JP2010039797A - Overcurrent protection system of dc feeding power source - Google Patents

Overcurrent protection system of dc feeding power source Download PDF

Info

Publication number
JP2010039797A
JP2010039797A JP2008202518A JP2008202518A JP2010039797A JP 2010039797 A JP2010039797 A JP 2010039797A JP 2008202518 A JP2008202518 A JP 2008202518A JP 2008202518 A JP2008202518 A JP 2008202518A JP 2010039797 A JP2010039797 A JP 2010039797A
Authority
JP
Japan
Prior art keywords
current
substation
power storage
feeder
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008202518A
Other languages
Japanese (ja)
Inventor
Tadashi Kamimura
正 上村
Shin Takahashi
慎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2008202518A priority Critical patent/JP2010039797A/en
Publication of JP2010039797A publication Critical patent/JP2010039797A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the detection sensitivity for an overcurrent to allow sure protection. <P>SOLUTION: An overcurrent protection system of a DC feeding power source has a power storage device as a constant voltage source installed in parallel with a DC feeding substation and includes feeding breakers 2 and 5 capable of individually cutting off output currents of the power storage device and the DC feeding substation and protective relays 6 and 7, and a converter 10 determines a current resulting from adding output currents of current detectors 8 and 9 which individually detect output currents of the power storage device and the DC feeding substation, and the protective relays individually perform protective operations on the basis of the conversion output of the converter to individually trip the feeding breakers. The converter performs scale conversion of an addition value of output currents of the current detectors into an input range of both of the protective relays. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電力貯蔵装置などを直流き電変電所に並列に設置した直流き電電源に係り、特に直流き電系統の過電流保護装置に関する。   The present invention relates to a DC feeding power source in which a power storage device or the like is installed in parallel to a DC feeding substation, and more particularly to an overcurrent protection device for a DC feeding system.

直流き電系統の事故には、き電線の地絡事故や過電圧などがあり、これら事故の種別にそれぞれ対応できる保護装置が設けられている。例えば、地絡事故には過電流検出と過電流方向によって事故点を特定およびそれを含む区間のき電遮断器の開放を行う保護装置がある(例えば、特許文献1参照)。   DC power system accidents include feeder ground faults, overvoltages, etc., and protective devices are provided that can handle each type of accident. For example, in a ground fault, there is a protection device that identifies an accident point by overcurrent detection and an overcurrent direction and opens a feeder breaker in a section including the fault point (see, for example, Patent Document 1).

定電圧源としての電力貯蔵装置を直流き電変電所に並列に設置した直流き電電源は、電力貯蔵装置によって、き電変電所の交流電源に対する負荷平準化を図ったり、電気車からの回生電力を電力貯蔵装置の充電電力として蓄積することで電力の有効利用を図ることができる。   A DC power supply with a power storage device as a constant voltage source installed in parallel to the DC power substation can be used to level the load on the AC power supply of the power substation or regenerate from the electric vehicle. By storing the power as the charging power of the power storage device, the power can be effectively used.

この電力貯蔵装置を直流き電変電所に並列に設置した直流き電電源の過電流保護装置としては、き電変電所の出力フィーダ電流検出による過電流保護装置と、電力貯蔵装置出力電流検出による過電流保護装置がある。
特開2000−333359号公報
As an overcurrent protection device for a DC feeder power source installed in parallel with this DC storage substation, an overcurrent protection device based on output feeder current detection of the feeder substation and an output current detection of power storage device There is an overcurrent protection device.
JP 2000-333359 A

前記のように、定電圧源としての電力貯蔵装置を直流き電変電所に並列に設置した直流き電電源では、き電系統で発生した事故への事故電流供給はき電変電所と電力貯蔵装置に分流される。この為、電力貯蔵装置の充電状態等によって、双方が担う事故電流の比率がその都度異なるため、事故判定のための電流検出感度の低減、更には事故を検出できない場合がある。   As described above, in the case of a DC feeding power source in which a power storage device as a constant voltage source is installed in parallel to the DC feeding substation, the fault current supply feeder substation and the power storage for an accident occurring in the feeding system Shunt to device. For this reason, since the ratio of the accident current which both sides differ according to the charge condition etc. of an electric power storage apparatus each time, the reduction of the current detection sensitivity for accident determination, and also an accident cannot be detected.

このことを詳細に説明する。図2は、従来の直流き電電源の要部構成を示し、電圧制御機能を持たないシリコン整流器1とき電遮断器(54F)2で主回路を構成する直流き電変電所に並列に、電力貯蔵媒体3と電圧制御用チョッパ4およびき電遮断器(54CP)5で主回路を構成する電力貯蔵装置を設置する。なお、電力貯蔵媒体3は、例えば電気二重層キャパシタや二次電池とされる。また、電圧制御用チョッパ4は、例えば半導体パワー素子で昇降圧チョッパに構成され、電力貯蔵媒体3の充放電を可能にする。   This will be described in detail. FIG. 2 shows a configuration of a main part of a conventional DC power supply, in which a silicon rectifier 1 having no voltage control function and a power circuit breaker (54F) 2 are connected in parallel to a DC power substation constituting a main circuit. The storage medium 3, the voltage control chopper 4 and the feeder circuit breaker (54CP) 5 are provided with a power storage device constituting a main circuit. The power storage medium 3 is, for example, an electric double layer capacitor or a secondary battery. Further, the voltage control chopper 4 is configured as a step-up / step-down chopper, for example, using a semiconductor power element, and enables charging / discharging of the power storage medium 3.

図2の構成において、電圧制御用チョッパ4で電力貯蔵装置の出力電圧を一定に制御する場合、個別に運転(直流き電変電所を停止して電力貯蔵装置のみ運転、または逆に電力貯蔵装置を停止して直流き電変電所のみ運転)する状態では、各々の機器を保護するために、き電用遮断器2、5を個別に設け、保護継電器(50F)6、(50CP)7も個別に設ける。8、9は電流検出器であり、例えばホール素子で構成され、電流Is、Icpをそれぞれ電圧信号で検出する。   In the configuration of FIG. 2, when the output voltage of the power storage device is controlled to be constant by the voltage control chopper 4, the power storage device is individually operated (the DC feeder substation is stopped and only the power storage device is operated, or vice versa. In order to protect each device, the feeder circuit breakers 2 and 5 are provided individually, and protective relays (50F) 6 and (50CP) 7 are also provided. Provide separately. Reference numerals 8 and 9 denote current detectors, which are constituted by Hall elements, for example, and detect the currents Is and Icp by voltage signals, respectively.

しかし、直流き電変電所と電力貯蔵装置を同時に運転した場合には、き電系統での事故発生時に直流き電変電所と電力貯蔵装置に事故電流が分担され、各々の保護継電器が動作しない状態が発生する。図2において、短絡故障点には直流き電変電所から電流Isが流れ、電力貯蔵装置から電流Icpが流れ、故障点には(Is+Icp)の電流が流れる。この時、電流Isはき電変電所の内部抵抗により決定され、電流Icpは電力貯蔵装置の性能と電力貯蔵媒体の残存容量によって決まる。   However, if the DC feeder substation and the power storage device are operated simultaneously, the fault current is shared between the DC feeder substation and the power storage device when an accident occurs in the feeder system, and each protective relay does not operate. A condition occurs. In FIG. 2, the current Is flows from the DC feeder substation, the current Icp flows from the power storage device, and the current (Is + Icp) flows to the failure point. At this time, the current Is is determined by the internal resistance of the feeder substation, and the current Icp is determined by the performance of the power storage device and the remaining capacity of the power storage medium.

しかし、電力貯蔵装置の残存容量は放電とともに減少するため、Icpも減少する。電力貯蔵装置の残存容量が放電を行う容量以下となった場合に電力貯蔵装置は出力を停止し、直流き電変電所出力電流のみとなる。   However, since the remaining capacity of the power storage device decreases with the discharge, Icp also decreases. When the remaining capacity of the power storage device is equal to or less than the capacity for discharging, the power storage device stops outputting and only the DC feeding substation output current is obtained.

上記のように、電力貯蔵装置が運転中は事故電流が分担され、き電変電所の電流Isが減少しているため、保護継電器(50F)6では事故検出が不可能となり、同様に、保護継電器(50CP)7側も事故検出が不可能となり、電力貯蔵装置が停止してから保護を行うこととなり、検出遅れが発生し、ケースによっては保護ができない場合が生じる。   As described above, the accident current is shared during operation of the power storage device, and the current Is of the feeder substation is reduced. Therefore, the protective relay (50F) 6 cannot detect the accident, and similarly The relay (50CP) 7 side also cannot detect the accident, and the protection is performed after the power storage device is stopped, a detection delay occurs, and the protection may not be possible depending on the case.

保護継電器(50F)6,(50CP)7が共に動作しない場合を、図3に示す電気回路定数の例を参照して具体的に説明する。図3に示す回路定数では下記の式が成立する。   The case where the protective relays (50F) 6 and (50CP) 7 do not operate together will be specifically described with reference to the example of the electric circuit constant shown in FIG. In the circuit constant shown in FIG.

(a)電圧制御用チョッパ4の1次側電力と2次側電力は等しい。したがって、Vc×Ic=Vcp×Icp…(1)
(b)直流き電変電所から故障点を見た場合の電圧、電流は、1620V=Is×0.06+0.465×(Is+Icp)+300V…(2)
(c)電力貯蔵装置から故障点を見た場合の電圧、電流は、Vcp=0.465×(Is+Icp)+300V…(3)
(d)電力貯蔵装置の電圧制御用チョッパ4は装置が過大とならないように電力貯蔵媒体3の放電電流が2000Aを超えた場合には2000Aに制限するリミッタ機能を有する。
(A) The primary side power and the secondary side power of the voltage control chopper 4 are equal. Therefore, Vc × Ic = Vcp × Icp (1)
(B) The voltage and current when the failure point is seen from the DC feeder substation is 1620V = Is × 0.06 + 0.465 × (Is + Icp) + 300V (2)
(C) The voltage and current when the failure point is seen from the power storage device are Vcp = 0.465 × (Is + Icp) + 300V (3)
(D) The voltage control chopper 4 of the power storage device has a limiter function for limiting the power storage medium 3 to 2000 A when the discharge current of the power storage medium 3 exceeds 2000 A so that the device does not become excessive.

以上の(1)〜(3)式の関係から、Is,Icp,Vcp,Vc,Icを求めると、Icが2000A以上となるため、電圧制御用チョッパ4のリミッタ機能により2000Aとなることから、Ic=2000A、Is=1566A、Icp=1716A、Vs=Vcp=1526V、故障電流=3282Aとなる。   From the relationship of the above formulas (1) to (3), when Is, Icp, Vcp, Vc, and Ic are obtained, Ic is 2000 A or more. Therefore, the limiter function of the voltage control chopper 4 is 2000 A. Ic = 2000A, Is = 1565A, Icp = 1716A, Vs = Vcp = 1526V, and fault current = 3282A.

ここで、保護継電器(50F、50CP)の動作電流を2200Aに設定し、電力貯蔵媒体3が設置されていない場合には、故障電流=(1620−300)/(0.06+0.465)=2514Aであり、2200Aを超過するため、保護継電器(50F)6は動作し、故障電流に対して保護が行われる。一方、電力貯蔵装置が並列に設置されている場合、故障電流3282AをIs,Icpで分担するため、Is,Icpが共に2200A以下であり、保護継電器(50F,50CP)が共に動作しない。   Here, when the operating current of the protective relay (50F, 50CP) is set to 2200A and the power storage medium 3 is not installed, the fault current = (1620−300) / (0.06 + 0.465) = 2514A. In order to exceed 2200A, the protective relay (50F) 6 operates to protect against a fault current. On the other hand, when the power storage devices are installed in parallel, since the failure current 3282A is shared by Is and Icp, both Is and Icp are 2200A or less, and the protective relays (50F and 50CP) do not operate.

後者の場合、故障電流が継続し、電力貯蔵媒体の残存容量が低下して電力貯蔵装置が停止した後に、変電所出力電流と短絡電流が等しくなったときに、保護継電器(50F)6が動作する。電力貯蔵装置の放電時間は貯蔵媒体の容量等により数十秒となり、これが検出遅れ時間になる。   In the latter case, the protective relay (50F) 6 operates when the substation output current and the short-circuit current become equal after the fault current continues, the remaining capacity of the power storage medium decreases and the power storage device is stopped. To do. The discharge time of the power storage device is several tens of seconds depending on the capacity of the storage medium, and this becomes the detection delay time.

なお、図3は、電力貯蔵装置の電圧制御用チョッパ容量からチョッパの2次側に電流リミッタを設けた場合であるが、2次側にリミッタを設けない構成でも同様の問題がある。   FIG. 3 shows a case where a current limiter is provided on the secondary side of the chopper from the voltage control chopper capacity of the power storage device, but there is a similar problem even in a configuration in which no limiter is provided on the secondary side.

また、電圧制御機能を持たないシリコン整流器で主回路を構成するき電変電所と、一定電圧制御機能を持つ順変換器で主回路を構成するき電変電所を並列に設置する場合も同様の問題がある。   The same applies when a feeder substation comprising a main circuit with a silicon rectifier having no voltage control function and a feeder substation comprising a main circuit with a forward converter having a constant voltage control function are installed in parallel. There's a problem.

本発明の目的は、過電流の検出感度を高め、確実な保護を行うことができる直流き電電源の過電流保護装置を提供することにある。   An object of the present invention is to provide an overcurrent protection device for a DC feeding power source capable of increasing the sensitivity of overcurrent detection and performing reliable protection.

本発明は、前記の課題を解決するため、直流き電変電所と定電圧源(電力貯蔵装置または一定電圧制御機能を持つき電変電所)で個々に過電流検出と保護を行っていた従来の保護装置に代えて、直流き電変電所の出力電流と定電圧源の出力電流を加算した電流を基にして、直流き電変電所の保護演算と定電圧源の保護演算をそれぞれ個別に行うものであり、以下の構成を特徴とする。   In order to solve the above-mentioned problems, the present invention has conventionally performed overcurrent detection and protection individually in a DC feeder substation and a constant voltage source (power storage device or feeder substation having a constant voltage control function). Instead of the protection device, the DC power substation protection operation and the constant voltage source protection operation are separately performed based on the sum of the output current of the DC power substation and the output current of the constant voltage source. And is characterized by the following configuration.

(1)定電圧源を直流き電変電所に並列に設置し、定電圧源および直流き電変電所の出力電流を個別に遮断できるき電遮断器と保護継電器を設けた直流き電電源の過電流保護装置であって、
定電圧源および直流き電変電所の出力電流を個別に検出する両電流検出器の出力電流を加算した電流を求め、この加算電流に基づく変換出力を行う変換器を設け、
定電圧源および直流き電変電所の前記保護継電器は、前記変換器の変換出力を基に保護演算をそれぞれ個別に行い、前記き電遮断器を個別にトリップする構成としたことを特徴とする。
(1) A DC power supply with a constant voltage source installed in parallel to the DC feeder substation, and equipped with a feeder breaker and a protective relay that can cut off the output current of the constant voltage source and the DC feeder substation individually. An overcurrent protection device,
Obtain a current that is the sum of the output currents of both current detectors that individually detect the output current of the constant voltage source and the DC feeder substation, and provide a converter that performs conversion output based on this added current,
The protective relay of the constant voltage source and the DC feeder substation is configured to individually perform a protection operation based on the conversion output of the converter and to trip the feeder breaker individually. .

(2)前記変換器は、前記電流検出器の出力電流の加算値を、前記両保護継電器の入力範囲にスケール変換する構成にしたことを特徴とする。   (2) The converter is configured to perform scale conversion of an added value of the output current of the current detector to an input range of the two protective relays.

以上のとおり、本発明によれば、直流き電変電所の出力電流と定電圧源の出力電流を加算した電流を基にして、直流き電変電所の保護継電器の保護演算と定電圧源の保護継電器の保護演算をそれぞれ個別に行うため、過電流の検出感度を高め、確実な保護を行うことができる。   As described above, according to the present invention, based on the sum of the output current of the DC feeder substation and the output current of the constant voltage source, the protection operation of the protective relay of the DC feeder substation and the constant voltage source Since the protection operation of the protection relay is performed individually, it is possible to increase the sensitivity of detection of overcurrent and perform reliable protection.

また、変換器は、電流検出器の出力電流の加算値を、両保護継電器の入力範囲にスケール変換することで、既設の保護継電器用電流検出器や保護継電器の変更や交換が不要になる。   Further, the converter scales the added value of the output current of the current detector into the input range of both protective relays, so that it is not necessary to change or replace an existing protective relay current detector or protective relay.

図1は、本発明の実施形態を示す直流き電電源の要部構成図であり、直流き電変電所に並列接続する定電圧源として電力貯蔵装置とした例で、直流き電変電所の出力電流と電力貯蔵装置の出力電流を加算した電流を基にして、直流き電変電所の保護継電器の保護演算と電力貯蔵装置の保護継電器の保護演算をそれぞれ個別に行うことにより、過電流の検出感度を高め、確実な保護が得られるようにする。   FIG. 1 is a configuration diagram of a main part of a DC power supply showing an embodiment of the present invention, which is an example of a power storage device as a constant voltage source connected in parallel to a DC power substation. Based on the sum of the output current and the output current of the power storage device, the protection calculation of the protection relay of the DC feeder substation and the protection calculation of the protection relay of the power storage device are performed separately, respectively. Increase detection sensitivity and ensure reliable protection.

図1が図2と異なる部分は、電流検出器8,9の両電流検出信号を加算して保護継電器6,7の共通の電流検出信号とする変換器10を設けた点にある。   FIG. 1 differs from FIG. 2 in that a converter 10 is provided which adds both current detection signals of the current detectors 8 and 9 to a common current detection signal for the protective relays 6 and 7.

図1では、電流検出器8,9の電流検出出力がそれぞれDC0〜10Vの例で示し、電流検出器8,9の出力を直列接続することにより、直流き電変電所の出力電流と電力貯蔵装置の出力電流の加算値を作成し、この加算電圧の範囲DC0〜20Vを変換器10により保護継電器の入力範囲DC0〜10Vにスケール変換して各々の保護継電器6,7の過電流保護演算信号とする。   FIG. 1 shows an example in which the current detection outputs of the current detectors 8 and 9 are DC 0 to 10 V, respectively. By connecting the outputs of the current detectors 8 and 9 in series, the output current and power storage of the DC feeder substation are shown. An addition value of the output current of the apparatus is created, and the range DC0-20V of this addition voltage is scale-converted by the converter 10 to the input range DC0-10V of the protection relay, and the overcurrent protection operation signal of each protection relay 6,6 And

例えば、変換器10は電流検出器8,9の変流比が20kA/10Vの場合、入力40kA/20Vとし、出力を40kA/10Vとすることにより、保護継電器6,7は既設のものをそのまま利用できる。   For example, when the current ratio of the current detectors 8 and 9 is 20 kA / 10 V, the converter 10 has an input of 40 kA / 20 V and an output of 40 kA / 10 V, so that the protective relays 6 and 7 can be used as they are. Available.

上記の例では、出力電流検出器として、ホール素子構成の電流検出器を例で挙げているが、他の方法による電流検出器(例、分流器とアイソレータ)でもよい。   In the above example, as the output current detector, a current detector having a Hall element configuration is taken as an example, but a current detector (eg, a shunt and an isolator) by other methods may be used.

本実施形態によれば、直流き電変電所の単独運転であっても、直流き電変電所と電力貯蔵装置の並行運転であっても、変換器10の入力側には故障電流に対応した変流比の信号が入力されるため、確実に保護継電器が動作する。   According to the present embodiment, whether the DC feeding substation is operated alone or the DC feeding substation and the power storage device are operated in parallel, the input side of the converter 10 corresponds to the fault current. Since the signal of the current transformation ratio is input, the protective relay operates reliably.

具体的には、図3に示す電気回路定数になる装置構成において、前記の(1)〜(3)式の関係、および電圧制御用チョッパ4のリミッタ機能によりIc=2000Aとなることから、Ic=2000A、Is=1566A、Icp=1716A、Vs=Vcp=1526V、故障電流=3282Aとなる。そして、保護継電器(50F、50CP)の動作電流を2200Aと設定した場合、電力貯蔵媒体3が設置されていない場合には、故障電流=(1620−300)/(0.06+0.465)=2514Aであり、2200Aを超過するため、保護継電器(50F)6は動作し、故障電流に対して保護が行われる。また、電力貯蔵装置が並列に設置されている場合、故障電流3282AをIs,Icpで分担するが、それぞれの電流Is,Icpを加算した電流3282Aが保護継電器6,7の入力となるため、保護継電器6,7が共に直ちに応動し、き電遮断器2,5を共に遅れなくトリップさせる。また、保護継電器6,7の検出感度が高くなる。   Specifically, in the device configuration having the electric circuit constant shown in FIG. 3, Ic = 2000A due to the relationship of the above-described formulas (1) to (3) and the limiter function of the voltage control chopper 4. = 2000 A, Is = 1566 A, Icp = 1716 A, Vs = Vcp = 1526 V, and fault current = 3282 A. When the operating current of the protective relay (50F, 50CP) is set to 2200A, when the power storage medium 3 is not installed, the fault current = (1620−300) / (0.06 + 0.465) = 2514A. In order to exceed 2200A, the protective relay (50F) 6 operates to protect against a fault current. Further, when the power storage devices are installed in parallel, the fault current 3282A is shared by Is and Icp, but the current 3282A obtained by adding the respective currents Is and Icp becomes the input of the protection relays 6 and 7, so that the protection The relays 6 and 7 are both acted upon immediately, and the feeder circuit breakers 2 and 5 are both tripped without delay. Further, the detection sensitivity of the protective relays 6 and 7 is increased.

なお、電力貯蔵装置の電圧制御用チョッパ容量からチョッパの2次側に電流リミッタを設けた場合であるが、2次側にリミッタを設けない構成でも確実な保護動作を得ることができる。   Although a current limiter is provided on the secondary side of the chopper from the voltage control chopper capacity of the power storage device, a reliable protection operation can be obtained even in a configuration in which no limiter is provided on the secondary side.

また、電圧制御機能を持たないシリコン整流器で主回路を構成するき電変電所と、一定電圧制御機能を持つ順変換器で主回路を構成するき電変電所を並列に設置する場合も同様の保護動作を得ることができる。   The same applies when a feeder substation comprising a main circuit with a silicon rectifier having no voltage control function and a feeder substation comprising a main circuit with a forward converter having a constant voltage control function are installed in parallel. A protective operation can be obtained.

本発明の実施形態を示す直流き電電源の要部構成図。The principal part block diagram of the DC feeding power source which shows embodiment of this invention. 従来の直流き電電源の要部構成図。The principal part block diagram of the conventional DC feeding power supply. 直流き電電源の電気回路定数の例。An example of the electric circuit constant of a DC feeder.

符号の説明Explanation of symbols

1 整流器
2、5 き電遮断器
3 電力貯蔵媒体
4 電圧制御用チョッパ
6、7 保護継電器
8、9 電流検出器
10 変換器
DESCRIPTION OF SYMBOLS 1 Rectifier 2, 5 Feeder circuit breaker 3 Power storage medium 4 Voltage control chopper 6, 7 Protection relay 8, 9 Current detector 10 Converter

Claims (2)

定電圧源を直流き電変電所に並列に設置し、定電圧源および直流き電変電所の出力電流を個別に遮断できるき電遮断器と保護継電器を設けた直流き電電源の過電流保護装置であって、
定電圧源および直流き電変電所の出力電流を個別に検出する両電流検出器の出力電流を加算した電流を求め、この加算電流に基づく変換出力を行う変換器を設け、
定電圧源および直流き電変電所の前記保護継電器は、前記変換器の変換出力を基に保護演算をそれぞれ個別に行い、前記き電遮断器を個別にトリップする構成としたことを特徴とする直流き電電源の過電流保護装置。
Overcurrent protection of a DC feeder power supply with a constant voltage source installed in parallel to the DC feeder substation and a feeder breaker and protective relay that can cut off the output current of the constant voltage source and the DC feeder substation individually. A device,
Obtain a current that is the sum of the output currents of both current detectors that individually detect the output current of the constant voltage source and the DC feeder substation, and provide a converter that performs conversion output based on this added current,
The protective relay of the constant voltage source and the DC feeder substation is configured to individually perform a protection operation based on the conversion output of the converter and to trip the feeder breaker individually. Overcurrent protection device for DC feeding power supply.
前記変換器は、前記電流検出器の出力電流の加算値を、前記両保護継電器の入力範囲にスケール変換する構成にしたことを特徴とする請求項1に記載の直流き電電源の過電流保護装置。   2. The overcurrent protection of a DC feeding power source according to claim 1, wherein the converter is configured to scale-convert an added value of an output current of the current detector to an input range of the two protection relays. apparatus.
JP2008202518A 2008-08-06 2008-08-06 Overcurrent protection system of dc feeding power source Pending JP2010039797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008202518A JP2010039797A (en) 2008-08-06 2008-08-06 Overcurrent protection system of dc feeding power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008202518A JP2010039797A (en) 2008-08-06 2008-08-06 Overcurrent protection system of dc feeding power source

Publications (1)

Publication Number Publication Date
JP2010039797A true JP2010039797A (en) 2010-02-18

Family

ID=42012273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008202518A Pending JP2010039797A (en) 2008-08-06 2008-08-06 Overcurrent protection system of dc feeding power source

Country Status (1)

Country Link
JP (1) JP2010039797A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079143A (en) * 2012-10-12 2014-05-01 Toshiba Corp Overcurrent detecting apparatus and method
CN108695955A (en) * 2018-05-15 2018-10-23 重庆国翰能源发展有限公司 A kind of charge protection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079143A (en) * 2012-10-12 2014-05-01 Toshiba Corp Overcurrent detecting apparatus and method
CN108695955A (en) * 2018-05-15 2018-10-23 重庆国翰能源发展有限公司 A kind of charge protection device
CN108695955B (en) * 2018-05-15 2021-04-02 重庆国翰能源发展有限公司 Charging protection device

Similar Documents

Publication Publication Date Title
EP2580829B1 (en) Breaker failure protection of hvdc circuit breakers
KR101273144B1 (en) Over current relay for diagnosing open condition of current transformer secondary circuit and method thereof
US20110266800A1 (en) Protection circuit applied to wind power generation system employing double-fed induction generator
KR20130030757A (en) Electrical leakage detection apparatus with unexpected motion blocking function
US9614382B2 (en) Short-circuit protection device
CA2910749C (en) Method of tripping a circuit interrupter in a back fed configuration
JP2019004661A (en) Bus protection device
Puviwatnangkurn et al. Overcurrent protection scheme of BMS for Li-Ion battery used in electric bicycles
JP2014204484A5 (en) Load protection device, electric circuit switching device
JP2010039797A (en) Overcurrent protection system of dc feeding power source
JP5828396B2 (en) DC power supply and its ground fault detection method
KR102252366B1 (en) Battery state monitoring circuit and battery device
KR101302572B1 (en) Controll and protection circuit of dc power dispatching system
JP2008160910A (en) Protective relay device
JP4120618B2 (en) DC feeding network protection system
US12009679B2 (en) Method for operating an electrical energy store
JP4072961B2 (en) Control device with system interconnection protection function of SOG switch
WO2004042883A1 (en) Protective relay
JP2008181748A (en) Electric power limiter
JP4921656B2 (en) Power system accident detection device
JP7159236B2 (en) Short circuit breaker for DC power supply equipment
JP2006121852A (en) Voltage drop detector
US20240204505A1 (en) Overcurrent protection device and charging device
JP3409694B2 (en) Directional short-circuit relay
JP2016220502A (en) Protective relay device