JPH0440648A - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JPH0440648A
JPH0440648A JP2148119A JP14811990A JPH0440648A JP H0440648 A JPH0440648 A JP H0440648A JP 2148119 A JP2148119 A JP 2148119A JP 14811990 A JP14811990 A JP 14811990A JP H0440648 A JPH0440648 A JP H0440648A
Authority
JP
Japan
Prior art keywords
film
substrate
dielectric film
dielectric
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2148119A
Other languages
Japanese (ja)
Inventor
Masakatsu Arihara
正勝 有原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2148119A priority Critical patent/JPH0440648A/en
Publication of JPH0440648A publication Critical patent/JPH0440648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To suppress the deformation of a substrate by providing two layers of a ZrO2 or SiO2 film and Si3N4 film on the rear surface side of the substrate. CONSTITUTION:The transparent resin substrate 1 is provided with guide grooves for tracking at the time of reading out recording in the upper part and is provided with the thin film 2 essentially consisting of the ZrO2 which is the 1st dielectric film and the thin film 3 essentially consisting of the Si3N4 which is the 2nd dielectric film in the lower part. The 1st dielectric film 2 is provided on the side nearer the substrate 1 than the 2nd dielectric film 3. The 1st dielectric film essentially consisting of the ZrO2 or SiO2 and the 2nd dielectric film essentially consisting of the Si3N4 which are two layers of the dielectric films are provided on the rear surface of the substrate, by which the differences in moisture absorption resistance, coefft. of thermal expansion, etc., on both front and rear surfaces of the transparent resin substrate 1 of the optical information recording medium are eliminated and, therefore, the deformation of the substrate is sufficiently suppressed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、光学的に情報の書き込みや読み出しを行う光
ディスクのような光情報記録媒体に関するものである。
The present invention relates to an optical information recording medium such as an optical disk on which information is written and read optically.

【従来の技術】[Conventional technology]

従来より、この種の光ディスクは透明樹脂(プラスチッ
ク)基板を用いているが、かかる基板は温度、湿度等の
環境変化による機械的な変形が生じ易く、特に、該基板
が2枚のものを貼り合わせたものではなく、単一板から
成る場合にその現象は顕著なものとなる。 これは、かかる光ディスクは、その基板の一方のみに記
録膜ならびに保護膜を設けているので、該一方の面が他
の面と異なる表面状態となり、主として吸湿という面で
著しく異なった性質をもつことによると考えられている
。 具体的には、かかる光ディスクの表裏面(以下記録膜が
形成されている側を表面と定義する)の状態の異なるデ
ィスクを低湿状態の環境下から高温状態に晒すと、基板
の吸湿膨張が生じ、記録面側を凹とするように変形する
ことが知られている(88 春応用物理学関係連合講演
会予稿集、p872 r P C基板を用いた単板光磁
気ディスクの反り」〜三菱電気(株)材料研、中米、他
)。 また、かかる光ディスクは、温度の変化に対してもその
表裏面の熱膨張率の違いにより変形が生じる。一般に、
プラスチック基板を用い、その片面にセラミックス薄膜
よりなる保護層及び金属薄膜よりなる記録膜を形成した
光ディスクでは、温度の上昇に伴ない記録膜側を凹とす
るような変形が生ずることが知られている。 以上述べたような問題を解決すべく、従来より種々の工
夫、改善の試みがなされている。その−例として、例え
ば特公昭63−69046号公報に記載されているよう
に、前述したと同様な光ディスク等の光情報記録媒体の
外界と接触する部位を、屈折率nの範囲が 1.35≦n≦1.75 である誘電体膜にて被覆することにより、透明樹脂基板
の湿度、温度上昇による膨張変形を防ぐようにした手段
が開示されている。
Conventionally, optical discs of this type have used transparent resin (plastic) substrates, but such substrates are susceptible to mechanical deformation due to environmental changes such as temperature and humidity, and this is especially true when two substrates are pasted together. This phenomenon becomes more noticeable when the plate is made of a single plate rather than a combination of plates. This is because such optical discs have a recording film and a protective film on only one side of the substrate, so that one side has a different surface condition from the other side, and has significantly different properties mainly in terms of moisture absorption. It is believed that. Specifically, when such optical discs with different front and back surfaces (hereinafter the side on which a recording film is formed is defined as the front surface) are exposed from a low-humidity environment to a high-temperature environment, the substrate absorbs moisture and expands. , it is known that the recording surface side is deformed so that the recording surface side is concave. Materials Research Institute, Chuo America, etc.). In addition, such an optical disk deforms due to the difference in coefficient of thermal expansion between the front and back surfaces due to temperature changes. in general,
It is known that optical discs that use a plastic substrate and have a protective layer made of a ceramic thin film and a recording film made of a thin metal film formed on one side of the substrate deform as the temperature rises, causing the recording film side to become concave. There is. In order to solve the above-mentioned problems, various efforts and improvements have been made in the past. As an example, as described in Japanese Patent Publication No. 63-69046, a portion of an optical information recording medium such as an optical disk similar to that mentioned above that comes into contact with the outside world has a refractive index n in the range of 1.35. Disclosed is a means for preventing expansion and deformation of a transparent resin substrate due to humidity and temperature rise by coating it with a dielectric film satisfying n≦1.75.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、上記開示の手段では、単一板の基板から
成る光ディスクの裏面側に、隼に8電体膜を設けるよう
にしたものであり、温度、湿度変化に対する光ディスク
の凹面変形や記録膜保護についての根本的な改善を図っ
たものではない。なお、前述したような光ディスクの変
形は通常ディスクの面反りを生じさせることとなり、実
使用に際し、ディスクの機械的特性、ひいては、記録再
生信号特性等に悪影響を与える。 本発明は、上記従来技術の課題を解決すべく、実使用時
における湿度、湿度変化による、変形を抑制し、記録膜
自体の耐久性を向上させる等とした透明樹脂基板を用い
る光ディスク等の光情報記録媒体を提供することを目的
とする。
However, in the above-disclosed means, an 8-electrode film is provided on the back side of an optical disc made of a single substrate, and there are no problems with concave deformation of the optical disc and protection of the recording film against changes in temperature and humidity. It is not intended to fundamentally improve the situation. Incidentally, the above-mentioned deformation of the optical disc usually causes surface warping of the disc, which adversely affects the mechanical properties of the disc and, by extension, the recording/reproduction signal characteristics, etc. during actual use. In order to solve the above-mentioned problems of the prior art, the present invention provides an optical disk, etc., that uses a transparent resin substrate that suppresses deformation due to humidity and humidity changes during actual use and improves the durability of the recording film itself. The purpose is to provide information recording media.

【課題を解決するための手段】[Means to solve the problem]

本発明の構成は、透明樹脂基板の一方の面上に少なくと
も記録膜が設けられ、他方の面上に透明な二層の誘電体
膜が設けられ、該二層の誘電体膜のうち前記基板に近い
側の層の主成分がZrO。 または5in2から成り、他方の層の主成分がSi3N
4から成ることを特徴とする。 ここで、前記透明樹脂基板としては、例えばPC(ポリ
カーボネイト樹脂)、PMMA (ポリメタクリル酸メ
チル樹脂)、ポリオレフィン、エポキシ系樹脂等を用い
ることができる。 また、前記記録膜としては、例えば、TbFeCo、G
dDyFeCo、TbDyFeCo等の非晶質磁性合金
が用いられ、膜厚は、−数的に、0.01〜0.1μm
が好適である。 さらに、前記基板に近い側の層の8電体膜(以下、第1
の誘電体膜という)としては、その主成分がZr01ま
たは5i02から成るものを用い、その膜厚は夫々11
00n以下が好適であり、より好ましくは20nm以下
である。他方の層の誘電体膜(以下′s2の誘電体膜と
いう)としては、その主成分が5lsN4から成るもの
を用い、その膜厚は300nmを越えない厚みが好適で
ある。 前記記録膜、両誘電体層の形成手段としては、均一な厚
みを確保できるものであれば特に限定されるものではな
く、例えば、真空蒸着、スパッタリング、イオンブレー
ティング等の成膜手段が適用できる。
The structure of the present invention is such that at least a recording film is provided on one surface of a transparent resin substrate, and a transparent two-layer dielectric film is provided on the other surface, and among the two-layer dielectric film, the substrate is The main component of the layer closer to is ZrO. or 5in2, and the main component of the other layer is Si3N
It is characterized by consisting of 4. Here, as the transparent resin substrate, for example, PC (polycarbonate resin), PMMA (polymethyl methacrylate resin), polyolefin, epoxy resin, etc. can be used. Further, as the recording film, for example, TbFeCo, G
Amorphous magnetic alloys such as dDyFeCo and TbDyFeCo are used, and the film thickness is numerically 0.01 to 0.1 μm.
is suitable. Furthermore, an 8-electrode film (hereinafter referred to as a first
(referred to as dielectric film), the main component of which is Zr01 or 5i02 is used, and the film thickness is 11.
The thickness is preferably 00n or less, more preferably 20nm or less. As the dielectric film of the other layer (hereinafter referred to as the dielectric film of 's2), a film whose main component is 5lsN4 is used, and its film thickness is preferably not more than 300 nm. The means for forming the recording film and both dielectric layers is not particularly limited as long as it can ensure uniform thickness, and for example, film forming means such as vacuum evaporation, sputtering, and ion blasting can be applied. .

【作用】[Effect]

′本発明の構成では、二層の誘電体111(ZrOzま
たは5iOzを主成分とする第1の誘電体膜、及び5i
sN4主成分とする′!J2の誘電体膜)を基板の裏面
に設けることにより、光情報記録媒体の透明樹脂基板1
の表裏両面での耐吸湿性、熱膨張率などの格差をなくす
ことができるため、先に述べたような基板の変形を十分
に抑制することが可能となる。 なお、光情報記録媒体では、表側に設けられた記録膜は
、その保護のため挟むように保護膜を設けている。この
ため、裏側の前記第2の誘電体膜は、前記保護膜等の熱
膨張と略等しいことが望まれる。これにより、光情報記
録媒体の温度、湿度の影響によるいずれの変形も軽減せ
しめることが可能となる。 一方、前記第1の誘電体膜は、前記第2の誘電体膜と前
記基板との密着力を強化するべく設けられている。 一般に、耐透湿性を付与する膜としては窒化物系のもの
を用いることが多いが、これでは樹脂基板との間で充分
な密着力を得ることが困難であるので、前記第1の誘電
体膜は酸化物系のもので形成し、透明樹脂基板との間の
所望の密着力を容易に得るようにしている。 このように、透明樹脂基板に近い側の3i!1の誘電体
膜を酸化物系の膜として基板との密着力を高め、また、
第2の誘電体膜を所定の膜厚に設けて耐透湿性を高める
と共に、温度上昇に基づく変形(熱膨張の差による変形
)をも軽減せんとするものである。
'In the configuration of the present invention, a two-layer dielectric 111 (a first dielectric film containing ZrOz or 5iOz as a main component, and a first dielectric film containing ZrOz or 5iOz as a main component;
sN4 principal component'! By providing a dielectric film (J2) on the back side of the substrate, the transparent resin substrate 1 of the optical information recording medium
Since differences in moisture absorption resistance, thermal expansion coefficient, etc. between the front and back surfaces of the substrate can be eliminated, it is possible to sufficiently suppress the deformation of the substrate as described above. In addition, in the optical information recording medium, a protective film is provided to sandwich the recording film provided on the front side in order to protect the recording film. For this reason, it is desirable that the second dielectric film on the back side has approximately the same thermal expansion as that of the protective film or the like. This makes it possible to reduce any deformation of the optical information recording medium due to the effects of temperature and humidity. On the other hand, the first dielectric film is provided to strengthen the adhesion between the second dielectric film and the substrate. Generally, a nitride-based film is often used as a film that imparts moisture permeation resistance, but it is difficult to obtain sufficient adhesion with the resin substrate with this film, so the first dielectric film is The film is formed of an oxide-based material to easily obtain the desired adhesion with the transparent resin substrate. In this way, 3i on the side closer to the transparent resin substrate! The dielectric film of No. 1 is an oxide-based film to increase adhesion to the substrate, and
The second dielectric film is provided to have a predetermined thickness to increase moisture permeability and also to reduce deformation due to temperature rise (deformation due to difference in thermal expansion).

【実施例】【Example】

341図は本発明に係る光情報記録媒体としての光磁気
ディスクの模式断面を示すものである。 実施例1、比較例1.2 1は、透明樹脂基板であり、同図の上方に記録読出し時
のトラッキングのための案内溝が設けられている。 2は、第1の誘電体膜たるZrO2を主成分とする薄膜
である。 3は、第2の誘電体膜たるSi、N4を主成分とする薄
膜である。 なお、前記第1の誘電体膜は、前記第2の誘電体膜に対
して前記基板1に近い側に設けられている。 5は記録膜であり、4及び6は、該記録膜5を保護する
ためのセラミックス等の薄膜である。7は反射膜、8は
紫外線硬化樹脂等によるオーバーコート層である。 以下の手順により、第1図に示す構造の光磁気ディスク
を作製した。 まず、基板1としては直径が130mmのポリカーボネ
イト族のものを用い、表面側、すなわち案内溝側の面上
に、スパッタリング法により保護膜4、記録膜5、保護
膜6を順次成膜した。 保護膜4.6は、窒化ケイ素膜をそれぞれ8゜nmの厚
みに成膜し、記録膜5はTbFeCo合金膜を30%m
の厚みに成膜した0次いで反射膜7を形成した。該反射
膜フにはCrAu合金膜を1100nの厚みに成膜した
。なお、通常は、紫外線硬化樹脂等のオーバーコート層
8を設けるが、後記試験で製作するサンプルでは省略し
た。 他方、基板1の裏面側には二層の誘電体M2.3を設け
た。 ここで、第1の誘電体膜2はZrO2をIonmの厚み
で、342の誘電体膜3は、Si、N4を200nmの
厚みで、いずれもスパッタリング法を用いて成膜した。 かかる構成のサンプル、すなわち本発明の実施例に係る
ものをサンプルA(実施例1)とする。 次に、比較例としてのサンプルを下記のように作成した
0表面側に前記サンプルAと同様の膜、即ち前記膜4〜
7の各々を成膜し、裏面側に第2の誘電体膜3のみを成
膜、換言すれば341の誘電体膜を成膜しない構成のサ
ンプルを試作した。該サンプルを比較例1としてのサン
プルBとする。 さらに、表面側の各膜を前記サンプルA、Bとまりた〈
同一とし、裏面側には一切の膜を設けない構成のサンプ
ルを試作した。該サンプルを比較例2としてのサンプル
Cとする。 以上のようにして作製したサンプルA、B%Cにつき下
記の試験を行なった。 (反り変形試験) 上記3つのサンプルA、B、Cを用いて;温度、湿度が
変化する環境下におけるディスクの機械的変化(変形)
を調べた。 まず、3つのサンプルA%B%Cを恒温恒湿器に入れ、
次いで、温度、湿度を変化させその時のディスク面反り
の変化量をレーザー光を用いた反り測定器により、リア
ルタイムで測定した。 第2図は、温度を変化させた時のディスクの変化を、′
!J3図は、湿度を変化させた時の変化を示すものであ
る。なお、ディスクの変形量は、半径方向の面反り角(
Ti 1 t [mrad] )で表した。また、表面
側の凹み量をプラスとし、初期の面反り角をO(ゼロ)
とした、なお、第2図において、■で示す線はサンプル
Aのものを、■で示す線はサンプルBのもを、■で示す
線はサンプルCのものをそれぞれ示すものである。 温度を変化させる実験では、湿度は、各温度での相対湿
度として50%に設定した。第2図から理解できるよう
に、裏面側に一切の膜を設けていないサンプルCでは、
湿度の上昇下降にともなフてディスク面反り角が変化し
た。これは、樹脂基板1と案内溝側の面上に設けられた
各膜4〜7との熱膨張率に差が生じたものと考えらえる
。これに対し、サンプルA1及びサンプルBでは反り角
の変化がほとんど見られなかった。 続く湿度を変化させる実験では、温度け、60℃に固定
させた。N3図から理解できるように、サンプルCのみ
が経時的に、その反り角が大きく変化するのに対して、
サンプルA及びサンプルBでは、はとんど変化がなかフ
た。サンプルCの変化は、樹脂基板1に湿度変化の中で
の吸水及び脱水が生じそれによる堆積増減が表裏面で異
なる速度で生じたためと考えられる。 (温湿度サイクル試験) 上記サンプルA、Bについて以下の実験を行った。 2つのサンプルA、Bを自動制御可能な恒温恒温器に入
れ、温湿度サイクル試験を行った。具体的には、20℃
、20%の温湿度環境を2時間保持したのち、1時間で
60℃、80%のに変化させてこの環境を2時間保持し
、再び1時間内に元の20℃、20%の環境下に戻すと
いうものである。この一連の環境変化を1サイクルとし
てディスク裏面の外観の目視検ゼを行いながら繰り返し
行ったところ、サンプルBでは、およそ2500サイク
ルを繰返した時点で、膜に微小な剥離、亀裂が観察され
た。これに対し、サンプルAでは、少なくとも1000
0サイクルまでは何等変化を生じさせなかった。 すなわち、本実施例では、温度、湿度の環境変化に対し
て、反りを生じないばかりでなく、温湿度サイクル試験
を多数回繰返しても、薄膜に剥離、亀裂等を生じさせな
いことが実証された。また、第1の誘電体膜2を膜厚1
5nm以下程度としたとき、光学的な透過損失が小さく
なることも示された。 実施例2 次に、実施例2のサンプルとして、上記実施例1として
製作したサンプルAと同様の膜構成を有するが、裏面側
の2つの誘電体膜の膜厚比を異にするものをいくつか試
作した。具体的には、基板1に近い側の21の誘電体膜
2の膜厚を、15%m b 30 n m s及び50
%mという3種類に変えて試作した。その膜厚順にサン
プルA−1、A−2、A−3とする。 (光透通草測定) 各サンプルA−1〜3、及びサンプルAにつき、光デイ
スク基板として要求される光透過率の測定を行った。こ
の測定は、一定光量の光束をディスクの裏面側から照射
し、表面側の記録膜5及び反射膜7からの反射光を裏面
側で光量計により測った。その結果を以下の表1に示す
。 表  1 前記表中、反射光の光量は、サンプルA−1のそれを1
.00とした。 上記表1中の値から理解できるように、サンプルA−2
、A−3では光量損失が生じた。この光量損失は、膜厚
が増加するのに応じて、多重反射条件に近づき、当該膜
での光の透過効率が低下したため生じたものと考えられ
る。 なお、本実施例2の各サンプルA−1〜3について、上
記実施例1で行った反り変形試験、温湿度サイクル試験
を行ったところ、そのいずれについても実施例1と同様
な結果が得られた。 表1に示すように、第1の誘電体膜2を膜厚15nm以
下程度としたとき、光学的な透過損失が小さくなること
も示された。 実施例3 本実施例では、第1の誘電体@2を5i02から成るも
のを用い、実施例1の場合と同様に、その膜厚は10%
mとなるように、スパッタリング法を用いて成膜した。 他の構成は上記実施例1と同様であるので、重複した説
明を省略する。 本実施例の場合も、上記実施例1の場合と同様に、反り
変形試験、温湿度サイクル試験、及び光透通草測定を夫
々同一の条件で行ったが、その結果は、上記実施例1の
場合と全く同様であった。 すなわち、本発明の光情報記録媒体においては第1の誘
電体膜2をSin、にて形成してもZrO2にて形成し
ても同様な特性が得られることが理解できた。
FIG. 341 shows a schematic cross section of a magneto-optical disk as an optical information recording medium according to the present invention. Example 1, Comparative Example 1.2 1 is a transparent resin substrate, and a guide groove for tracking during recording and reading is provided in the upper part of the figure. 2 is the first dielectric film, which is a thin film mainly composed of ZrO2. 3 is a second dielectric film, which is a thin film mainly composed of Si and N4. Note that the first dielectric film is provided closer to the substrate 1 than the second dielectric film. 5 is a recording film, and 4 and 6 are thin films such as ceramics for protecting the recording film 5. 7 is a reflective film, and 8 is an overcoat layer made of ultraviolet curing resin or the like. A magneto-optical disk having the structure shown in FIG. 1 was manufactured by the following procedure. First, a polycarbonate material having a diameter of 130 mm was used as the substrate 1, and a protective film 4, a recording film 5, and a protective film 6 were sequentially formed on the front side, that is, the surface on the guide groove side, by sputtering. The protective film 4.6 is a silicon nitride film formed to a thickness of 8 nm, and the recording film 5 is a TbFeCo alloy film formed to a thickness of 30%.
Next, a reflective film 7 was formed to a thickness of . A CrAu alloy film with a thickness of 1100 nm was formed on the reflective film. Note that an overcoat layer 8 of ultraviolet curing resin or the like is normally provided, but it was omitted in the samples produced in the tests described later. On the other hand, a two-layer dielectric M2.3 was provided on the back side of the substrate 1. Here, the first dielectric film 2 was made of ZrO2 with a thickness of Ionm, and the dielectric film 3 of 342 was made of Si and N4 with a thickness of 200 nm, both of which were formed using a sputtering method. A sample having such a configuration, that is, a sample according to an example of the present invention is referred to as sample A (Example 1). Next, a sample as a comparative example was prepared as below, and a film similar to that of the sample A was placed on the surface side of the film 4.
7 and only the second dielectric film 3 was formed on the back side, in other words, a sample was fabricated as a sample having a configuration in which the dielectric film 341 was not formed. This sample is referred to as Sample B as Comparative Example 1. Furthermore, each film on the surface side was fixed to the samples A and B.
We prototyped a sample with the same configuration, but without any film on the back side. This sample is designated as Sample C as Comparative Example 2. The following tests were conducted on samples A and B%C prepared as described above. (Warp deformation test) Using the above three samples A, B, and C; Mechanical change (deformation) of the disk in an environment where temperature and humidity change
I looked into it. First, put the three samples A%B%C into a constant temperature and humidity chamber.
Next, the amount of change in the disk surface warpage was measured in real time by changing the temperature and humidity using a warp measuring device using laser light. Figure 2 shows the changes in the disk when the temperature is changed.
! Diagram J3 shows changes when humidity is changed. Note that the amount of deformation of the disk is determined by the radial warping angle (
Ti 1 t [mrad] ). In addition, the amount of concavity on the surface side is assumed to be positive, and the initial surface warpage angle is O (zero).
In FIG. 2, the line marked ``■'' represents that of Sample A, the line ``■'' represents that of Sample B, and the line ``■'' represents that of Sample C, respectively. In experiments where the temperature was varied, the humidity was set at 50% relative humidity at each temperature. As can be understood from Figure 2, in sample C, which does not have any film on the back side,
The warp angle of the disk surface changed as the humidity rose and fell. This is considered to be due to a difference in the coefficient of thermal expansion between the resin substrate 1 and the films 4 to 7 provided on the surface on the guide groove side. On the other hand, in Sample A1 and Sample B, almost no change in the warp angle was observed. In subsequent experiments in which humidity was varied, the temperature was fixed at 60°C. As can be understood from the N3 diagram, only sample C shows a large change in its warp angle over time, whereas
In Sample A and Sample B, there was almost no change. The change in Sample C is thought to be due to the fact that water absorption and dehydration occur in the resin substrate 1 as the humidity changes, and the resulting increase and decrease in deposition occurs at different rates on the front and back surfaces. (Temperature and Humidity Cycle Test) The following experiments were conducted on the samples A and B described above. Two samples A and B were placed in an automatically controllable thermostatic chamber and subjected to a temperature/humidity cycle test. Specifically, 20℃
After maintaining the temperature and humidity environment at 20% for 2 hours, the temperature was changed to 60℃ and 80% in 1 hour, this environment was maintained for 2 hours, and then the original temperature and humidity was changed to 20℃ and 20% within 1 hour. The idea is to return it to . This series of environmental changes was treated as one cycle and repeated while visually inspecting the appearance of the back surface of the disk, and in sample B, minute peeling and cracks were observed in the film after approximately 2,500 cycles were repeated. In contrast, sample A has at least 1000
No change occurred up to 0 cycles. In other words, this example demonstrated that not only does it not warp due to environmental changes in temperature and humidity, but it also does not peel or crack in the thin film even after repeated temperature and humidity cycle tests many times. . In addition, the first dielectric film 2 has a thickness of 1
It has also been shown that when the thickness is about 5 nm or less, the optical transmission loss becomes small. Example 2 Next, as samples for Example 2, we prepared several samples that had the same film structure as Sample A produced in Example 1, but had different film thickness ratios between the two dielectric films on the back side. I made a prototype. Specifically, the film thickness of 21 dielectric films 2 on the side closer to the substrate 1 was set to 15% m b 30 nm s and 50 nm s.
Prototypes were made with three different types: %m. The samples are named A-1, A-2, and A-3 in order of film thickness. (Light Transmission Measurement) For each of Samples A-1 to A-3 and Sample A, the light transmittance required for an optical disk substrate was measured. In this measurement, a constant amount of light flux was irradiated from the back side of the disk, and the reflected light from the recording film 5 and reflective film 7 on the front side was measured using a light meter on the back side. The results are shown in Table 1 below. Table 1 In the above table, the amount of reflected light is 1
.. It was set as 00. As can be understood from the values in Table 1 above, sample A-2
, A-3 caused a loss of light quantity. It is thought that this loss in light amount occurred because as the film thickness increased, the multiple reflection condition approached and the light transmission efficiency in the film decreased. In addition, when each sample A-1 to A-3 of this Example 2 was subjected to the warpage deformation test and temperature/humidity cycle test performed in Example 1, the same results as in Example 1 were obtained for each of them. Ta. As shown in Table 1, it was also shown that when the first dielectric film 2 had a thickness of about 15 nm or less, the optical transmission loss was reduced. Example 3 In this example, the first dielectric @2 is made of 5i02, and as in Example 1, its film thickness is 10%.
A film was formed using a sputtering method so that the thickness of the film was m. Since the other configurations are the same as those of the first embodiment, redundant explanation will be omitted. In this example, as in Example 1 above, a warp deformation test, a temperature/humidity cycle test, and a light transmission measurement were conducted under the same conditions, but the results were similar to those in Example 1 above. It was exactly the same as the case. That is, it was understood that in the optical information recording medium of the present invention, similar characteristics can be obtained whether the first dielectric film 2 is formed of Sin or ZrO2.

【発明の効果】【Effect of the invention】

以上のように本発明によれば、透明樹脂基板の一方の面
上に少なくとも記録膜が設けられ、他方の面上に透明な
二層の誘電体膜が設けられ、該二層の8電体膜のうち前
記基板に近い側の層の主成分がZrO,または5i02
から成り、他方の層の主成分がSi、N4から成ること
を特徴とするので、二層のllj (Z r’−02ま
たはSin、膜、及びS i 3 Na l1l)を基
板の裏面側に設けることにより、光情報記録媒体の、換
言すれば透明樹脂基板の表裏面での耐吸湿性、熱膨張率
などの′#r差をなくすことができるため、基板の変形
を十分に抑制することが可能となり、また、厳しい環境
変化が生じても薄膜に剥離、亀裂等を発生させることは
ない。
As described above, according to the present invention, at least a recording film is provided on one surface of a transparent resin substrate, and a transparent two-layer dielectric film is provided on the other surface, and the two-layer 8-electric material The main component of the layer closer to the substrate in the film is ZrO or 5i02
The main components of the other layer are Si and N4, so two layers of llj (Z r'-02 or Sin, film, and Si 3 Na l1l) are formed on the back side of the substrate. By providing this, it is possible to eliminate differences in moisture absorption resistance, coefficient of thermal expansion, etc. between the front and back surfaces of the optical information recording medium, in other words, the transparent resin substrate, so that deformation of the substrate can be sufficiently suppressed. Furthermore, even if severe environmental changes occur, the thin film will not peel or crack.

【図面の簡単な説明】[Brief explanation of drawings]

′s1図は、本発明の各実施例1.2.3の構成を示す
断面図、第2図は、温度変化にともなう光ディスクのサ
ンプルA、B、Cの反り量の変化を示すグラ乙第3図は
、湿度変化にともなう光ディスクのサンプルA、B、C
の反り量の変化を示すグラフである。 (符号の説明) 1・・・透明樹脂基板、2・・・誘電体膜、3・・・誘
電体膜、5・・・記録膜。
Figure 's1 is a cross-sectional view showing the configuration of each embodiment 1.2.3 of the present invention, and Figure 2 is a graph showing changes in the amount of warpage of optical disk samples A, B, and C due to temperature changes. Figure 3 shows optical disc samples A, B, and C as humidity changes.
3 is a graph showing changes in the amount of warpage. (Explanation of symbols) 1... Transparent resin substrate, 2... Dielectric film, 3... Dielectric film, 5... Recording film.

Claims (1)

【特許請求の範囲】[Claims] (1)透明樹脂基板の一方の面上に少なくとも記録膜が
設けられ、他方の面上に透明な二層の誘電体膜が設けら
れ、該二層の誘電体膜のうち前記基板に近い側の層の主
成分がZrO_2またはSiO_2から成り、他方の層
の主成分がSi_3N_4から成ることを特徴とする光
情報記録媒体。
(1) At least a recording film is provided on one surface of a transparent resin substrate, and a transparent two-layer dielectric film is provided on the other surface, and the side of the two-layer dielectric film that is closer to the substrate An optical information recording medium characterized in that the main component of one layer is composed of ZrO_2 or SiO_2, and the main component of the other layer is composed of Si_3N_4.
JP2148119A 1990-06-05 1990-06-05 Optical information recording medium Pending JPH0440648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2148119A JPH0440648A (en) 1990-06-05 1990-06-05 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2148119A JPH0440648A (en) 1990-06-05 1990-06-05 Optical information recording medium

Publications (1)

Publication Number Publication Date
JPH0440648A true JPH0440648A (en) 1992-02-12

Family

ID=15445685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2148119A Pending JPH0440648A (en) 1990-06-05 1990-06-05 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPH0440648A (en)

Similar Documents

Publication Publication Date Title
US4319252A (en) Optical data storage and recording medium having a replaceable protective coverplate
JPH11149664A (en) Optical disk
KR920000425B1 (en) Process for optical information recording disk
JP2889880B2 (en) Laminate, compound used for laminate, and optical information carrier having laminate
JPH0440648A (en) Optical information recording medium
JPS61184743A (en) Optical recording medium
JP2532274B2 (en) optical disk
JPH0467332A (en) Optical disk and its manufacture
JPS5938950A (en) Magneto-optic storage element
WO2004034390A1 (en) Optical information recording medium and manufacturing method thereof
JPS6168744A (en) Manufacture of optical recording medium
JPS63311647A (en) Optical recorder for magneto-optical recording including erasable device and magneto-optical recorder
US20040091814A1 (en) Optical information recording medium
JPH01182942A (en) Optical disk
JPH04307438A (en) Optical information recording medium
JPH01182941A (en) Optical disk
JP2554321B2 (en) Optical recording medium
JPS62137742A (en) Information recording disk
JPH02273343A (en) Optical information recording medium
JPH04222939A (en) Optical information recording medium
JPH04291035A (en) Optical disk substrate
JP2971519B2 (en) optical disk
JPS61258348A (en) Optical disk
JPH10188348A (en) Information recording medium
JP2003338084A (en) Recording medium