JP2007252164A - Distributed power supply system - Google Patents

Distributed power supply system Download PDF

Info

Publication number
JP2007252164A
JP2007252164A JP2006076172A JP2006076172A JP2007252164A JP 2007252164 A JP2007252164 A JP 2007252164A JP 2006076172 A JP2006076172 A JP 2006076172A JP 2006076172 A JP2006076172 A JP 2006076172A JP 2007252164 A JP2007252164 A JP 2007252164A
Authority
JP
Japan
Prior art keywords
current
switch
power
load
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006076172A
Other languages
Japanese (ja)
Inventor
Mikisuke Fujii
幹介 藤井
Takayuki Kikuchi
貴之 菊池
Masaki Kato
正樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2006076172A priority Critical patent/JP2007252164A/en
Publication of JP2007252164A publication Critical patent/JP2007252164A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent excess current of a converter, while preventing deterioration in load voltage, when an accident occurs even if using a mechanical semiconductor switch or a semiconductor switch that has no self-arc extinction capability as a system interconnection switch. <P>SOLUTION: A commutation circuit 15 is provided with respect to the mechanical semiconductor switch 3 or the semiconductor switch 3, having no self-arc extinction capability, and a current-limiting reactor 16 is connected in series with the mechanical semiconductor switch or the semiconductor switch 3, having no self-arc extinction capability. Consequently, it is possible to achieve sure shutting-off of accident current and maintenance of the load voltage. A load current is detected with a detector 21 and inputted to a current reference generating circuit 7 so that the load voltage will not be reduced, when a load power factor is poor. Accordingly, the converter 4 can be controlled via a converter control circuit 8. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、電力系統に対し系統連系スイッチを介して接続した負荷と並列に接続され、電力系統と連系運転を行なう電力変換器と、この電力変換器の直流側に接続された充放電可能な直流電源とからなる分散型電源システムにおいて、特に系統連系スイッチとして機械式または自己消弧能力のない半導体を用いた分散型電源システムに関する。   The present invention relates to a power converter that is connected in parallel to a load connected to a power system via a grid connection switch, and performs a grid-connected operation with the power system, and a charge / discharge connected to the DC side of the power converter BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributed power supply system including a possible DC power supply, and more particularly, to a distributed power supply system using a mechanical or a semiconductor having no self-extinguishing capability as a system interconnection switch.

図5に、例えば特許文献1に記載の分散型電源システム例を示す。
同図では、電力系統1に対し、機械式スイッチからなる系統連系スイッチ3を介して負荷2が接続されている。また、負荷2と並列に電力変換器4が接続され、さらに電力変換器4の直流側には充放電可能な直流電源5が接続されている。
電力系統1が正常のときは系統連系スイッチ3は閉成(オン)しており、負荷2に対し電力を供給する。これと同時に、電力変換器4は直流電源5の充電または放電動作を行なう。
FIG. 5 shows an example of a distributed power supply system described in Patent Document 1, for example.
In the figure, a load 2 is connected to a power system 1 via a system interconnection switch 3 composed of a mechanical switch. A power converter 4 is connected in parallel with the load 2, and a DC power source 5 that can be charged and discharged is connected to the DC side of the power converter 4.
When the power grid 1 is normal, the grid connection switch 3 is closed (on) and supplies power to the load 2. At the same time, the power converter 4 performs charging or discharging operation of the DC power source 5.

電力変換器制御回路8は、変換器電流検出器6で検出される電流値が電流基準発生回路7に設定される電流と一致するように、電力変換器4が出力すべき電圧を決定する。すなわち、電力変換器制御回路8は決定した電圧からPWM(パルス幅変調)信号を生成し、ゲートドライブ回路9に与えることにより電力変換器4を動作させ、直流電源5を充放電動作させる。なお、この状態を連系運転モ−ドと呼ぶ。   The power converter control circuit 8 determines the voltage to be output by the power converter 4 so that the current value detected by the converter current detector 6 matches the current set in the current reference generation circuit 7. That is, the power converter control circuit 8 generates a PWM (Pulse Width Modulation) signal from the determined voltage and applies it to the gate drive circuit 9 to operate the power converter 4 and charge / discharge the DC power supply 5. This state is referred to as a connected operation mode.

一方、電力系統1に電圧低下や停電等の異常が発生すると、系統連系スイッチ3は開放(オフ)され、負荷2には直流電源5から電力変換器4を通して電力を供給する。このとき、電力変換器制御回路8は負荷電圧検出器10の検出値が、電圧基準発生回路11に設定された電圧値と一致するような電圧指令値を発生させ、これを基に生成したPWM信号をゲートドライブ回路9に与えることにより電力変換器4を動作させ、負荷2に電力を供給する。この状態を、自立運転モ−ドと呼ぶ。   On the other hand, when an abnormality such as a voltage drop or a power failure occurs in the power system 1, the system connection switch 3 is opened (off), and power is supplied to the load 2 from the DC power supply 5 through the power converter 4. At this time, the power converter control circuit 8 generates a voltage command value such that the detection value of the load voltage detector 10 matches the voltage value set in the voltage reference generation circuit 11, and the PWM generated based on this voltage command value is generated. By supplying a signal to the gate drive circuit 9, the power converter 4 is operated to supply power to the load 2. This state is called a self-sustaining operation mode.

ところで、上記のような電源システムが、連系運転モ−ドにある状態で電力系統1に異常が発生した時点から、系統電圧異常検出器12が電力系統1の異常を検出し、その検出信号が連系スイッチ制御回路13に入力されて系統連系スイッチ3がオフし、自立運転モ−ドに移行するまでの時間を切替え時間と言うが、この切替え時間は負荷2に影響を与えない時間範囲内に抑えることが要求される。   By the way, the system voltage abnormality detector 12 detects the abnormality of the power system 1 from the time when the abnormality occurs in the power system 1 in a state where the power supply system as described above is in the interconnection operation mode, and the detection signal is detected. Is input to the interconnection switch control circuit 13 and the time until the system interconnection switch 3 is turned off and the operation mode shifts to the self-sustaining operation mode is referred to as switching time. This switching time is a time that does not affect the load 2. It is required to keep within the range.

特許第3406835号明細書Japanese Patent No. 3406835

以上のように、図5に示すものでは機械式や自己消弧能力のない半導体スイッチ(例えばサイリスタ)を系統連系スイッチとして使用した場合でも、上記切替え時間を自己消弧能力のある半導体スイッチを使用した場合と同等にするため、連系スイッチ電流検出器14によって連系スイッチ3に流れる電流を検出し、その出力を電力変換器制御回路8に入力することにより、連系スイッチ3に流れる電流が速やかに0になるように、電力変換器4の電圧指令値を制御するようにしている。   As described above, even when a semiconductor switch (for example, a thyristor) without mechanical or self-extinguishing capability is used as a system interconnection switch, the switching time shown in FIG. In order to make it equivalent to the case where it is used, the current flowing through the interconnection switch 3 is detected by detecting the current flowing through the interconnection switch 3 by the interconnection switch current detector 14 and inputting the output to the power converter control circuit 8. The voltage command value of the power converter 4 is controlled so that becomes zero immediately.

しかしながら、上述の方法は系統短絡事故が生じた場合に、原理的に負荷電圧が0になることにより、系統連系スイッチの電流を0にするため、図6(a)に示すJEC(電気学会電気規格調査会標準規格)−2433で定められた出力電圧過渡変動特性クラス2を満足できず、図6(b)に示すクラス3しか満足できないため(クラス3より2の方が電圧変動幅が小さくなっており、その分だけ電圧変動に敏感な負荷にも適用できることになる。)、適用可能な範囲が限定されるという問題がある。   However, in the above method, when a system short circuit accident occurs, the load voltage becomes 0 in principle, so that the current of the grid interconnection switch is set to 0. Therefore, the JEC (The Institute of Electrical Engineers of Japan) shown in FIG. Since the output voltage transient fluctuation characteristic class 2 defined in Electrical Standards Investigation Committee Standard) -2433 cannot be satisfied and only the class 3 shown in FIG. 6 (b) can be satisfied (the voltage fluctuation width of 2 is higher than that of class 3). Therefore, it can be applied to a load that is more sensitive to voltage fluctuation.) There is a problem that the applicable range is limited.

したがって、この発明の課題は、系統連系スイッチとして過負荷耐量が大きく、安価で導通時の損失も少ない、機械式またはサイリスタなどの自己消弧能力を持たない半導体素子を用いた場合でも、IGBT(絶縁ゲート型バイポーラトランジスタ)等の自己消弧能力を持つ半導体素子を用いた場合に得られる、系統事故発生時の出力電圧過渡変動特性クラス2を満足できるようにすることにある。   Therefore, the problem of the present invention is that even when a semiconductor element having no self-extinguishing capability, such as a mechanical type or a thyristor, is used as a grid interconnection switch, which has a large overload capability, is inexpensive and has a small loss during conduction, and the like. An object of the present invention is to satisfy the output voltage transient fluctuation characteristic class 2 when a system fault occurs, which is obtained when a semiconductor element having a self-extinguishing capability such as (insulated gate bipolar transistor) is used.

このような課題を解決するため、請求項1の発明では、通常時には機械式または自己消弧能力のない半導体を用いた系統連系スイッチを介して電力系統から負荷に電力を供給し、停電時には前記スイッチを介して負荷に並列に接続された自励式変換装置を介しエネルギー蓄積要素から電力を供給する分散型電源システムにおいて、
前記系統連系スイッチに交流リアクトルを直列に接続することを特徴とする。
この請求項1の発明においては、停電発生時には、前記系統連系スイッチに流れる電流を、前記系統連系スイッチと並列に接続された転流回路により高速遮断することができる(請求項2の発明)。
In order to solve such a problem, in the invention of claim 1, power is supplied to the load from the power system through a system interconnection switch using a semiconductor that does not have a mechanical or self-extinguishing capability in normal times, and at the time of a power failure In a distributed power supply system for supplying power from an energy storage element via a self-excited converter connected in parallel to a load via the switch,
An AC reactor is connected in series to the grid interconnection switch.
In the first aspect of the invention, when a power failure occurs, the current flowing through the grid interconnection switch can be cut off at high speed by a commutation circuit connected in parallel with the grid interconnection switch (invention of claim 2). ).

この発明によれば、分散型電源システムにおいて、特に系統連系スイッチとして機械式またはサイリスタなどの自己消弧能力を持たない安価で過負荷耐量の大きい半導体スイッチを使用した場合に、従来例では短絡事故発生時にJECが定める出力電圧過渡変動がクラス3であったが、この発明によればクラス2にすることが可能となり、より不足電圧耐量の少ない負荷に適用できる。
なお、単に限流リアクトル16を付加する構成では、電力変換器4が限流リアクトル16に流れる電流を、速やかに0にするために過大な電圧を出力する必要があるが、このような電圧を電力変換器4が出力すると、出力電圧過渡変動クラス2を満足できないことになる。
According to the present invention, in a distributed power system, a short circuit is used in the conventional example, particularly when an inexpensive and overload-resistant semiconductor switch having no self-extinguishing capability such as a mechanical type or a thyristor is used as a system interconnection switch. Although the output voltage transient fluctuation determined by JEC at the time of the occurrence of the accident was class 3, according to the present invention, it can be made class 2, and can be applied to a load having a smaller undervoltage withstand capability.
In the configuration in which the current limiting reactor 16 is simply added, it is necessary for the power converter 4 to output an excessive voltage so that the current flowing through the current limiting reactor 16 can be quickly reduced to zero. When the power converter 4 outputs, the output voltage transient fluctuation class 2 cannot be satisfied.

図1はこの発明の実施の形態を示す構成図である。図5と同じものについてはその説明を省略し、以下では主として異なる部分について説明する。
まず、主回路構成として図1に示すように、系統連系スイッチ3に転流回路15を並列接続し、限流リアクトル16を直列接続する。
FIG. 1 is a block diagram showing an embodiment of the present invention. The description of the same components as those in FIG. 5 is omitted, and different portions will be mainly described below.
First, as shown in FIG. 1 as a main circuit configuration, a commutation circuit 15 is connected in parallel to the grid interconnection switch 3, and a current limiting reactor 16 is connected in series.

転流回路15の具体例を図2に示す。
図示のように、充電器20により充電される共振コンデンサ19と共振リアクトル18と投入スイッチ17との直列回路からなり、系統連系スイッチ3がオフするときに投入スイッチ17をオンすることにより共振電流を発生させ、その電流と既に系統連系スイッチ3に流れていた電流の和が0になるとき、系統連系スイッチ3が切れるようになっている。なお、22は投入スイッチ制御回路を示す。
A specific example of the commutation circuit 15 is shown in FIG.
As shown in the figure, a resonance capacitor 19 charged by the charger 20, a resonance reactor 18, and a closing switch 17 are connected in series. When the sum of the current and the current already flowing to the grid connection switch 3 becomes 0, the grid connection switch 3 is turned off. Reference numeral 22 denotes a closing switch control circuit.

図2の動作タイミングを図3に示す。
停電発生により、系統電圧異常検出器12は停電を検知し、停電検知信号を出力する。これにより、連系スイッチ制御回路13は、遮断器開指令を系統連系スイッチ3に出力する。また、投入スイッチ制御回路22は、停電検知信号を受けて転流回路オン指令を出力し、これにより転流動作を開始する。
The operation timing of FIG. 2 is shown in FIG.
When a power failure occurs, the grid voltage abnormality detector 12 detects a power failure and outputs a power failure detection signal. Thereby, the interconnection switch control circuit 13 outputs a circuit breaker opening command to the grid interconnection switch 3. Moreover, the making switch control circuit 22 receives the power failure detection signal and outputs a commutation circuit ON command, thereby starting the commutation operation.

一方、電力変換器4は従来例と同様に、停電前は連系運転モ−ド、停電後は自立運転モ−ドに切替わるが、切替え時間は特に設けずに、停電検知信号を受信した後は通常の自立運転モ−ドに入る。したがって、系統連系スイッチがオフするまでは等価的に図4(a)に示す回路状態となり、また転流回路がオフするまでは図4(b)に示す回路状態となる。このいずれの状態においても、電力変換器4が装置仕様を超過するような過電流状態とならないようにするため、十分な値の限流リアクトル16を用いるものとする。   On the other hand, the power converter 4 is switched to the connected operation mode before the power failure and the self-sustaining operation mode after the power failure as in the conventional example, but receives the power failure detection signal without providing any switching time. After that, the normal autonomous operation mode is entered. Accordingly, the circuit state shown in FIG. 4A is equivalent until the grid interconnection switch is turned off, and the circuit state shown in FIG. 4B is obtained until the commutation circuit is turned off. In any of these states, a current-limiting reactor 16 having a sufficient value is used so that the power converter 4 does not enter an overcurrent state exceeding the device specification.

なお、系統正常時には、限流リアクトル16を介して負荷に電力が供給されるため、負荷電圧が低下する。この電圧低下を最小限にするため、従来例では直流電源5の充放電を目的に電流基準発生回路7の電流基準が生成されていたが、ここではさらに負荷電流検出器21の出力を電流基準発生回路7に入力することにより、力率補償が可能な電流基準を生成し、電力変換器制御回路8に出力できるようにしている。   Note that, when the system is normal, power is supplied to the load via the current-limiting reactor 16, so the load voltage decreases. In order to minimize this voltage drop, in the conventional example, the current reference of the current reference generation circuit 7 is generated for the purpose of charging / discharging the DC power supply 5, but here the output of the load current detector 21 is further converted to the current reference. By inputting to the generating circuit 7, a current reference capable of power factor compensation can be generated and output to the power converter control circuit 8.

この発明の実施の形態を示すブロック図Block diagram showing an embodiment of the present invention 図1の転流回路の具体例を示すブロック図Block diagram showing a specific example of the commutation circuit of FIG. 図1の動作説明図1 is an explanatory diagram of the operation. 転流回路が投入され、オフするまでを示す等価回路図Equivalent circuit diagram showing commutation circuit being turned on and off 従来例を示すブロック図Block diagram showing a conventional example 出力電圧過渡変動特性クラス2,3を示す特性図Characteristic diagram showing output voltage transient characteristics class 2 and 3

符号の説明Explanation of symbols

1…電力系統、2…負荷、3…系統連系スイッチ、4…電力変換器、5…直流電源、6…変換器電流検出器、7…電流基準値発生回路、8…変換器制御回路、9…ゲートドライブ回路、10…負荷電圧検出器、11…電圧指令値発生回路、12…系統電圧異常検出器、13…連系スイッチ制御回路、14…連系スイッチ電流検出器、15…転流回路、16…限流リアクトル、17…投入スイッチ、18…共振リアクトル、19…共振コンデンサ、20…コンデンサ充電回路、21…負荷電流検出器、22…投入スイッチ制御回路。   DESCRIPTION OF SYMBOLS 1 ... Power system, 2 ... Load, 3 ... System interconnection switch, 4 ... Power converter, 5 ... DC power supply, 6 ... Converter current detector, 7 ... Current reference value generation circuit, 8 ... Converter control circuit, DESCRIPTION OF SYMBOLS 9 ... Gate drive circuit, 10 ... Load voltage detector, 11 ... Voltage command value generation circuit, 12 ... Grid voltage abnormality detector, 13 ... Linkage switch control circuit, 14 ... Linkage switch current detector, 15 ... Commutation Circuit: 16 ... Current-limiting reactor, 17 ... Input switch, 18 ... Resonant reactor, 19 ... Resonant capacitor, 20 ... Capacitor charging circuit, 21 ... Load current detector, 22 ... Input switch control circuit.

Claims (2)

通常時には機械式または自己消弧能力のない半導体を用いた系統連系スイッチを介して電力系統から負荷に電力を供給し、停電時には前記スイッチを介して負荷に並列に接続された自励式変換装置を介しエネルギー蓄積要素から電力を供給する分散型電源システムにおいて、
前記系統連系スイッチに交流リアクトルを直列に接続することを特徴とする分散型電源システム。
A self-excited conversion device that supplies power to the load from the power system via a grid connection switch using a semiconductor that does not have a mechanical or self-extinguishing capability during normal operation, and is connected in parallel to the load via the switch during a power failure In a distributed power supply system that supplies power from an energy storage element via
An AC reactor is connected in series to the grid interconnection switch.
停電発生時には、前記系統連系スイッチに流れる電流を、前記系統連系スイッチと並列に接続された転流回路により高速遮断することを特徴とする請求項1に記載の分散型電源システム。   2. The distributed power supply system according to claim 1, wherein when a power failure occurs, a current flowing through the grid interconnection switch is interrupted at high speed by a commutation circuit connected in parallel with the grid interconnection switch.
JP2006076172A 2006-03-20 2006-03-20 Distributed power supply system Pending JP2007252164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006076172A JP2007252164A (en) 2006-03-20 2006-03-20 Distributed power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006076172A JP2007252164A (en) 2006-03-20 2006-03-20 Distributed power supply system

Publications (1)

Publication Number Publication Date
JP2007252164A true JP2007252164A (en) 2007-09-27

Family

ID=38595877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006076172A Pending JP2007252164A (en) 2006-03-20 2006-03-20 Distributed power supply system

Country Status (1)

Country Link
JP (1) JP2007252164A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896154B2 (en) 2010-10-07 2014-11-25 Fuji Electric Co., Ltd. Power conversion device
US10734883B2 (en) 2017-12-25 2020-08-04 Fuji Electric Co., Ltd. Momentary-voltage-drop compensation apparatus and momentary-voltage-drop compensation system
JP7440752B2 (en) 2020-02-21 2024-02-29 日新電機株式会社 power system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896154B2 (en) 2010-10-07 2014-11-25 Fuji Electric Co., Ltd. Power conversion device
US10734883B2 (en) 2017-12-25 2020-08-04 Fuji Electric Co., Ltd. Momentary-voltage-drop compensation apparatus and momentary-voltage-drop compensation system
JP7440752B2 (en) 2020-02-21 2024-02-29 日新電機株式会社 power system

Similar Documents

Publication Publication Date Title
WO2015198447A1 (en) Uninterruptible power supply
JP4814264B2 (en) Uninterruptible power system
JP2016077135A (en) Power conversion device and control method
JP4859932B2 (en) Control device and control method for power conversion system having instantaneous voltage drop / power failure countermeasure function
JPH11341686A (en) Distributed power system
Bhakar et al. A new fault-tolerant scheme for switch failures in dual active bridge DC-DC converter
JP2007252164A (en) Distributed power supply system
JP6801788B2 (en) Reactive power suppression methods for power converters, power systems and power systems
US20140281638A1 (en) Application of normally closed power semiconductor devices
JP5490801B2 (en) Self-excited reactive power compensator
JP2007259564A (en) Distributed power supply system
JP2004248345A (en) Distributed power source system
JP4877092B2 (en) Distributed power system
JP2006166585A (en) Power conversion device
JP6591057B2 (en) Power conversion system for grid connection
JP2013243934A (en) Self-excited reactive power compensation device
JPWO2021005793A1 (en) DC distribution board
JP7009261B2 (en) Power conditioner system
KR102537206B1 (en) Grid-connected system for renewable power generation and method for operating the same
JP4147350B2 (en) Uninterruptible power system
JP2010279166A (en) Power converter
KR100507999B1 (en) Chopper type voltage compensator with energy storage means
JP2008312332A (en) Uninterruptible power supply device
US20220166205A1 (en) Hybrid circuit breaker, hybrid circuit breaking system, and circuit breaking method
JP2022038061A (en) Uninterruptible power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407