JPH0439547A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0439547A
JPH0439547A JP14540590A JP14540590A JPH0439547A JP H0439547 A JPH0439547 A JP H0439547A JP 14540590 A JP14540590 A JP 14540590A JP 14540590 A JP14540590 A JP 14540590A JP H0439547 A JPH0439547 A JP H0439547A
Authority
JP
Japan
Prior art keywords
heat
temperature
compressor
indoor
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14540590A
Other languages
Japanese (ja)
Inventor
Akira Fukami
深見 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14540590A priority Critical patent/JPH0439547A/en
Publication of JPH0439547A publication Critical patent/JPH0439547A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent any bad influence against a life of an air conditioner or environments of the earth, assure an effect of energy saving and enable a stable thermal radiation by a method wherein heat got under an operation of a freezing cycle is accumulated in a thermal medium in a thermal accumulation tank, a capability of a variable capability compressor is varied in such a way as a temperature of the thermal medium in the thermal accumulation tank becomes a predetermined value and then a thermal medium of an amount corresponding to a load of air conditioning is flowed to each of indoor devices. CONSTITUTION:When a cooling mode is set, operations of a compressor 41 and a fan 53 are set at a time range of night time, a cooling and thermal accumulating operation is, carried out, thereby a cooling heat is accumulated in a thermal accumulating tank 54. When a heating mode is set, an operation of the compressor 41, a changing-over of a four-way valve 42 and an operation of a fan 53 are set within a time range of night. A heating and heat accumulating operation is carried out to store the heating heat in the heat accumulation tank 54. When each of the heat accumulations is performed, an operating frequency F of the compressor 41 is controlled in response to a temperature difference between the detected temperature of a thermal medium temperature sensor 55 and the set temperature and a function of a detected temperature of a heat exchanger temperature sensor 51 or a refrigerant temperature sensor 52. At a time range of daytime (other than the night time range), a flow rate adjusting valve 59 of the indoor device producing an operating signal is set to be released and then a heat transporting cooling or heating operation is carried out.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) この発明は、複数の室内ユニットを有するマルチタイプ
の空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Industrial Application Field) This invention relates to a multi-type air conditioner having a plurality of indoor units.

(従来の技術) 近年、中小のビルディング等で、複数台の室内ユニット
を有するマルチタイプの空気調和機が多く利用されてい
る。−例を第6図に示す。
(Prior Art) In recent years, multi-type air conditioners having a plurality of indoor units are often used in small and medium-sized buildings. - An example is shown in FIG.

第6図において、1は圧縮機で、その圧縮機1に、四方
弁2、室外熱交換器3、レシーバ4、パックドバルブ5
、液側配管6、分流器7、複数の電動式膨脂弁8、複数
の室内熱交換器9、ガス側配管10、パックドバルブ1
1、上記四方弁2、およびアキュームレータ12を順次
接続し、ヒートポンプ式冷凍サイクルを構成している。
In FIG. 6, 1 is a compressor, and the compressor 1 includes a four-way valve 2, an outdoor heat exchanger 3, a receiver 4, and a packed valve 5.
, liquid side piping 6, flow divider 7, multiple electric expansion valves 8, multiple indoor heat exchangers 9, gas side piping 10, packed valve 1
1. The four-way valve 2 and the accumulator 12 are connected in sequence to constitute a heat pump type refrigeration cycle.

すなわち、冷房運転時は図示実線矢印の方向に冷媒を流
して冷房サイクルを形成し、室外熱交換器3を凝縮器、
各室内熱交換器9を蒸発器として働かせる。暖房運転時
は、四方弁2の切換により、各室内熱交換器9を凝縮器
、室外熱交換器3を蒸発器として働かせる。
That is, during cooling operation, the refrigerant flows in the direction of the solid arrow shown in the figure to form a cooling cycle, and the outdoor heat exchanger 3 is converted into a condenser,
Each indoor heat exchanger 9 works as an evaporator. During heating operation, each indoor heat exchanger 9 is operated as a condenser and the outdoor heat exchanger 3 is operated as an evaporator by switching the four-way valve 2.

そして、室外熱交換器3の近傍に室外ファン13を設け
、各室内熱交換器9の近傍にそれぞれ室内ファン14を
設けている。
An outdoor fan 13 is provided near the outdoor heat exchanger 3, and an indoor fan 14 is provided near each indoor heat exchanger 9.

また、圧縮機1、四方弁2、室外熱交換器3、レシーバ
4、パックドバルブ5、パックドバルブ11、アキュー
ムレータ12、および室外ファン13により、室外ユニ
ットAを構成している。さらに、電動式膨張弁8、室内
熱交換器9、および室内ファン14により、室内ユニッ
トB 1 、B2 +B3をそれぞれ構成している。
Furthermore, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the receiver 4, the packed valve 5, the packed valve 11, the accumulator 12, and the outdoor fan 13 constitute an outdoor unit A. Furthermore, the electric expansion valve 8, the indoor heat exchanger 9, and the indoor fan 14 constitute indoor units B1, B2+B3, respectively.

ところで、このような空気調和機を実際に建屋に据え付
ける場合、全体の配管長が長くなる傾向にあり、それに
伴って多量の冷媒(たとえばR−22)が必要となって
いる。
By the way, when such an air conditioner is actually installed in a building, the overall length of piping tends to become long, and accordingly, a large amount of refrigerant (for example, R-22) is required.

しかしながら、多量の冷媒の使用は冷凍サイクル機器の
寿命や地球環境に対して悪影響を及ぼすという問題があ
る。
However, there is a problem in that the use of a large amount of refrigerant has an adverse effect on the lifespan of refrigeration cycle equipment and the global environment.

また、マルチタイプの空気調和機としては、冷凍サイク
ルの運転によって得た熱を蓄熱槽の熱媒体に蓄え、その
熱媒体を複数の室内ユニットに循環させることによって
空調を行なうものがある。
Further, as a multi-type air conditioner, there is one that performs air conditioning by storing heat obtained by operating a refrigeration cycle in a heat medium in a heat storage tank and circulating the heat medium to a plurality of indoor units.

−例を第7図に示す。- An example is shown in FIG.

第7図において、21は圧縮機で、その圧縮機21に、
四方弁22、熱源側熱交換器23、膨張弁24、および
利用側熱交換器25を順次接続し、ヒートポンプ式冷凍
サイクルを構成している。
In FIG. 7, 21 is a compressor, and the compressor 21 has
The four-way valve 22, the heat source side heat exchanger 23, the expansion valve 24, and the usage side heat exchanger 25 are connected in sequence to constitute a heat pump type refrigeration cycle.

26は蓄熱槽で、内部に冷媒以外の熱媒体(たとえば水
)を蓄えている。この蓄熱槽26に開閉弁27,27,
27.27のブリッジ回路を接続し、そのブリッジ回路
に循環ポンプ28、上記利用側熱交換器25、複数の開
閉弁29、および複数の室内熱交換器30を順次に接続
している。さらに、各開閉弁29および各室内熱交換器
30に対し、バイパス弁31を並列に接続している。
A heat storage tank 26 stores a heat medium other than a refrigerant (for example, water). This heat storage tank 26 has on-off valves 27, 27,
A circulation pump 28, the utilization side heat exchanger 25, a plurality of on-off valves 29, and a plurality of indoor heat exchangers 30 are sequentially connected to the bridge circuit. Further, a bypass valve 31 is connected in parallel to each on-off valve 29 and each indoor heat exchanger 30.

すなわち、圧縮機21および循環ポンプ28を運転し、
さらに各開閉弁27およびバイパス弁31を開くことに
より、冷凍サイクルで得られた熱が利用側熱交換器25
を通して蓄熱槽26の熱媒体に蓄えられる(蓄熱運転)
。また、循環ポンプ28を運転し、さらに各開閉弁27
.29を開くことにより、蓄熱槽26内の熱媒体が各室
内熱交換器30に流れ、蓄熱槽26に蓄えられた熱が室
内に放出される(熱搬送運転)。
That is, the compressor 21 and the circulation pump 28 are operated,
Furthermore, by opening each on-off valve 27 and bypass valve 31, the heat obtained in the refrigeration cycle is transferred to the user-side heat exchanger 25.
is stored in the heat medium of the heat storage tank 26 (heat storage operation)
. In addition, the circulation pump 28 is operated, and each on-off valve 27
.. By opening 29, the heat medium in the heat storage tank 26 flows to each indoor heat exchanger 30, and the heat stored in the heat storage tank 26 is released indoors (heat transfer operation).

この空気調和機の場合、冷媒配管をいちいち室内まで導
く必要がなく、よって使用する冷媒の量が少なくてすむ
という利点がある。
In the case of this air conditioner, there is no need to lead each refrigerant pipe into the room, so there is an advantage that the amount of refrigerant used can be reduced.

(発明が解決しようとする課題) しかしながら、上記の空気調和機では、蓄熱運転を行な
う場合、圧縮機21および循環ポンプ28の両方を運転
しなければならず、電力の消費が大きいという欠点があ
る。
(Problem to be Solved by the Invention) However, in the above air conditioner, when performing heat storage operation, both the compressor 21 and the circulation pump 28 must be operated, which has the disadvantage that power consumption is large. .

さらに、蓄熱運転時は熱媒体がバイパス弁31を通して
循環するため、熱の損失が大きいという欠点がある。
Furthermore, since the heat medium circulates through the bypass valve 31 during heat storage operation, there is a drawback that heat loss is large.

また、外気温度に応じて冷凍サイクルで得られる熱が変
化するとともに、室内ユニットの運転台数に応じて空調
負荷が変化するため、蓄熱漕26内の熱媒体の温度が安
定せず、それがそのまま室内ユニットの放熱量のばらつ
きとなって現われてしまう。
In addition, the heat obtained by the refrigeration cycle changes depending on the outside air temperature, and the air conditioning load changes depending on the number of operating indoor units, so the temperature of the heat medium in the heat storage tank 26 is not stable and remains unchanged. This appears as variations in the amount of heat dissipated from the indoor units.

この発明は上記の事情を考慮したもので、その目的とす
るところは、多量の冷媒を要することなく、これにより
冷凍サイクル機器の寿命や地球環境に対する悪影響を防
ぎ、また電力消費や熱損失を小さく抑えて省エネルギ効
果を確保しながら、各室内ユニットの個々の空調負荷に
対応する安定した放熱を可能とする空気調和機を提供す
ることにある。
This invention was developed in consideration of the above circumstances, and its purpose is to prevent the lifespan of refrigeration cycle equipment and adverse effects on the global environment, and to reduce power consumption and heat loss without requiring a large amount of refrigerant. An object of the present invention is to provide an air conditioner that enables stable heat dissipation corresponding to the individual air conditioning loads of each indoor unit, while ensuring an energy saving effect.

[発明の構成] (課題を解決するための手段) この発明の空気調和機は、能力可変圧縮機。[Structure of the invention] (Means for solving problems) The air conditioner of this invention is a variable capacity compressor.

熱源側熱交換器、減圧器、利用側熱交換器を接続した冷
凍サイクルと、上記利用側熱交換器の熱を熱媒体に蓄え
る蓄熱槽と、この蓄熱槽の熱媒体の温度を検知する手段
と、この検知温度に応じて上記能力可変圧縮機の能力を
制御する手段と、上記蓄熱槽に循環ポンプを介して並列
に接続した複数の室内ユニットと、これら室内ユニット
に流れる熱媒体の量を調整する複数の流量調整弁と、こ
れら流量調整弁の開度を対応する室内ユニットの空調負
荷に応じて制御する手段と、上記循環ポンプの能力を上
記各室内ユニットの空調負荷の総和に応じて制御する手
段とを備える。
A refrigeration cycle in which a heat source side heat exchanger, a pressure reducer, and a usage side heat exchanger are connected, a heat storage tank that stores the heat of the usage side heat exchanger in a heat medium, and a means for detecting the temperature of the heat medium in this heat storage tank. a means for controlling the capacity of the variable capacity compressor according to the detected temperature; a plurality of indoor units connected in parallel to the heat storage tank via a circulation pump; and a means for controlling the amount of heat medium flowing to these indoor units. A plurality of flow rate adjustment valves to be adjusted, means for controlling the opening degrees of these flow rate adjustment valves according to the air conditioning loads of the corresponding indoor units, and a means for controlling the capacity of the circulation pump according to the sum of the air conditioning loads of the indoor units. and means for controlling.

(作用) 冷凍サイクルの運転により得られる熱が蓄熱漕の熱媒体
を介して各室内ユニットに伝わる。このとき、蓄熱漕の
熱媒体の温度が所定値となるよう能力可変圧縮機の能力
が変化する。同時に、各室内ユニットに対し、その各室
内ユニットの空調負荷に対応する量の熱媒体が流れる。
(Function) Heat obtained by operating the refrigeration cycle is transmitted to each indoor unit via the heat medium of the heat storage tank. At this time, the capacity of the variable capacity compressor is changed so that the temperature of the heat medium in the heat storage tank becomes a predetermined value. At the same time, an amount of heat medium corresponding to the air conditioning load of each indoor unit flows to each indoor unit.

(実施例) 以下、この発明の一実施例について図面を参照して説明
する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図において、41は能力可変圧縮機で、この圧縮機
41に四方弁42、熱源側熱交換器43、減圧器たとえ
ば膨張弁44、パックドバルブ45、液側配管46、熱
源側熱交換器47、ガス側配管48、パックドバルブ4
9、上記四方弁42、およびアキュームレータ50を順
次接続し、ヒートポンプ式冷凍サイクルを構成している
In FIG. 1, 41 is a variable capacity compressor, and this compressor 41 includes a four-way valve 42, a heat source side heat exchanger 43, a pressure reducer such as an expansion valve 44, a packed valve 45, a liquid side pipe 46, and a heat source side heat exchanger. 47, gas side piping 48, packed valve 4
9, the four-way valve 42 and the accumulator 50 are connected in sequence to constitute a heat pump type refrigeration cycle.

すなわち、冷房運転時は図示実線矢印の方向に冷媒を流
して冷房サイクルを形成し、熱源側熱交換器43を凝縮
器、利用側熱交換器47を蒸発器として働かせる。暖房
運転時は、四方弁42の切換により、利用側熱交換器4
7を凝縮器、熱源側熱交換器43を蒸発器として働かせ
る。
That is, during cooling operation, the refrigerant flows in the direction of the solid arrow shown in the figure to form a cooling cycle, and the heat source side heat exchanger 43 functions as a condenser and the user side heat exchanger 47 functions as an evaporator. During heating operation, the user side heat exchanger 4 is switched by switching the four-way valve 42.
7 works as a condenser, and the heat source side heat exchanger 43 works as an evaporator.

そして、熱源側熱交換器43に熱交換器温度センサ51
を取付け、膨張弁44とパックドバルブ45との間の配
管に冷媒温度センサ52を取付ける。
A heat exchanger temperature sensor 51 is attached to the heat source side heat exchanger 43.
and a refrigerant temperature sensor 52 to the pipe between the expansion valve 44 and the packed valve 45.

熱源側熱交換器43の近傍にファン53を設ける。A fan 53 is provided near the heat source side heat exchanger 43.

54は蓄熱槽で、内部に冷媒以外の熱媒体(水等)を蓄
えている。また、この蓄熱槽54の内部に上記利用側熱
交換器47、熱媒体温度センサ55、および補助熱源と
しての電気ヒータ56を設け、この電気ヒータ56につ
いては商用交流電源57に接続する。
A heat storage tank 54 stores a heat medium (such as water) other than a refrigerant. Further, inside this heat storage tank 54, the above-mentioned utilization side heat exchanger 47, heat medium temperature sensor 55, and electric heater 56 as an auxiliary heat source are provided, and this electric heater 56 is connected to a commercial AC power source 57.

そして、この蓄熱槽54に循環ポンプ58を介して複数
の室内ユニットB1 +  ”2 r ・・・Bnを並
列に接続する。
A plurality of indoor units B1+"2r...Bn are connected in parallel to this heat storage tank 54 via a circulation pump 58.

室内ユニットB1.B2.・・・Bnは、流量調整弁5
9と室内熱交換器60の直列回路、室内ファン62、お
よび室内コントローラ63を有している。この室内コン
トローラ63に室内温度センサ64を接続している。
Indoor unit B1. B2. ...Bn is the flow rate adjustment valve 5
9 and an indoor heat exchanger 60, an indoor fan 62, and an indoor controller 63. An indoor temperature sensor 64 is connected to this indoor controller 63.

流量調整弁59は、室内ユニットに流れる熱媒体の量を
調整するためのものである。
The flow rate adjustment valve 59 is for adjusting the amount of heat medium flowing into the indoor unit.

また、室内ユニットB1.B2.・・・Bnに対し、開
閉弁61を並列に接続している。
In addition, indoor unit B1. B2. ...An on-off valve 61 is connected in parallel to Bn.

なお、圧縮機41、四方弁42、熱源側熱交換器43、
膨張弁44、パックドバルブ45、パックドバルブ49
、アキュームレータ50、熱交換器温度センサ51、冷
媒温度センサ52、およびファン53により、熱源ユニ
ットAを構成している。
In addition, the compressor 41, the four-way valve 42, the heat source side heat exchanger 43,
Expansion valve 44, packed valve 45, packed valve 49
, an accumulator 50, a heat exchanger temperature sensor 51, a refrigerant temperature sensor 52, and a fan 53 constitute a heat source unit A.

流量調整弁59、室内熱交換器60、室内ファン62、
および室内コントローラ63により、室内ユニットBl
 、B2 + ・・・Bnをそれぞれ構成している。
Flow rate adjustment valve 59, indoor heat exchanger 60, indoor fan 62,
and the indoor controller 63, the indoor unit Bl
, B2 + . . . constitute Bn, respectively.

制御回路を第2図に示す。The control circuit is shown in FIG.

70は空気調和機の全般にわたる制御を行なうシステム
コントローラで、マイクロコンピュータおよびその周辺
回路からなる。
A system controller 70 performs overall control of the air conditioner, and is composed of a microcomputer and its peripheral circuits.

このシステムコントローラ70に、上記各室内コントロ
ーラ63、四方弁42、開閉弁61、ファンモータ53
M1熱交換器温度センサ51、冷媒温度センサ52、熱
媒体温度センサ55、循環ポンプ58、およびインバー
タ回路71を接続する。
This system controller 70 includes the indoor controllers 63, the four-way valve 42, the on-off valve 61, and the fan motor 53.
M1 heat exchanger temperature sensor 51, refrigerant temperature sensor 52, heat medium temperature sensor 55, circulation pump 58, and inverter circuit 71 are connected.

このインバータ回路71は、商用交流電源72の電圧を
整流し、それをシステムコントローラ70の指令に応じ
た周波数(および電圧)の交流に変換し、圧縮機モータ
41Mへ駆動電力として供給するものである。
This inverter circuit 71 rectifies the voltage of the commercial AC power supply 72, converts it into AC with a frequency (and voltage) according to the command from the system controller 70, and supplies it as driving power to the compressor motor 41M. .

各室内コントローラ63には、流量調整弁59、ファン
モータ62M1室内温度センサ64、リモートコントロ
ール式の操作器(以下、リモコンと略称する)65を接
続する。
Each indoor controller 63 is connected to a flow rate adjustment valve 59, a fan motor 62M1 indoor temperature sensor 64, and a remote control type operating device (hereinafter referred to as a remote control) 65.

そして、各室内コントローラ63は、次の機能手段を備
えている。
Each indoor controller 63 is equipped with the following functional means.

(1)リモコン65の運転スイッチ(図示しない)がオ
ンされたとき、運転信号をシステムコントローラ70に
送る手段。
(1) Means for sending an operation signal to the system controller 70 when an operation switch (not shown) of the remote controller 65 is turned on.

(2)リモコン65の設定室内温度Tsと室内温度セン
サ64の検知温度Taとの差つまり空調負荷(冷房負荷
Lcまたは暖房負荷LH)を求め、その空調負荷を表わ
す信号を上記運転信号と共にシステムコントローラ70
に送る手段。
(2) Find the difference between the indoor temperature Ts set by the remote controller 65 and the temperature Ta detected by the indoor temperature sensor 64, that is, the air conditioning load (cooling load Lc or heating load LH), and send a signal representing the air conditioning load to the system controller along with the above operation signal. 70
means of sending to.

(3)後述する熱搬送冷房運転時および熱搬送暖房運転
時、室内ユニットB11  B21 ・・・Bnの流量
調整弁59の開度をそれぞれ対応する室内ユニットの空
調負荷(冷房負荷Lcまたは暖房負荷LH)の関数に応
じて制御する手段。
(3) During the heat transfer cooling operation and the heat transfer heating operation, which will be described later, the opening degree of the flow rate adjustment valve 59 of the indoor units B11, B21, ..., Bn is determined based on the air conditioning load (cooling load Lc or heating load LH) of the corresponding indoor unit. ) means to control according to the function of.

また、システムコントローラ70は、次の機能手段を備
えている。
The system controller 70 also includes the following functional means.

(1)モード切換スイッチ(図示しない)で冷房モード
が設定されているとき、夜間の時間帯(たとえば21時
〜6時の間)に圧縮機41の運転およびファン53の運
転を設定し、これにより圧縮機41の吐出冷媒を四方弁
42、熱源側熱交換器43、膨張弁44、液側配管46
、利用側熱交換器47、ガス側配管48、四方弁42、
リキッドタンク50の順に流して冷房サイクル(図示実
線)を設定し、冷房蓄熱運転を実行する手段。
(1) When the cooling mode is set with the mode selector switch (not shown), the operation of the compressor 41 and the fan 53 are set during the night time period (for example, between 9:00 p.m. and 6:00 p.m.). The refrigerant discharged from the machine 41 is transferred to the four-way valve 42, the heat source side heat exchanger 43, the expansion valve 44, and the liquid side piping 46.
, usage side heat exchanger 47, gas side piping 48, four-way valve 42,
A means for setting a cooling cycle (solid line in the figure) by flowing the liquid in the liquid tank 50 in order and executing a cooling heat storage operation.

(2)冷房蓄熱運転時、蓄熱槽54の熱媒体に対する設
定温度Tcsを決定する手段。
(2) Means for determining the set temperature Tcs for the heat medium in the heat storage tank 54 during cooling heat storage operation.

(3)冷房蓄熱運転時、熱媒体温度センサ55の検知温
度Twと設定温度Tcsとの差(−Tw−T cs)を
求め、この温度差および熱交換器温度センサ51の検知
温度T1 (凝縮温度)の関数から圧縮機41の運転周
波数F(インバータ回路71の出力周波数)を決定する
手段。この場合、運転周波数Fの決定に凝縮温度を取入
れているのは、冷凍サイクルの高圧側圧力の異常上昇を
押さえるためであり、凝縮温度が高いときは運転周波数
Fの決定値が低下する。
(3) During cooling heat storage operation, find the difference (-Tw-Tcs) between the temperature Tw detected by the heat medium temperature sensor 55 and the set temperature Tcs, and calculate this temperature difference and the temperature T1 (condensation) detected by the heat exchanger temperature sensor 51. Means for determining the operating frequency F of the compressor 41 (output frequency of the inverter circuit 71) from a function of temperature). In this case, the reason why the condensing temperature is incorporated into the determination of the operating frequency F is to suppress an abnormal increase in the pressure on the high pressure side of the refrigeration cycle, and when the condensing temperature is high, the determined value of the operating frequency F decreases.

(4)モード切換スイッチで暖房モードが設定されてい
るとき、夜間の時間帯に圧縮機41の運転、四方弁42
の切換、およびファン53の運転を設定し、これにより
圧縮機41の吐出冷媒を四方弁42、ガス側配管48、
利用側熱交換器47、液側熱交換器46、膨張弁44、
熱源側熱交換器43、四方弁42、リキッドタンク50
の順に流して暖房サイクル(図示破線)を設定し、暖房
蓄熱運転を実行する手段。
(4) When the heating mode is set with the mode selector switch, the compressor 41 is operated during the night time, the four-way valve 42
and set the operation of the fan 53, thereby directing the refrigerant discharged from the compressor 41 to the four-way valve 42, the gas side pipe 48,
Usage side heat exchanger 47, liquid side heat exchanger 46, expansion valve 44,
Heat source side heat exchanger 43, four-way valve 42, liquid tank 50
means to set the heating cycle (broken line in the figure) and execute the heating heat storage operation.

(5)暖房蓄熱運転時、蓄熱槽54の熱媒体に対する設
定温度THs(>Tc5)を決定する手段。
(5) Means for determining the set temperature THs (>Tc5) for the heat medium in the heat storage tank 54 during heating heat storage operation.

(6)暖房蓄熱運転時、設定温度THsと熱媒体温度セ
ンサ55の検知温度Twとの差(−T Hs −T w
 )を求め、この温度差および冷媒温度センサ52の検
知温度T2 (凝縮温度)の関数から圧縮機41の運転
周波数F(インバータ回路71の出力周波数)を決定す
る手段。この場合、運転周波数Fの決定に凝縮温度を取
入れているのは、冷凍サイクルの高圧側圧力の異常上昇
を押さえるためであり、凝縮温度が高いときは運転周波
数Fの決定値が低下する。
(6) During heating heat storage operation, the difference between the set temperature THs and the detected temperature Tw of the heat medium temperature sensor 55 (-T Hs -T w
) and determines the operating frequency F of the compressor 41 (output frequency of the inverter circuit 71) from this temperature difference and a function of the detected temperature T2 (condensing temperature) of the refrigerant temperature sensor 52. In this case, the reason why the condensing temperature is incorporated into the determination of the operating frequency F is to suppress an abnormal increase in the pressure on the high pressure side of the refrigeration cycle, and when the condensing temperature is high, the determined value of the operating frequency F decreases.

(7)冷房蓄熱運転時および暖房蓄熱運転時、決定した
運転周波数Fに基づき、インバータ回路71の出力周波
数を制御する手段。
(7) Means for controlling the output frequency of the inverter circuit 71 based on the determined operating frequency F during the cooling heat storage operation and the heating heat storage operation.

(8)冷房蓄熱運転時および暖房蓄熱運転時、夜間時間
帯の終了までの残り時間が一定以上たとえば1時間以上
のとき、圧縮機41の許容最大運転周波数Fmax(イ
ンバータ回路71の出力周波数の許容最大値)を所定値
だけ抑制して省エネルギ運転を実行する手段。
(8) During cooling heat storage operation and heating heat storage operation, when the remaining time until the end of the night time period is a certain amount or more, for example, 1 hour or more, the allowable maximum operating frequency Fmax of the compressor 41 (the allowable output frequency of the inverter circuit 71 A means of executing energy-saving operation by suppressing the maximum value) by a predetermined value.

(9)昼間の時間帯(夜間時間帯以外)で、しかも冷房
モードが設定されているとき、各室内コントローラ63
のうち少なくとも1つから運転信号を受けると、圧縮機
41の運転、ファン53の運転、循環ポンプ58の運転
、運転信号を出している室内ユニットの室内ファン62
の運転、運転信号を出している室内ユニットの流量調整
弁59の開放を設定し、これにより圧縮機4′iの吐出
冷媒を四方弁42、熱源側熱交換器43、膨張弁44、
液側配管46、利用側熱交換器47、ガス側配管48、
四方弁42、リキッドタンク50の順に流して冷房サイ
クルを形成するとともに、蓄熱漕54内の熱媒体を循環
ポンプ58から運転信号を出している室内ユニットの流
量調整弁59および室内熱交換器60に流し、熱搬送冷
房運転を実行する手段。
(9) During daytime hours (other than nighttime hours) and when cooling mode is set, each indoor controller 63
When an operation signal is received from at least one of them, the compressor 41 is operated, the fan 53 is operated, the circulation pump 58 is operated, and the indoor fan 62 of the indoor unit that is issuing the operation signal is operated.
operation, and the opening of the flow rate adjustment valve 59 of the indoor unit that is issuing the operation signal, thereby controlling the refrigerant discharged from the compressor 4'i to the four-way valve 42, the heat source side heat exchanger 43, the expansion valve 44,
Liquid side piping 46, utilization side heat exchanger 47, gas side piping 48,
The liquid flows through the four-way valve 42 and the liquid tank 50 in this order to form a cooling cycle, and the heat medium in the heat storage tank 54 is passed from the circulation pump 58 to the flow rate adjustment valve 59 of the indoor unit that is issuing the operation signal and to the indoor heat exchanger 60. A means of carrying out sinking and heat transfer cooling operations.

(10)熱搬送冷房運転時、蓄熱槽54の熱媒体に対す
る設定温度Tcsを決定する手段。
(10) Means for determining the set temperature Tcs for the heat medium in the heat storage tank 54 during heat transfer cooling operation.

(11)熱搬送冷房運転時、熱媒体温度センサ55の検
知温度Twと設定温度Tcsとの差(−Tw−THs)
を求め、この温度差および上記総冷房負荷Lcnの関数
から圧縮機41の運転周波数F(インバータ回路71の
出力周波数)を決定する手段。
(11) During heat transfer cooling operation, the difference between the detected temperature Tw of the heat medium temperature sensor 55 and the set temperature Tcs (-Tw-THs)
means for determining the operating frequency F of the compressor 41 (output frequency of the inverter circuit 71) from this temperature difference and a function of the total cooling load Lcn.

(12)熱搬送冷房運転時、決定した運転周波数Fに基
づき、インバータ回路71の出力周波数を制御する手段
(12) Means for controlling the output frequency of the inverter circuit 71 based on the determined operating frequency F during heat transfer cooling operation.

(13)熱搬送冷房運転時、室内ユニットB1゜B2+
 ・・・Bnのそれぞれの冷房負荷Lcの総和しenに
応じて循環ポンプ58の能力(回転数)を制御する手段
(13) During heat transfer cooling operation, indoor unit B1゜B2+
. . . A means for controlling the capacity (rotation speed) of the circulation pump 58 according to the sum of the cooling loads Lc of each of the Bn and en.

(14)昼間の時間帯で、しかも暖房モードが設定され
ているとき、各室内コントローラ63のうち少なくとも
1つから運転信号を受けると、圧縮機41の運転、四方
弁42の切換、ファン53の運転、循環ポンプ58の運
転、運転信号を出している室内ユニットの室内ファン6
2の運転、運転信号を出している室内ユニットの流量調
整弁59の開放を設定し、これにより圧縮機41の吐出
冷媒を四方弁42、ガス側配管48、利用側熱交換器4
7、液側配管46、膨張弁44、熱源側熱交換器43、
四方弁42、リキッドタンク50の順に流して暖房サイ
クルを形成するとともに、蓄熱漕54内の熱媒体を循環
ポンプ58、運転信号を出している室内ユニットの流量
調整弁59および室内熱交換器60に流し、熱搬送暖房
運転を実行する手段。
(14) During daytime hours and when the heating mode is set, when an operation signal is received from at least one of the indoor controllers 63, the compressor 41 is operated, the four-way valve 42 is switched, and the fan 53 is switched on. operation, the operation of the circulation pump 58, and the indoor fan 6 of the indoor unit that outputs the operation signal.
2 operation, the flow rate adjustment valve 59 of the indoor unit that is issuing the operation signal is set to open, thereby directing the refrigerant discharged from the compressor 41 to the four-way valve 42, the gas side piping 48, and the user side heat exchanger 4.
7, liquid side piping 46, expansion valve 44, heat source side heat exchanger 43,
The liquid flows through the four-way valve 42 and the liquid tank 50 in this order to form a heating cycle, and the heat medium in the heat storage tank 54 is passed through the circulation pump 58, the flow rate adjustment valve 59 of the indoor unit that is issuing the operation signal, and the indoor heat exchanger 60. Means of carrying out sinking, heat transfer heating operations.

(15)熱搬送暖房運転時、蓄熱槽54の熱媒体に対す
る設定温度THsを決定する手段。
(15) Means for determining the set temperature THs for the heat medium in the heat storage tank 54 during the heat transfer heating operation.

(16)熱搬送暖房運転時、設定温度THsと熱媒体温
度センサ55の検知温度Twとの差(−THs−Tw)
を求め、この温度差、上記総暖房負荷T Hn、および
冷媒温度センサ52の検知温度T2  (凝縮温度)の
関数から圧縮機41の運転周波数F(インバータ回路7
1の出力周波数)を決定する手段。この場合、運転周波
数Fの決定に凝縮温度を取入れているのは、冷凍サイク
ルの高圧側圧力の異常上昇を押さえるためであり、凝縮
温度が高いときは運転周波数Fの決定値が低下する。
(16) During heat transfer heating operation, the difference between the set temperature THs and the detected temperature Tw of the heat medium temperature sensor 55 (-THs-Tw)
The operating frequency F of the compressor 41 (the inverter circuit 7
1 output frequency). In this case, the reason why the condensing temperature is incorporated into the determination of the operating frequency F is to suppress an abnormal increase in the pressure on the high pressure side of the refrigeration cycle, and when the condensing temperature is high, the determined value of the operating frequency F decreases.

(17)熱搬送冷房運転時および熱搬送暖房運転時、決
定した運転周波数Fに基づき、インバータ回路71の出
力周波数を制御する手段。
(17) Means for controlling the output frequency of the inverter circuit 71 based on the determined operating frequency F during the heat transfer cooling operation and the heat transfer heating operation.

(18)熱搬送暖房運転時、室内ユニットB1゜B2.
・・・Bnのそれぞれの暖房負荷LHの総和LHnに応
じて循環ポンプ58の能力(回転数)を制御する手段。
(18) During heat transfer heating operation, indoor units B1°B2.
. . . Means for controlling the capacity (rotation speed) of the circulation pump 58 according to the total sum LHn of the heating loads LH of each of the Bn.

つぎに、上記の構成において第3図および第4図を参照
しながら作用を説明する。
Next, the operation of the above configuration will be explained with reference to FIGS. 3 and 4.

冷房モードが設定されているとき、夜間の時間帯(たと
えば21時〜6時の間)において、圧縮機41の運転お
よびファン53の運転を設定し、冷房蓄熱運転を実行す
る。これにより、冷房熱を蓄熱槽54の熱媒体に蓄える
When the cooling mode is set, the operation of the compressor 41 and the operation of the fan 53 are set to execute the cooling heat storage operation during the night time period (for example, between 9:00 PM and 6:00 PM). Thereby, cooling heat is stored in the heat medium of the heat storage tank 54.

この冷房蓄熱運転時、熱媒体温度センサ55の検知温度
(熱媒体の温度)Twと予め定めている設定温度Tcs
との差(−Ty−Tcs)を求め、この温度差および熱
交換器温度センサ51の検知温度T1 (凝縮温度)の
関数に応じて圧縮機41の運転周波数Fを制御する。
During this cooling heat storage operation, the detected temperature of the heat medium temperature sensor 55 (temperature of the heat medium) Tw and the predetermined set temperature Tcs
The operating frequency F of the compressor 41 is controlled according to a function of this temperature difference and the temperature T1 (condensing temperature) detected by the heat exchanger temperature sensor 51.

この場合、検知温度Twが設定温度Tcsに近づくに従
って運転周波数Fを下げていき、検知温度Twが設定温
度Tcsに達したとき(Tw−Tcs)、圧縮機41の
運転を停止する。この停止により検知温度Twが上昇し
、その値が設定温度Tcsよりも一定値α以上高くなる
と(Tw−Tcs≧α)圧縮機41の運転を再開する。
In this case, the operating frequency F is lowered as the detected temperature Tw approaches the set temperature Tcs, and when the detected temperature Tw reaches the set temperature Tcs (Tw-Tcs), the operation of the compressor 41 is stopped. This stop causes the detected temperature Tw to rise, and when the detected temperature Tw becomes higher than the set temperature Tcs by a certain value α (Tw−Tcs≧α), the operation of the compressor 41 is restarted.

暖房モードが設定されているとき、夜間の時間帯におい
て、圧縮機41の運転、四方弁42の切換、およびファ
ン53の運転を設定し、暖房蓄熱運転を実行する手段。
When the heating mode is set, the means sets the operation of the compressor 41, the switching of the four-way valve 42, and the operation of the fan 53 during the night time period, and executes the heating heat storage operation.

これにより、暖房熱を蓄熱槽54の熱媒体に蓄える。Thereby, heating heat is stored in the heat medium of the heat storage tank 54.

この暖房蓄熱運転時、予め定めている設定温度THsと
熱媒体温度センサ55の検知温度(熱媒体の温度)Tw
との差(=THs−Tw)を求め、この温度差および冷
媒温度センサ52の検知温度T2 (凝縮温度)の関数
に応じて圧縮機41の運転周波数Fを制御する。
During this heating heat storage operation, the preset temperature THs and the temperature detected by the heat medium temperature sensor 55 (temperature of the heat medium) Tw
The operating frequency F of the compressor 41 is controlled according to this temperature difference and a function of the temperature T2 (condensing temperature) detected by the refrigerant temperature sensor 52.

この場合、検知温度Twが設定温度THsに近づくに従
って運転周波数Fを下げていき、検知温度Twが設定温
度T)Isに達したとき(Tw−THs)、圧縮機41
の運転を停止する。この停止により検知温度Twが下降
し、その値が設定温度THsよりも一定値α以上低くな
ると(THs−Tw≧α)、圧縮機41の運転を再開す
る。
In this case, as the detected temperature Tw approaches the set temperature THs, the operating frequency F is lowered, and when the detected temperature Tw reaches the set temperature T)Is (Tw-THs), the compressor 41
stop operating. Due to this stop, the detected temperature Tw decreases, and when the detected temperature Tw becomes lower than the set temperature THs by a certain value α (THs−Tw≧α), the operation of the compressor 41 is restarted.

なお、冷房蓄熱運転時および暖房蓄熱運転時、夜間時間
帯の終了までの残り時間が1時間以上あれば、圧縮機4
1の許容最大運転周波数F laXを所定値だけ抑制し
て省エネルギ運転を実行する。
In addition, during cooling heat storage operation and heating heat storage operation, if the remaining time until the end of the night time period is more than 1 hour, the compressor 4
The maximum allowable operating frequency FlaX of 1 is suppressed by a predetermined value to execute energy-saving operation.

ただし、夜間時間帯の終了までの残り時間が1時間以内
では、圧縮機41の許容最大運転周波数F laXに対
する抑制を解除し、迅速な蓄熱を図る。
However, if the remaining time until the end of the nighttime period is less than one hour, the suppression of the maximum allowable operating frequency F laX of the compressor 41 is released, and rapid heat storage is attempted.

昼間の時間帯(夜間時間帯以外)では、冷房モードのと
き、各室内コントローラ63のうち少なくとも1つから
運転信号を受けると、圧縮機41の運転、ファン53の
運転、循環ポンプ58の運転、運転信号を出している室
内ユニットの室内ファン62の運転、運転信号を出して
いる室内ユニットの流量調整弁59の開放を設定し、熱
搬送冷房運転を実行する。つまり、冷凍サイクルの運転
によって得られる冷房熱が蓄熱槽54の熱媒体を介して
室内ユニットに伝わる。
During daytime hours (other than nighttime hours), in the cooling mode, when an operation signal is received from at least one of the indoor controllers 63, the compressor 41 is operated, the fan 53 is operated, the circulation pump 58 is operated, The indoor fan 62 of the indoor unit that is issuing the operation signal is set to operate, and the flow rate adjustment valve 59 of the indoor unit that is issuing the operation signal is set to be opened, thereby executing the heat transfer cooling operation. That is, the cooling heat obtained by operating the refrigeration cycle is transmitted to the indoor unit via the heat medium of the heat storage tank 54.

この熱搬送冷房運転時、 室内ユニッ)Bl。During this heat transfer cooling operation, indoor unit) Bl.

B2+ ・・・Bnのそれぞれの冷房負荷Lcの総和し
cnに応じて循環ポンプ58の能力(回転数)を制御す
る。 さらに、室内ユニットB1 +  B2+ ・・
・Bnの流量調整弁59の開度をそれぞれ対応する室内
ユニットの冷房負荷Lcの関数に応じて制御する。
B2+ . . . The capacity (rotation speed) of the circulation pump 58 is controlled according to the summation cn of the respective cooling loads Lc of Bn. Furthermore, indoor unit B1 + B2+...
- The opening degree of the Bn flow rate adjustment valve 59 is controlled according to a function of the cooling load Lc of the corresponding indoor unit.

同時に、熱媒体温度センサ55の検知温度Twと設定温
度Tcsとの差(−T w −T Hs)を求め、この
温度差および上記総冷房負荷Lenの関数に応じて圧縮
機41の運転周波数Fを制御する。
At the same time, the difference (-T w - T Hs) between the detected temperature Tw of the heat medium temperature sensor 55 and the set temperature Tcs is determined, and the operating frequency F of the compressor 41 is determined according to this temperature difference and a function of the total cooling load Len. control.

したがって、蓄熱槽54の熱媒体の温度が室内ユニット
の運転台数にかかわらず安定化し、しかも室内ユニット
にはその冷房負荷に対応する量の熱媒体が流れるので、
各室内ユニットにおいて個々の冷房負荷に対応する安定
した放熱量を確保することができる。
Therefore, the temperature of the heat medium in the heat storage tank 54 is stabilized regardless of the number of indoor units in operation, and the amount of heat medium corresponding to the cooling load flows through the indoor units.
It is possible to ensure a stable amount of heat radiation corresponding to the individual cooling load in each indoor unit.

昼間の時間帯で、しかも暖房モードのとき、各室内コン
トローラ63のうち少なくとも1つから運転信号を受け
ると、圧縮機41の運転、四方弁42の切換、ファン5
3の運転、循環ポンプ58の運転、運転信号を出してい
る室内ユニットの室内ファン62の運転、運転信号を出
している室内ユニットの流量調整弁59の開放を設定し
、熱搬送暖房運転を実行する。つまり、冷凍サイクルの
運転によって得られる暖房熱が蓄熱槽54の熱媒体を介
して室内ユニットに伝わる。
During daytime hours and in heating mode, when an operation signal is received from at least one of the indoor controllers 63, the compressor 41 is operated, the four-way valve 42 is switched, and the fan 5 is operated.
3 operation, operation of the circulation pump 58, operation of the indoor fan 62 of the indoor unit that is issuing the operation signal, and opening of the flow rate adjustment valve 59 of the indoor unit that is issuing the operation signal, and executes the heat transfer heating operation. do. That is, heating heat obtained by operating the refrigeration cycle is transmitted to the indoor unit via the heat medium of the heat storage tank 54.

この熱搬送暖房運転時、 室内ユニットB、。During this heat transfer heating operation, indoor unit B.

B2.・・・Bnのそれぞれの暖房負荷LHの総和LH
nに応じて循環ポンプ58の能力(回転数)を制御する
。さらに、室内ユニットB1 *  B2 + ・・・
Bnの流量調整弁59の開度をそれぞれ対応する室内ユ
ニットの暖房負荷LHの関数に応じて制御する。
B2. ...Total sum LH of each heating load LH of Bn
The capacity (rotation speed) of the circulation pump 58 is controlled according to n. Furthermore, indoor unit B1 * B2 +...
The opening degrees of the Bn flow rate regulating valves 59 are controlled according to a function of the heating load LH of the corresponding indoor unit.

同時に、設定温度Tl(sと熱媒体温度センサ55の検
知温度Twとの差(−THs−Tw)を求め、この温度
差、上記総暖房負荷T Hn、および冷媒温度センサ5
2の検知温度T2  (凝縮温度)の関数に応じて圧縮
機41の運転周波数Fを制御する。
At the same time, the difference (-THs-Tw) between the set temperature Tl(s and the temperature Tw detected by the heat medium temperature sensor 55) is calculated, and this temperature difference, the total heating load T Hn, and the refrigerant temperature sensor 5
The operating frequency F of the compressor 41 is controlled according to a function of the detected temperature T2 (condensing temperature) of No. 2.

したがって、蓄熱槽54の熱媒体の温度が室内ユニット
の運転台数にかかわらず安定化し、しかも室内ユニット
にはその暖房負荷に対応する量の熱媒体が流れるので、
各室内ユニットおいて個々の暖房負荷に対応する安定し
た放熱量を確保することができる。
Therefore, the temperature of the heat medium in the heat storage tank 54 is stabilized regardless of the number of indoor units in operation, and the amount of heat medium corresponding to the heating load flows through the indoor units.
It is possible to ensure a stable amount of heat radiation corresponding to the individual heating load in each indoor unit.

特に、冷凍サイクルの配管長が短くてすみ、よって熱源
ユニットAの小形化が図れるとともに、冷媒の使用量を
大幅に削減することができ、冷凍サイクル機器の寿命や
地球環境に対する悪影響を防ぐことができる。
In particular, the piping length of the refrigeration cycle can be shortened, making it possible to downsize the heat source unit A and significantly reducing the amount of refrigerant used, which can prevent negative effects on the lifespan of refrigeration cycle equipment and the global environment. can.

また、蓄熱運転では、冷凍サイクルのみを運転し、熱媒
体は循環させないようにしているので、電力消費や熱損
失を小さく抑えることができ、省エネルギ効果が得られ
る。
In addition, in heat storage operation, only the refrigeration cycle is operated and the heat medium is not circulated, so power consumption and heat loss can be kept low, resulting in an energy saving effect.

さらに、蓄熱により、冷房能力および暖房能力の立ち上
がりが早いという効果がある。
Furthermore, heat storage has the effect of quickly increasing the cooling capacity and heating capacity.

また、たとえば熱源側熱交換器43が凍結して除霜運転
を実行した場合でも、室内ユニットでの暖房を継続する
ことができる。
Further, even if the heat source side heat exchanger 43 freezes and defrosting operation is performed, heating in the indoor unit can be continued.

なお、第5図に示すように、室内ユニットB1゜B2.
・・・Bnから蓄熱槽54にかけての接続配管に加熱器
(ガス燃焼型または電気ヒータ型)80を設け、この加
熱器80を熱搬送暖房運転時に運転するようにすれば、
暖房能力の増大が図れる。
In addition, as shown in FIG. 5, indoor units B1°B2.
...If a heater (gas combustion type or electric heater type) 80 is provided in the connecting pipe from Bn to the heat storage tank 54, and this heater 80 is operated during the heat transfer heating operation,
Heating capacity can be increased.

[発明の効果] 以上述べたようにこの発明によれば、能力可変圧縮機、
熱源側熱交換器、減圧器、利用側熱交換器を接続した冷
凍サイクルと、上記利用側熱交換器の熱を熱媒体に蓄え
る蓄熱槽と、この蓄熱槽の熱媒体の温度を検知する手段
と、この検知温度に応じて上記能力可変圧縮機の能力を
制御する手段と、上記蓄熱槽に循環ポンプを介して並列
に接続した複数の室内ユニットと、これら室内二ニット
に流れる熱媒体の量を調整する複数の流量調整弁と、こ
れら流量調整弁の開度を対応する室内ユニットの空調負
荷に応じて制御する手段と、上記循環ポンプの能力を上
記各室内ユニットの空調負荷の総和に応じて制御する手
段とを備えたので、多量の冷媒を要することなく、これ
により冷凍サイクル機器の寿命や地球環境に対する悪影
響を防ぎ、また電力消費や熱損失を小さく抑えて省エネ
ルギ効果を確保しながら、各室内ユニットの個々の空調
負荷に対応する安定した放熱を可能とする空気調和機を
提供できる。
[Effect of the invention] As described above, according to the present invention, a variable capacity compressor,
A refrigeration cycle in which a heat source side heat exchanger, a pressure reducer, and a usage side heat exchanger are connected, a heat storage tank that stores the heat of the usage side heat exchanger in a heat medium, and a means for detecting the temperature of the heat medium in this heat storage tank. , a means for controlling the capacity of the variable capacity compressor according to the detected temperature, a plurality of indoor units connected in parallel to the heat storage tank via a circulation pump, and an amount of heat medium flowing into these indoor units. a plurality of flow rate adjustment valves for adjusting the flow rate, means for controlling the opening degrees of these flow rate adjustment valves according to the air conditioning loads of the corresponding indoor units, and a means for controlling the capacity of the circulation pump according to the sum of the air conditioning loads of the indoor units. As the system is equipped with a control means, it does not require a large amount of refrigerant, thereby preventing the life of the refrigeration cycle equipment and adversely affecting the global environment, and also ensuring energy saving effects by keeping power consumption and heat loss to a minimum. , it is possible to provide an air conditioner that enables stable heat radiation corresponding to the individual air conditioning load of each indoor unit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の主要部の構成を示す図、
第2図は同実施例の制御回路の構成を示すブロック図、
第3図は同実施例の作用を説明するためのフローチャー
ト、第4図は同実施例における能力可変圧縮機の運転周
波数の変化の一例を示す図、第5図は同実施例の変形例
の構成を示す図、第6図および第7図はそれぞれ従来の
空気調和機の構成を示す図である。 A・・・熱源ユニット、B1.B2.・・・Bn・・・
・・・室内ユニット、41・・・能力可変圧縮機、43
・・・熱源側熱交換器、47・・・利用側熱交換器、5
4・・・蓄熱槽、55・・・熱媒体温度センサ、59・
・・流量調整弁、60・・・室内熱交換器、70・・・
システムコントローラ。 出願人代理人 弁理士 鈴 江 武 彦第 図 第 図 第 図
FIG. 1 is a diagram showing the configuration of the main parts of an embodiment of the present invention;
FIG. 2 is a block diagram showing the configuration of the control circuit of the same embodiment;
Fig. 3 is a flowchart for explaining the operation of the same embodiment, Fig. 4 is a diagram showing an example of a change in the operating frequency of the variable capacity compressor in the same embodiment, and Fig. 5 is a diagram of a modification of the same embodiment. 6 and 7 are diagrams showing the structure of a conventional air conditioner, respectively. A...Heat source unit, B1. B2. ...Bn...
...Indoor unit, 41...Variable capacity compressor, 43
... Heat source side heat exchanger, 47 ... User side heat exchanger, 5
4... Heat storage tank, 55... Heat medium temperature sensor, 59.
...Flow rate adjustment valve, 60...Indoor heat exchanger, 70...
system controller. Applicant's Representative Patent Attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 能力可変圧縮機、熱源側熱交換器、減圧器、利用側熱交
換器を接続した冷凍サイクルと、上記利用側熱交換器の
熱を熱媒体に蓄える蓄熱槽と、この蓄熱槽の熱媒体の温
度を検知する手段と、この検知温度に応じて上記能力可
変圧縮機の能力を制御する手段と、上記蓄熱槽に循環ポ
ンプを介して並列に接続した複数の室内ユニットと、こ
れら室内ユニットに流れる熱媒体の量を調整する複数の
流量調整弁と、これら流量調整弁の開度を対応する室内
ユニットの空調負荷に応じて制御する手段と、上記循環
ポンプの能力を上記各室内ユニットの空調負荷の総和に
応じて制御する手段とを具備したことを特徴とする空気
調和機。
A refrigeration cycle in which a variable capacity compressor, a heat source side heat exchanger, a pressure reducer, and a user side heat exchanger are connected; a heat storage tank that stores the heat of the user side heat exchanger in a heat medium; means for detecting temperature; means for controlling the capacity of the variable capacity compressor according to the detected temperature; a plurality of indoor units connected in parallel to the heat storage tank via a circulation pump; A plurality of flow rate adjustment valves for adjusting the amount of heat medium, a means for controlling the opening degree of these flow rate adjustment valves according to the air conditioning load of the corresponding indoor unit, and a means for controlling the capacity of the circulation pump according to the air conditioning load of each of the indoor units. An air conditioner characterized by comprising means for controlling according to the sum of the following.
JP14540590A 1990-06-05 1990-06-05 Air conditioner Pending JPH0439547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14540590A JPH0439547A (en) 1990-06-05 1990-06-05 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14540590A JPH0439547A (en) 1990-06-05 1990-06-05 Air conditioner

Publications (1)

Publication Number Publication Date
JPH0439547A true JPH0439547A (en) 1992-02-10

Family

ID=15384499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14540590A Pending JPH0439547A (en) 1990-06-05 1990-06-05 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0439547A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100345579B1 (en) * 2000-08-14 2002-07-27 주식회사 센추리 The combined Compact Refrigerative / Regenerative Heat-Pump System
JP2007163071A (en) * 2005-12-15 2007-06-28 Hitachi Appliances Inc Heat pump type cooling/heating system
WO2021024412A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Chilling unit and air conditioning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100345579B1 (en) * 2000-08-14 2002-07-27 주식회사 센추리 The combined Compact Refrigerative / Regenerative Heat-Pump System
JP2007163071A (en) * 2005-12-15 2007-06-28 Hitachi Appliances Inc Heat pump type cooling/heating system
WO2021024412A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Chilling unit and air conditioning device
JPWO2021024412A1 (en) * 2019-08-07 2021-12-23 三菱電機株式会社 Chilling unit and air conditioner

Similar Documents

Publication Publication Date Title
US9797614B2 (en) Air conditioning system
US9528713B2 (en) Combined hot water supply and air-conditioning device
US9562701B2 (en) Temperature control system and air conditioning system
JP2909187B2 (en) Air conditioner
US5074120A (en) Multi-type air-conditioning system with fast hot starting for heating operation
WO2016194098A1 (en) Air-conditioning device and operation control device
JP2014119145A (en) Air conditioner
KR101454756B1 (en) Heat storaging apparatus having cascade cycle and Control process of the same
JP2019105397A (en) Air conditioning equipment and air conditioning system
JP6053201B2 (en) Refrigeration equipment
JPH03236570A (en) Air-conditioner
JP5677198B2 (en) Air cooling heat pump chiller
JP2010007996A (en) Trial operation method of air conditioner and air conditioner
WO2019017370A1 (en) Freezer
JP4650086B2 (en) Thermal storage heat recovery device
JP2016102636A (en) Air conditioning system
JPH0439547A (en) Air conditioner
JP3377632B2 (en) Air conditioner
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP5062555B2 (en) Energy saving air conditioning control system
JPH07190534A (en) Heat storage type air conditioning equipment
JP2914783B2 (en) Air conditioner
CN113551305B (en) Air conditioner with double heat exchangers and control method thereof
JP2719456B2 (en) Air conditioner
JP2016102635A (en) Air conditioner system