Intermediate Circuit of a Solar Inverter Against Overvoltages
JP6815030B2 (en) Circuit breaker
US5532638A (en) Superconducting energy storage apparatus
JP4859932B2 (en) Control device and control method for power conversion system having instantaneous voltage drop / power failure countermeasure function
KR101863028B1 (en) The Grid-connected Photovoltaic Generator capable of Blocking Ground Current
JP2009011117A (en) Power conversion device
JP2014007909A (en) Power conversion apparatus
JPH1198835A (en) H-bridge step-up circuit
JP6801788B2 (en) Reactive power suppression methods for power converters, power systems and power systems
JPH0442724A (en) Overcurrent protective unit for power converter
CN108565891B (en) Photovoltaic group string turn-off device and method and photovoltaic system
AU2018288619B2 (en) Solid state regulator and circuit breaker for high-power DC bus distributions
JP2007252164A (en) Distributed power supply system
JP2007259564A (en) Distributed power supply system
JP2003204625A (en) Stabilized power supply apparatus
JP3857167B2 (en) Voltage fluctuation compensation device
JP4528552B2 (en) Excitation control device for synchronous machine
JPH11275872A (en) Overvoltage protective device for capacitor of power conversion circuit
JP2010039797A (en) Overcurrent protection system of dc feeding power source
JP7328916B2 (en) POWER SUPPLY DEVICE, CONTROL DEVICE, CONTROL METHOD AND PROGRAM
JP3872310B2 (en) Voltage fluctuation compensation device
JP3258258B2 (en) Overcurrent protection device
JP4877092B2 (en) Distributed power system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees