JP2014119145A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014119145A
JP2014119145A JP2012272905A JP2012272905A JP2014119145A JP 2014119145 A JP2014119145 A JP 2014119145A JP 2012272905 A JP2012272905 A JP 2012272905A JP 2012272905 A JP2012272905 A JP 2012272905A JP 2014119145 A JP2014119145 A JP 2014119145A
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
pressure side
control device
side flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012272905A
Other languages
Japanese (ja)
Other versions
JP6148001B2 (en
Inventor
Akira Sugiyama
昭 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012272905A priority Critical patent/JP6148001B2/en
Publication of JP2014119145A publication Critical patent/JP2014119145A/en
Application granted granted Critical
Publication of JP6148001B2 publication Critical patent/JP6148001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To speedily perform efficient air-conditioning operation by attaining a suitable refrigerant amount from the start of the air-conditioning operation.SOLUTION: An air conditioner includes a control device 20 which controls the amount of a refrigerant by controlling a high pressure-side flow control device 6 and a low pressure-side flow control device 7 when starting the operation of a compressor 1. The control device 20 makes the opening of the high pressure-side flow control device 6 larger than the opening of the low pressure-side flow control device 7 so as to reserve the refrigerant in a receiver 5 in air-conditioning operation in which a suitable refrigerant amount is small, for example, in a heating operation. In an air-conditioning operation in which the suitable refrigerant amount is large, for example, in a cooling operation, the opening of the low pressure-side flow control device 7 is made larger than the opening of the high pressure-side flow control device 6 so that the refrigerant is not reserved in the receiver 5.

Description

本発明は、冷媒を溜めるレシーバを利用して、冷媒回路を流れる冷媒量を調整する空気調和機に関する。   The present invention relates to an air conditioner that adjusts the amount of refrigerant flowing through a refrigerant circuit using a receiver that accumulates refrigerant.

空気調和機において、圧縮機、四方弁、凝縮器、絞り装置、蒸発器が順に配管により接続され、冷媒が循環する冷凍サイクルが形成される。特許文献1に記載された空気調和機では、絞り装置の両側よりそれぞれ高圧側膨張弁および低圧側膨張弁を介してレシーバが並列接続される。そして、冷媒回路を循環する冷媒量を適正に保つために、圧縮機から吐出される冷媒の吐出温度と設定吐出温度に基づいて、高圧側膨張弁および低圧側膨張弁の開度が制御される。   In an air conditioner, a compressor, a four-way valve, a condenser, a throttling device, and an evaporator are sequentially connected by a pipe to form a refrigeration cycle in which refrigerant circulates. In the air conditioner described in Patent Document 1, receivers are connected in parallel from both sides of the throttle device via a high-pressure side expansion valve and a low-pressure side expansion valve, respectively. And in order to keep the refrigerant | coolant amount which circulates through a refrigerant circuit appropriately, the opening degree of a high voltage | pressure side expansion valve and a low voltage | pressure side expansion valve is controlled based on the discharge temperature and preset discharge temperature of the refrigerant | coolant discharged from a compressor. .

特開2002−156166号公報JP 2002-156166 A

上記の空気調和機では、空調運転中、レシーバに冷媒が溜められ、その冷媒量が調整される。ところで、空調運転の種類によって、最適冷媒量が異なる。冷房運転時の最適冷媒量は暖房運転時の最適冷媒量よりも多くなる。レシーバに冷媒が溜まっている場合、冷房運転時には循環する冷媒量が少なくなるので、レシーバから冷媒を排出して、冷媒回路に戻さなければならない。このように、空調運転の種類に応じて、レシーバに冷媒を溜めるだけでなく、レシーバから冷媒を排出することも必要である。   In the above air conditioner, the refrigerant is stored in the receiver during the air conditioning operation, and the amount of the refrigerant is adjusted. By the way, the optimum refrigerant amount varies depending on the type of air conditioning operation. The optimum refrigerant amount during the cooling operation is larger than the optimum refrigerant amount during the heating operation. When the refrigerant is accumulated in the receiver, the amount of refrigerant circulating during the cooling operation is reduced. Therefore, the refrigerant must be discharged from the receiver and returned to the refrigerant circuit. Thus, depending on the type of air conditioning operation, it is necessary not only to store the refrigerant in the receiver, but also to discharge the refrigerant from the receiver.

また、空調運転が開始されて、圧縮機が運転されると、冷媒の吐出温度は徐々に上昇していく。そのため、空調運転の開始時に、吐出温度に応じて高圧側膨張弁および低圧側膨張弁の開度を制御すると、各膨張弁の開度が常に変化し、循環する冷媒量を適正に調整することが困難となる。最適な冷媒量になるまで時間がかかるので、この間の熱交換効率が悪くなり、消費電力も増大してしまう。   Further, when the air conditioning operation is started and the compressor is operated, the refrigerant discharge temperature gradually increases. Therefore, when the opening of the high-pressure side expansion valve and the low-pressure side expansion valve is controlled according to the discharge temperature at the start of the air-conditioning operation, the opening degree of each expansion valve always changes and the amount of circulating refrigerant is adjusted appropriately. It becomes difficult. Since it takes time until the optimum amount of refrigerant is reached, the heat exchange efficiency during this period deteriorates and the power consumption also increases.

本発明は、上記に鑑み、空調運転の開始から最適冷媒量になるように、冷媒回路を循環する冷媒量を調整して、効率のよい空調運転をすばやく行うことができる空気調和機の提供を目的とする。   In view of the above, the present invention provides an air conditioner that can quickly perform efficient air-conditioning operation by adjusting the amount of refrigerant circulating in the refrigerant circuit so that the optimum refrigerant amount is obtained from the start of air-conditioning operation. Objective.

本発明は、圧縮機、凝縮器、絞り装置、蒸発器を配管により接続して冷媒回路が形成され、冷媒回路に、冷媒を溜めるレシーバが設けられ、レシーバは、高圧側流量調整装置および低圧側流量調整装置を介して冷媒回路に接続され、冷媒回路を循環する冷媒が空調運転の種類に応じた最適冷媒量になるように、圧縮機の運転を開始するときに高圧側流量調整装置および低圧側流量調整装置を制御して冷媒量を調整する制御装置を備えたものである。   In the present invention, a compressor, a condenser, an expansion device, and an evaporator are connected by piping to form a refrigerant circuit. The refrigerant circuit is provided with a receiver for accumulating refrigerant, and the receiver includes a high-pressure side flow control device and a low-pressure side. The high-pressure side flow control device and the low-pressure device are connected to the refrigerant circuit via the flow rate adjusting device when starting the compressor operation so that the refrigerant circulating in the refrigerant circuit has an optimum refrigerant amount corresponding to the type of air conditioning operation. A control device for adjusting the refrigerant amount by controlling the side flow rate adjusting device is provided.

空調運転の種類によって最適冷媒量は異なる。空調運転の開始に合わせて、圧縮機の運転が開始される。そこで、空調運転の開始前、あるいは開始直後に、高圧側流量調整装置および低圧側流量調整装置を制御することにより、圧縮機の運転開始に伴って、レシーバに冷媒が溜められる、あるいはレシーバから冷媒回路に冷媒が排出される。したがって、空調運転を開始したときから、空調運転の種類に応じた最適冷媒量にすることができる。   The optimum amount of refrigerant varies depending on the type of air conditioning operation. The operation of the compressor is started in accordance with the start of the air conditioning operation. Therefore, by controlling the high pressure side flow rate adjustment device and the low pressure side flow rate adjustment device immediately before the start of the air-conditioning operation, the refrigerant is stored in the receiver or the refrigerant from the receiver as the compressor starts operating. The refrigerant is discharged into the circuit. Therefore, it is possible to set the optimum refrigerant amount according to the type of the air conditioning operation from the start of the air conditioning operation.

制御装置は、最適冷媒量が少ない空調運転のとき、レシーバに冷媒を溜めるように、高圧側流量調整装置を通過する冷媒量が低圧側流量調整装置を通過する冷媒量より多くなるように高圧側流量調整装置および低圧側流量調整装置を動作させる。最適冷媒量が多い空調運転のとき、レシーバに冷媒を溜めないように、高圧側流量調整装置を通過する冷媒量が低圧側流量調整装置を通過する冷媒量より少なくなるように高圧側流量調整装置および低圧側流量調整装置を動作させる。   The control device is configured so that the amount of refrigerant passing through the high-pressure side flow control device is larger than the amount of refrigerant passing through the low-pressure flow control device so that the refrigerant is accumulated in the receiver during air-conditioning operation with a small amount of optimal refrigerant. The flow rate adjusting device and the low pressure side flow rate adjusting device are operated. During air conditioning operation with a large amount of optimal refrigerant, the high-pressure flow rate adjustment device is such that the amount of refrigerant passing through the high-pressure side flow rate adjustment device is smaller than the refrigerant amount passing through the low-pressure side flow rate adjustment device so that the refrigerant does not accumulate in the receiver. And the low-pressure side flow control device is operated.

すなわち、冷房運転時の最適冷媒量が暖房運転時の最適冷媒量よりも多い場合、制御装置は、冷房運転を開始するとき、レシーバに冷媒を溜めないようにするために、低圧側流量調整装置を開き、高圧側流量調整装置を閉じる。暖房運転を開始するとき、レシーバに冷媒を溜めるようにするために、高圧側流量調整装置を開き、低圧側流量調整装置を閉じる。ここで、高圧側流量調整装置および低圧側流量調整装置が同じタイプの装置の場合、通過する冷媒量は開度に比例して決まる。最適冷媒量が少ない空調運転のとき、制御装置は、高圧側流量調整装置の開度を低圧側流量調整装置の開度よりも大きくする。最適冷媒量が多い空調運転のとき、制御装置は、低圧側流量調整装置の開度を高圧側流量調整装置の開度よりも大きくする。   That is, when the optimum refrigerant amount during the cooling operation is larger than the optimum refrigerant amount during the heating operation, the control device prevents the refrigerant from accumulating in the receiver when starting the cooling operation. Open and close the high-pressure flow control device. When starting the heating operation, the high pressure side flow rate adjustment device is opened and the low pressure side flow rate adjustment device is closed in order to store the refrigerant in the receiver. Here, when the high pressure side flow rate adjustment device and the low pressure side flow rate adjustment device are devices of the same type, the amount of refrigerant passing therethrough is determined in proportion to the opening degree. When the air conditioning operation is performed with a small amount of the optimum refrigerant, the control device makes the opening degree of the high pressure side flow rate adjustment device larger than the opening degree of the low pressure side flow rate adjustment device. During the air conditioning operation with a large amount of optimum refrigerant, the control device makes the opening degree of the low pressure side flow rate adjustment device larger than the opening degree of the high pressure side flow rate adjustment device.

室温を検出する室温センサが設けられ、制御装置は、室温により空調運転の種類を判別する。室温が高いとき、最適冷媒量が多い空調運転であると判別し、室温が低いとき、最適冷媒量が少ない空調運転であると判別する。これにより、開始する空調運転が冷房運転であるか暖房運転であるかを判別できる。さらに、自動運転が開始される場合、室温および設定温度に基づいて、冷房運転あるいは暖房運転が行われるが、いずれの運転が開始されるのかを判別でき、その運転に応じた最適冷媒量にすることができる。   A room temperature sensor for detecting the room temperature is provided, and the control device determines the type of the air conditioning operation based on the room temperature. When the room temperature is high, it is determined that the air-conditioning operation has a large amount of optimum refrigerant, and when the room temperature is low, it is determined that the air-conditioning operation has a small amount of optimum refrigerant. Thereby, it can be discriminate | determined whether the air conditioning operation to start is a cooling operation or a heating operation. Further, when the automatic operation is started, the cooling operation or the heating operation is performed based on the room temperature and the set temperature, and it is possible to determine which operation is started and to set the optimum refrigerant amount according to the operation. be able to.

制御装置は、サーモオフ時に圧縮機の運転が開始するとき、高圧側流量調整装置および低圧側流量調整装置を制御する。室温が設定温度に達すると、サーモオフが行われ、圧縮機は停止する。しばらくして室温と設定温度とに温度差が生じると、圧縮機の運転が再開される。この圧縮機の運転開始時に、制御装置は、空調運転の種類に応じて、高圧側流量調整装置および低圧側流量調整装置のうち、一方の流量調整装置を通過する冷媒量が他方の流量調整装置を通過する冷媒量よりも大きくなるように、高圧側流量調整装置および低圧側流量調整装置を動作させる。例えば、制御装置は、空調運転の種類に応じて、高圧側流量調整装置および低圧側流量調整装置のうち、一方の流量調整装置の開度を他方の流量調整装置の開度よりも大きくする。   The control device controls the high-pressure side flow rate adjustment device and the low-pressure side flow rate adjustment device when the operation of the compressor is started when the thermostat is off. When the room temperature reaches the set temperature, the thermo-off is performed and the compressor is stopped. When a temperature difference occurs between room temperature and the set temperature after a while, the operation of the compressor is resumed. At the start of the operation of the compressor, the control device determines whether the amount of refrigerant passing through one of the high-pressure side flow control device and the low-pressure side flow control device is the other flow control device, depending on the type of air conditioning operation. The high-pressure side flow rate adjustment device and the low-pressure side flow rate adjustment device are operated so as to be larger than the refrigerant amount passing through. For example, according to the type of the air conditioning operation, the control device increases the opening degree of one of the high pressure side flow rate adjusting device and the low pressure side flow rate adjusting device to be larger than the opening degree of the other flow rate adjusting device.

制御装置は、圧縮機の運転停止前の回転数と運転開始時の回転数が異なるとき、高圧側流量調整装置および低圧側流量調整装置を通過する冷媒量が変化するように、高圧側流量調整装置および低圧側流量調整装置を動作させる。圧縮機の回転数に応じて最適冷媒量は異なる。そのため、運転開始時の回転数が運転停止前の回転数より上がったとき、最適冷媒量が多くなるのに応じて、高圧側流量調整装置を通過する冷媒量が低圧側流量調整装置を通過する冷媒量より少なくなるように、各流量調整装置を通る冷媒量が調整される。例えば、高圧側流量調整装置の開度が低圧側流量調整装置の開度より小さくされる。運転開始時の回転数が運転停止前の回転数より下がったとき、最適冷媒量が少なくなるのに応じて、高圧側流量調整装置を通過する冷媒量が低圧側流量調整装置を通過する冷媒量より多くなるように、各流量調整装置が調整される。例えば、高圧側流量調整装置の開度が低圧側流量調整装置の開度より大きくされる。   The control device adjusts the high-pressure flow rate so that the amount of refrigerant passing through the high-pressure flow rate adjusting device and the low-pressure flow rate adjusting device changes when the rotation speed before stopping the compressor is different from the rotation speed at the start of operation. The apparatus and the low-pressure side flow control device are operated. The optimum amount of refrigerant varies depending on the rotational speed of the compressor. Therefore, when the number of revolutions at the start of operation increases from the number of revolutions before the operation is stopped, the amount of refrigerant passing through the high-pressure side flow control device passes through the low-pressure side flow control device as the optimum refrigerant amount increases. The amount of refrigerant passing through each flow rate adjusting device is adjusted so as to be smaller than the amount of refrigerant. For example, the opening degree of the high pressure side flow control device is made smaller than the opening degree of the low pressure side flow control device. When the number of revolutions at the start of operation falls below the number of revolutions before the stop of operation, the amount of refrigerant that passes through the high-pressure side flow controller is reduced as the optimum amount of refrigerant decreases. Each flow rate adjusting device is adjusted to increase the flow rate. For example, the opening degree of the high-pressure side flow control device is made larger than the opening degree of the low-pressure side flow control device.

また、制御装置は、圧縮機の運転開始時の高圧側流量調整装置および低圧側流量調整装置を通過する冷媒量が圧縮機の運転停止前の各流量調整装置を通過する冷媒量と同じになるように、高圧側流量調整装置および低圧側流量調整装置を動作させる。すなわち、圧縮機の運転停止前の回転数と運転開始時の回転数が同じとき、圧縮機の停止前後における最適冷媒量は変化しないので、停止前後における各流量調整装置を通過する冷媒量は変わらない。例えば、制御装置は、高圧側流量調整装置および低圧側流量調整装置の開度を変えない。この場合、最適冷媒量は変化しないので、各流量調整装置の開度はそのままでよい。   In the control device, the amount of refrigerant passing through the high pressure side flow rate adjusting device and the low pressure side flow rate adjusting device at the start of operation of the compressor is the same as the amount of refrigerant passing through each flow rate adjusting device before the compressor is stopped. As described above, the high pressure side flow rate adjusting device and the low pressure side flow rate adjusting device are operated. That is, when the number of revolutions before the stop of the compressor is the same as the number of revolutions at the start of the operation, the optimum amount of refrigerant before and after the compressor stops does not change, so the amount of refrigerant that passes through each flow control device before and after the stop changes. Absent. For example, the control device does not change the opening degree of the high pressure side flow rate adjustment device and the low pressure side flow rate adjustment device. In this case, since the optimum refrigerant amount does not change, the opening degree of each flow rate adjusting device may be left as it is.

外気温を検出する外気温センサが設けられ、制御装置は、外気温に応じて圧縮機の回転数を変化させ、回転数の変化に応じて高圧側流量調整装置および低圧側流量調整装置を通過する冷媒量を変える。冷房運転中、外気温が上がると、圧縮機の回転数は上がり、最適冷媒量は多くなる。外気温が下がると、圧縮機の回転数は下がり、最適冷媒量は少なくなる。このように、外気温の変化に応じた最適冷媒量の増減に対応して、循環する冷媒量が増減するように、各流量調整装置を通過する冷媒量が調整される。   An outside air temperature sensor for detecting the outside air temperature is provided, and the control device changes the rotation speed of the compressor according to the outside air temperature, and passes through the high pressure side flow rate adjustment device and the low pressure side flow rate adjustment device according to the change in the rotation speed. Change the amount of refrigerant. When the outside air temperature rises during the cooling operation, the rotation speed of the compressor increases and the optimum refrigerant amount increases. When the outside air temperature decreases, the rotation speed of the compressor decreases and the optimum refrigerant amount decreases. In this way, the amount of refrigerant passing through each flow rate adjusting device is adjusted so that the amount of refrigerant circulating circulates in accordance with the increase or decrease in the optimum amount of refrigerant according to the change in the outside air temperature.

本発明によると、空調運転を開始して、すばやく空調運転の種類に応じた最適冷媒量にすることができる。これにより、空調運転を開始してから、効率のよい空調運転を行うことができ、省エネを図ることができる。   According to the present invention, it is possible to start the air-conditioning operation and quickly obtain the optimum refrigerant amount according to the type of the air-conditioning operation. Thereby, after starting an air-conditioning driving | operation, an efficient air-conditioning driving | operation can be performed and energy saving can be aimed at.

本発明の空気調和機の冷媒回路を示す図The figure which shows the refrigerant circuit of the air conditioner of this invention 冷房運転時の冷凍サイクルを示す図Diagram showing the refrigeration cycle during cooling operation 暖房運転時の冷凍サイクルを示す図Diagram showing refrigeration cycle during heating operation 空気調和機の制御ブロック図Air conditioner control block diagram サーモオフ時の空調運転のフローチャートFlow chart of air conditioning operation when thermo is off サーモオフ時の流量調整装置の制御フローチャートControl flow chart of flow rate adjustment device when thermo is off

本実施形態の空気調和機は、図1に示すように、圧縮機1、凝縮器2、膨張弁3、蒸発器4を配管で接続した冷媒回路を備えている。冷媒の流れ方向に沿って、上流側から順に圧縮機1、凝縮器2、膨張弁3、蒸発器4が配置される。   The air conditioner of this embodiment is provided with the refrigerant circuit which connected the compressor 1, the condenser 2, the expansion valve 3, and the evaporator 4 with piping, as shown in FIG. A compressor 1, a condenser 2, an expansion valve 3, and an evaporator 4 are arranged in this order from the upstream side along the flow direction of the refrigerant.

冷媒回路を流れる冷媒の流量を調整するために、冷媒回路に、冷媒を溜めるレシーバ5が設けられる。レシーバ5は、流量調整装置6,7を介して冷媒回路に接続される。レシーバ5は、膨張弁3と並列に配置される。膨張弁3の上流側の配管から分岐した連結管がレシーバ5の入口に接続され、膨張弁3の下流側の配管から分岐した連結管がレシーバ5の出口に接続される。上流側の連結管は、凝縮器2と膨張弁3との間に接続され、下流側の連結管は、膨張弁3と蒸発器4との間に接続される。上流側の連結管に、高圧側流量調整装置6が介装され、下流側の連結管に、低圧側流量調整装置7が介装される。   In order to adjust the flow rate of the refrigerant flowing through the refrigerant circuit, a receiver 5 for collecting the refrigerant is provided in the refrigerant circuit. The receiver 5 is connected to the refrigerant circuit via the flow rate adjusting devices 6 and 7. The receiver 5 is arranged in parallel with the expansion valve 3. A connecting pipe branched from the pipe on the upstream side of the expansion valve 3 is connected to the inlet of the receiver 5, and a connecting pipe branched from the pipe on the downstream side of the expansion valve 3 is connected to the outlet of the receiver 5. The upstream connecting pipe is connected between the condenser 2 and the expansion valve 3, and the downstream connecting pipe is connected between the expansion valve 3 and the evaporator 4. A high-pressure flow rate adjustment device 6 is interposed in the upstream connection pipe, and a low-pressure flow rate adjustment device 7 is interposed in the downstream connection pipe.

膨張弁3は、冷媒の流量または圧力を調整する絞り装置である。絞り装置として、複数のキャピラリチューブを並べて、流路を切り替えるものであってもよい。また、流量調整装置6,7は、冷媒回路の配管とレシーバ5とを連通する、あるいは配管からレシーバ5を遮断するように、開閉することによって分岐管における冷媒の流れを制御する。すなわち、流量調整装置6,7は、レシーバ5内の冷媒の圧力を調整するものであり、膨張弁、流量調整弁、ストップ弁などを用いる。   The expansion valve 3 is a throttle device that adjusts the flow rate or pressure of the refrigerant. As the throttle device, a plurality of capillary tubes may be arranged to switch the flow path. Further, the flow rate adjusting devices 6 and 7 control the flow of the refrigerant in the branch pipe by opening and closing the pipe of the refrigerant circuit and the receiver 5 so as to communicate with each other or to block the receiver 5 from the pipe. That is, the flow rate adjusting devices 6 and 7 adjust the pressure of the refrigerant in the receiver 5, and use an expansion valve, a flow rate adjusting valve, a stop valve, and the like.

本空気調和機は、室内機10と室外機11とからなるセパレートタイプである。空気調和機は、冷房運転、暖房運転などの空調運転を行う。図2,3に示すように、冷媒回路に四方弁12が設けられる。室内機10に、室内熱交換器13が配され、室外機11に、圧縮機1、四方弁12、室外熱交換器14、膨張弁3およびレシーバ5が配される。各熱交換器13,14に対して、それぞれ送風機が設けられる。なお、図中、15は冷媒の充填時などに使用する二方弁、16は同じく三方弁、17はバイパス配管用の二方弁である。また、レシーバ5と室外熱交換器14との間に、第1流量調整装置18が介装され、レシーバ5と室内熱交換器13との間に、第2流量調整装置19が介装される。   This air conditioner is a separate type composed of an indoor unit 10 and an outdoor unit 11. The air conditioner performs air conditioning operations such as cooling operation and heating operation. As shown in FIGS. 2 and 3, a four-way valve 12 is provided in the refrigerant circuit. An indoor heat exchanger 13 is arranged in the indoor unit 10, and a compressor 1, a four-way valve 12, an outdoor heat exchanger 14, the expansion valve 3 and the receiver 5 are arranged in the outdoor unit 11. A blower is provided for each of the heat exchangers 13 and 14. In the figure, 15 is a two-way valve used for charging refrigerant, 16 is a three-way valve, and 17 is a two-way valve for bypass piping. Further, a first flow rate adjusting device 18 is interposed between the receiver 5 and the outdoor heat exchanger 14, and a second flow rate adjusting device 19 is interposed between the receiver 5 and the indoor heat exchanger 13. .

圧縮機1から吐出された冷媒が、空調運転に応じて四方弁12により流れ方向を切り替えられ、冷媒が凝縮器2、膨張弁3、蒸発器4を経て圧縮機1に戻る。このように冷媒が冷媒回路を循環する冷凍サイクルが形成される。図2に示すように、冷房運転あるいは除霜運転のとき、室内熱交換器13が蒸発器となり、室外熱交換器14が凝縮器となる。第1流量調整装置18が高圧側流量調整装置となり、第2流量調整装置19が低圧側流量調整装置となる。図3に示すように、暖房運転のとき、室内熱交換器13が凝縮器となり、室外熱交換器14が蒸発器となる。第2流量調整装置19が高圧側流量調整装置となり、第1流量調整装置18が低圧側流量調整装置となる。   The refrigerant discharged from the compressor 1 is switched in the flow direction by the four-way valve 12 according to the air conditioning operation, and the refrigerant returns to the compressor 1 through the condenser 2, the expansion valve 3, and the evaporator 4. In this way, a refrigeration cycle is formed in which the refrigerant circulates through the refrigerant circuit. As shown in FIG. 2, during the cooling operation or the defrosting operation, the indoor heat exchanger 13 serves as an evaporator and the outdoor heat exchanger 14 serves as a condenser. The first flow rate adjusting device 18 becomes a high pressure side flow rate adjusting device, and the second flow rate adjusting device 19 becomes a low pressure side flow rate adjusting device. As shown in FIG. 3, during the heating operation, the indoor heat exchanger 13 serves as a condenser, and the outdoor heat exchanger 14 serves as an evaporator. The second flow rate adjusting device 19 becomes a high pressure side flow rate adjusting device, and the first flow rate adjusting device 18 becomes a low pressure side flow rate adjusting device.

図4に示すように、空気調和機は、冷凍サイクルを制御して、空調運転を制御する制御装置20を備えている。空気調和機には、凝縮器2の温度を検出する凝縮器温度センサ21、蒸発器4の温度を検出する蒸発器温度センサ22、圧縮機1から吐出された冷媒の吐出温度を検出する吐出温度センサ23、室温センサ24、外気温センサ25が設けられる。制御装置20は、所望の空調運転に応じて、これらの温度センサの出力に基づき、圧縮機1、送風機26、膨張弁3、流量調整装置6,7の動作を制御して、冷凍サイクルを制御する。   As shown in FIG. 4, the air conditioner includes a control device 20 that controls the refrigeration cycle and controls the air conditioning operation. The air conditioner includes a condenser temperature sensor 21 that detects the temperature of the condenser 2, an evaporator temperature sensor 22 that detects the temperature of the evaporator 4, and a discharge temperature that detects the discharge temperature of the refrigerant discharged from the compressor 1. A sensor 23, a room temperature sensor 24, and an outside air temperature sensor 25 are provided. The control device 20 controls the operation of the compressor 1, the blower 26, the expansion valve 3, and the flow rate adjusting devices 6 and 7 to control the refrigeration cycle based on the outputs of these temperature sensors according to the desired air conditioning operation. To do.

なお、制御装置20は、室内機10に設けられた室内制御部と、室外機11に設けられた室外制御部とから構成される。室内制御部と室外制御部とは互いに通信可能に接続され、両者が連携して室内機10および室外機11の動作を制御する。   The control device 20 includes an indoor control unit provided in the indoor unit 10 and an outdoor control unit provided in the outdoor unit 11. The indoor control unit and the outdoor control unit are connected so as to be communicable with each other, and both cooperate to control operations of the indoor unit 10 and the outdoor unit 11.

空調運転が行われるとき、制御装置20は、室温が設定温度になるように冷凍サイクルを制御する。このとき、制御装置20は、空調運転に応じて冷媒回路を循環する冷媒量が最適になるように調整する。冷媒回路に充填された冷媒の一部は、レシーバ5に溜められ、残りの冷媒が冷媒回路を循環する。循環する冷媒量のうち、COPが最大となるときの冷媒量が最適冷媒量される。最適冷媒量は、冷房運転あるいは暖房運転によって異なり、さらに圧縮機1の回転数、外気温によっても異なる。   When the air conditioning operation is performed, the control device 20 controls the refrigeration cycle so that the room temperature becomes the set temperature. At this time, the control apparatus 20 adjusts so that the refrigerant | coolant amount which circulates through a refrigerant circuit becomes optimal according to an air conditioning driving | operation. A part of the refrigerant filled in the refrigerant circuit is accumulated in the receiver 5, and the remaining refrigerant circulates in the refrigerant circuit. Of the circulating refrigerant quantity, the refrigerant quantity when the COP is maximized is determined as the optimum refrigerant quantity. The optimum amount of refrigerant varies depending on the cooling operation or heating operation, and also varies depending on the rotation speed of the compressor 1 and the outside air temperature.

空調運転が開始すると、制御装置20は、設定温度と室温とに基づいて圧縮機1の目標回転数を設定し、目標回転数に応じて膨張弁3の開度を決める。制御装置20は、決められた運転条件にしたがって圧縮機1、膨張弁3、送風機26などを制御する。   When the air conditioning operation starts, the control device 20 sets the target rotational speed of the compressor 1 based on the set temperature and the room temperature, and determines the opening degree of the expansion valve 3 according to the target rotational speed. The control device 20 controls the compressor 1, the expansion valve 3, the blower 26, and the like according to the determined operating conditions.

そして、制御装置20は、空調運転を開始して、圧縮機1の運転を開始すると、最適冷媒量となるように冷媒量調整制御を行う。冷媒量調整制御では、空調運転の種類(冷房運転、暖房運転)、吐出温度、圧縮機1の回転数、室温、外気温、設定温度などの運転状況に応じて、各流量調整装置6,7の開度が設定される。   And the control apparatus 20 will perform refrigerant | coolant amount adjustment control so that it may become the optimal refrigerant | coolant amount, if an air-conditioning driving | operation is started and the driving | operation of the compressor 1 is started. In the refrigerant amount adjustment control, each flow rate adjusting device 6, 7 depends on the operation status such as the type of air conditioning operation (cooling operation, heating operation), the discharge temperature, the rotational speed of the compressor 1, the room temperature, the outside air temperature, and the set temperature. Is set.

一般的に、室外熱交換器14の容量は室内熱交換器13の容量よりも大である。そのため、冷房運転時には、より多くの冷媒が必要となる。冷房運転時の最適冷媒量は暖房運転時の最適冷媒量よりも多くなる。すなわち、冷房運転および除湿運転が最適冷媒量の多い空調運転、暖房運転が最適冷媒量の少ない空調運転とされる。   In general, the capacity of the outdoor heat exchanger 14 is larger than the capacity of the indoor heat exchanger 13. Therefore, more refrigerant is required during the cooling operation. The optimum refrigerant amount during the cooling operation is larger than the optimum refrigerant amount during the heating operation. That is, the cooling operation and the dehumidifying operation are the air conditioning operation with a large amount of the optimum refrigerant, and the heating operation is the air conditioning operation with a small amount of the optimum refrigerant.

制御装置20は、冷媒量調整制御を行うとき、現在の運転状況に基づいて高圧側および低圧側流量調整装置6,7の開度を決め、決められた開度になるように各流量調整装置6,7を制御する。なお、運転状況に応じた各流量調整装置6,7の開度は、実験等により予め決められ、メモリに記憶されている。制御装置20は、空調運転中、現在の運転状況に応じた各流量調整装置6,7の開度をメモリから読み出し、読み出した開度に応じて各流量調整装置6,7を動作させる。なお、高圧側流量調整装置6および低圧側流量調整装置7は同じタイプの流量調整装置とされる。例えば流量調整装置として、0〜256段階の間で開度を可変でき、開度に応じた開口面積となり、通過する冷媒量を可変できる。したがって、各流量調整装置6,7の開度の大小は流量調整装置6,7を通過する冷媒量の大小に対応する。開度が大きくなるほど、通過する冷媒量は増える。   When performing the refrigerant amount adjustment control, the control device 20 determines the opening amounts of the high-pressure side and low-pressure side flow rate adjustment devices 6 and 7 based on the current operation state, and each flow rate adjustment device so that the determined opening amount is obtained. 6 and 7 are controlled. Note that the opening degree of each of the flow rate adjusting devices 6 and 7 corresponding to the operating state is determined in advance by experiments or the like and stored in the memory. During the air conditioning operation, the control device 20 reads the opening degree of each of the flow rate adjusting devices 6 and 7 according to the current operation state from the memory, and operates each of the flow rate adjusting devices 6 and 7 according to the read opening degree. The high-pressure side flow rate adjusting device 6 and the low-pressure side flow rate adjusting device 7 are the same type of flow rate adjusting device. For example, as a flow rate adjusting device, the opening degree can be varied between 0 and 256 stages, the opening area can be varied according to the opening degree, and the amount of refrigerant passing therethrough can be varied. Accordingly, the degree of opening of each flow rate adjusting device 6, 7 corresponds to the amount of refrigerant passing through the flow rate adjusting devices 6, 7. As the opening degree increases, the amount of refrigerant passing therethrough increases.

冷媒量調整制御は、圧縮機1の運転が開始された時点から実行される。すなわち、リモコンから運転信号を受信したとき、あるいはタイマ予約による予約時間になったときなどの運転指示が入力されたとき、制御装置20は、空調運転を開始して、圧縮機1を動作させる。このとき、制御装置20は、運転状況に基づいて高圧側流量調整装置6および低圧側流量調整装置7の開度をそれぞれ決める。この運転開始時に、運転状況として、空調運転の種類が確認される。制御装置20は、リモコンからの運転信号あるいはタイマ予約情報に基づいて、開始される空調運転の種類を判別する。   The refrigerant amount adjustment control is executed from the time when the operation of the compressor 1 is started. That is, when an operation instruction is input such as when an operation signal is received from the remote controller or when a reservation time is reached due to timer reservation, the control device 20 starts the air conditioning operation and operates the compressor 1. At this time, the control device 20 determines the opening degrees of the high-pressure side flow rate adjustment device 6 and the low-pressure side flow rate adjustment device 7 based on the operation state. At the start of this operation, the type of air conditioning operation is confirmed as the operation status. The control device 20 determines the type of air conditioning operation to be started based on the operation signal from the remote controller or timer reservation information.

冷房運転の場合、最適冷媒量が多いので、レシーバ5に冷媒を溜めないようにされる。制御装置20は、高圧側流量調整装置6を通過する冷媒量が低圧側流量調整装置7を通過する冷媒量より少なくなるように、各流量調整装置6,7を動作させる。すなわち、低圧側流量調整装置7の開度を高圧側流量調整装置6の開度よりも大きくする。あるいは、低圧側流量調整装置7を開き、高圧側流量調整装置6を閉じる。例えば、第1流量調整装置18が閉じ、第2流量調整装置19が開く。   In the case of the cooling operation, since the optimum refrigerant amount is large, the refrigerant is not accumulated in the receiver 5. The control device 20 operates the flow rate adjusting devices 6 and 7 so that the refrigerant amount passing through the high pressure side flow rate adjusting device 6 is smaller than the refrigerant amount passing through the low pressure side flow rate adjusting device 7. That is, the opening degree of the low pressure side flow rate adjustment device 7 is made larger than the opening degree of the high pressure side flow rate adjustment device 6. Alternatively, the low pressure side flow rate adjustment device 7 is opened and the high pressure side flow rate adjustment device 6 is closed. For example, the first flow rate adjusting device 18 is closed and the second flow rate adjusting device 19 is opened.

冷媒回路を循環する冷媒は、膨張弁3によって減圧される。高圧側流量調整装置6の開度が小さい、あるいは閉じることにより、レシーバ5には少しの冷媒が流入する、あるいは冷媒が流入しない。膨張弁3を通過した冷媒は圧力が下がり、レシーバ5内の冷媒と圧力差が生じる。レシーバ5内の圧力が高いので、レシーバ5内の冷媒は、レシーバ5から排出され、開いている低圧側流量調整装置7を通って冷媒回路に流れ込む。レシーバ5に冷媒は溜まらず、冷媒回路を循環する冷媒量が増える。   The refrigerant circulating in the refrigerant circuit is decompressed by the expansion valve 3. When the opening of the high-pressure side flow control device 6 is small or closed, a little refrigerant flows into the receiver 5 or no refrigerant flows. The pressure of the refrigerant that has passed through the expansion valve 3 decreases, and a pressure difference from the refrigerant in the receiver 5 occurs. Since the pressure in the receiver 5 is high, the refrigerant in the receiver 5 is discharged from the receiver 5 and flows into the refrigerant circuit through the open low-pressure flow rate adjusting device 7. The refrigerant does not accumulate in the receiver 5, and the amount of refrigerant circulating in the refrigerant circuit increases.

暖房運転の場合、最適冷媒量が少ないので、レシーバ5に冷媒を溜めるようにされる。制御装置20は、高圧側流量調整装置6を通過する冷媒量が低圧側流量調整装置7を通過する冷媒量より多くなるように、各流量調整装置6,7を動作させる。すなわち、高圧側流量調整装置6の開度を低圧側流量調整装置7の開度よりも大きくする。あるいは、高圧側流量調整装置6を開き、低圧側流量調整装置7を閉じる。例えば、第1流量調整装置18が閉じ、第2流量調整装置19が開く。   In the case of heating operation, since the optimum amount of refrigerant is small, the refrigerant is stored in the receiver 5. The control device 20 operates the flow rate adjusting devices 6 and 7 so that the refrigerant amount passing through the high pressure side flow rate adjusting device 6 is larger than the refrigerant amount passing through the low pressure side flow rate adjusting device 7. That is, the opening degree of the high pressure side flow rate adjustment device 6 is made larger than the opening degree of the low pressure side flow rate adjustment device 7. Alternatively, the high pressure side flow rate adjustment device 6 is opened and the low pressure side flow rate adjustment device 7 is closed. For example, the first flow rate adjusting device 18 is closed and the second flow rate adjusting device 19 is opened.

高圧側流量調整装置6が開くことにより、レシーバ5に冷媒が流入する。一方、低圧側流量調整装置7では、開度が小さい、あるいは閉じているので、レシーバ5から少しの冷媒が排出される、あるいは排出されない。したがって、レシーバ5に溜まる冷媒量が増え、冷媒回路を循環する冷媒量は減る。   The refrigerant flows into the receiver 5 by opening the high pressure side flow rate adjusting device 6. On the other hand, in the low pressure side flow rate adjusting device 7, since the opening degree is small or closed, a little refrigerant is discharged from the receiver 5 or is not discharged. Therefore, the amount of refrigerant accumulated in the receiver 5 increases, and the amount of refrigerant circulating in the refrigerant circuit decreases.

このように、空調運転を開始したときから、冷媒回路を循環する冷媒が最適冷媒量となるように各流量調整装置6,7を制御することにより、運転を開始してすぐに空調能力を高めることができる。したがって、運転効率がすばやく向上して、省エネ運転を実現できる。   As described above, since the air conditioning operation is started, the flow rate adjusting devices 6 and 7 are controlled so that the refrigerant circulating through the refrigerant circuit has the optimum refrigerant amount, so that the air conditioning capacity is increased immediately after the operation is started. be able to. Accordingly, the operation efficiency can be improved quickly and energy saving operation can be realized.

空調運転の種類の他の判別方法として、室温に基づいて開始される空調運転の種類を決める。制御装置20は、リモコンなどからの運転指示が入力されると、室温センサ24から室温情報を取得する。制御装置20は、現在の室温に基づいて空調運転の種類を判別する。室温に基づいて空調運転の種類を判別するタイミングは、運転指示が入力された後の運転開始する前あるいは運転開始直後とされる。   As another method for determining the type of air-conditioning operation, the type of air-conditioning operation started based on room temperature is determined. The control device 20 acquires room temperature information from the room temperature sensor 24 when an operation instruction from a remote controller or the like is input. The control device 20 determines the type of air conditioning operation based on the current room temperature. The timing for discriminating the type of the air-conditioning operation based on the room temperature is set before the start of the operation after the operation instruction is input or immediately after the start of the operation.

現在の室温Tと第1規定温度Twおよび第2規定温度Tc(Tw<Tc)とが比較される。現在の室温Tが第1規定温度Tw以下(T≦Tw)の場合、制御装置20は、暖房運転であると判別する。現在の室温Tが第2規定温度Tc以上(T≧Tc)の場合、制御装置20は、冷房運転であると判別する。   The current room temperature T is compared with the first specified temperature Tw and the second specified temperature Tc (Tw <Tc). When the current room temperature T is equal to or lower than the first specified temperature Tw (T ≦ Tw), the control device 20 determines that the heating operation is being performed. When the current room temperature T is equal to or higher than the second specified temperature Tc (T ≧ Tc), the control device 20 determines that the cooling operation is being performed.

Tw<T<Tcの場合、制御装置20は、送風運転であると判別する。送風運転の場合、制御装置20は、室内機10の送風機26を動作させる。冷凍サイクルの制御は行われないので、冷媒量調整制御は行われない。なお、各流量調整装置6,7は、開いた状態とされる。このように、室温によって空調運転の種類を判別する方法は、室温に応じて冷房運転あるいは暖房運転を自動的に選択する自動運転が行われる場合に有用である。   In the case of Tw <T <Tc, the control device 20 determines that it is a blowing operation. In the case of the air blowing operation, the control device 20 operates the air blower 26 of the indoor unit 10. Since the control of the refrigeration cycle is not performed, the refrigerant amount adjustment control is not performed. In addition, each flow volume adjustment apparatus 6 and 7 is made into the open state. Thus, the method of discriminating the type of the air-conditioning operation based on the room temperature is useful when the automatic operation for automatically selecting the cooling operation or the heating operation according to the room temperature is performed.

冷房あるいは暖房の空調運転を行うとき、圧縮機1の運転が開始されると、圧縮機1から吐出する冷媒の温度は徐々に上昇する。吐出温度がほぼ一定になると、冷凍サイクルが安定する。冷凍サイクルの安定後、制御装置20は、冷媒量調整制御を続行する。   When the air conditioning operation for cooling or heating is performed, when the operation of the compressor 1 is started, the temperature of the refrigerant discharged from the compressor 1 gradually increases. When the discharge temperature becomes almost constant, the refrigeration cycle is stabilized. After the refrigeration cycle is stabilized, the control device 20 continues the refrigerant amount adjustment control.

空調運転中、室温と設定温度とに温度差があると、制御装置20は、温度差が小さくなるように圧縮機1の回転数および膨張弁3の開度を変化させる。このとき、制御装置20は、圧縮機1の回転数、外気温などに応じて、高圧側および低圧側流量調整装置6,7の開度を調整する。例えば、圧縮機1の回転数が上がると、制御装置20は、最適冷媒量が多くなるのに対応して、高圧側流量調整装置6の開度を小さくする、あるいは低圧側流量調整装置7の開度を大きくする。圧縮機1の回転数が下がると、制御装置20は、最適冷媒量が少なくなるのに対応して、高圧側流量調整装置6の開度を大きくする、あるいは低圧側流量調整装置7の開度を小さくする。   If there is a temperature difference between the room temperature and the set temperature during the air conditioning operation, the control device 20 changes the rotation speed of the compressor 1 and the opening degree of the expansion valve 3 so that the temperature difference becomes small. At this time, the control device 20 adjusts the opening degree of the high-pressure side and low-pressure side flow rate adjusting devices 6 and 7 according to the rotational speed of the compressor 1, the outside air temperature, and the like. For example, when the rotation speed of the compressor 1 increases, the control device 20 reduces the opening of the high-pressure side flow rate adjustment device 6 or the low-pressure side flow rate adjustment device 7 in response to an increase in the optimum refrigerant amount. Increase the opening. When the rotational speed of the compressor 1 decreases, the control device 20 increases the opening of the high-pressure side flow control device 6 or the opening of the low-pressure flow control device 7 in response to the decrease in the optimum refrigerant amount. Make it smaller.

図5に示すように、空調運転の開始後、ある程度時間が経過すると、室温が設定温度に達する。制御装置20は、圧縮機1を停止させ、送風機26だけを動作させる。そして、室温と設定温度とに温度差が生じると、制御装置20は、再び圧縮機1の運転を開始する。このように、空調運転中、圧縮機1の運転のオンオフを繰り返すサーモオフが行われる。   As shown in FIG. 5, the room temperature reaches the set temperature after a certain amount of time has elapsed after the start of the air conditioning operation. The control device 20 stops the compressor 1 and operates only the blower 26. And if a temperature difference arises between room temperature and preset temperature, the control apparatus 20 will start the driving | operation of the compressor 1 again. In this way, during the air conditioning operation, the thermo-off that repeats the on / off operation of the compressor 1 is performed.

サーモオフ時にも冷媒量調整制御が行われる。制御装置20は、サーモオフ時に圧縮機1が運転を開始するとき、高圧側および低圧側流量調整装置6,7の開度を調整する。各流量調整装置6,7の開度は、圧縮機1の回転数に応じて調整される。すなわち、制御装置20は、サーモオフにより圧縮機1が停止するとき、停止前の圧縮機1の回転数および各流量調整装置6,7の開度をメモリに記憶する。そして、制御装置20は、圧縮機1の運転を開始するとき、現在の室温に基づいて圧縮機1の回転数を決め、この回転数に応じて各流量調整装置6,7の開度を設定する。   The refrigerant amount adjustment control is also performed when the thermostat is off. The control device 20 adjusts the opening degree of the high-pressure side and low-pressure side flow rate adjusting devices 6 and 7 when the compressor 1 starts operation when the thermostat is off. The opening degree of each flow rate adjusting device 6, 7 is adjusted according to the rotational speed of the compressor 1. That is, when the compressor 1 stops due to the thermo-off, the control device 20 stores in the memory the rotational speed of the compressor 1 and the opening degree of each flow rate adjusting device 6, 7 before the stop. Then, when starting the operation of the compressor 1, the control device 20 determines the rotational speed of the compressor 1 based on the current room temperature, and sets the opening degree of each of the flow rate adjusting devices 6 and 7 according to this rotational speed. To do.

図6に示すように、圧縮機1の回転数がA、高圧側流量調整装置6および低圧側流量調整装置7の開度がa1,a2で空調運転が行われている。室温が設定温度になると、制御装置20は、圧縮機1を停止し、送風運転を行う。室温が変化して、室温と設定温度とに温度差が生じると、制御装置20は、圧縮機1の運転を開始する。制御装置20は、室温と設定温度との温度差に応じて圧縮機1の回転数Bを決め、この回転数に応じて各流量調整装置6,7の開度を決める。   As shown in FIG. 6, the air conditioning operation is performed with the rotational speed of the compressor 1 being A, and the opening degrees of the high pressure side flow rate adjustment device 6 and the low pressure side flow rate adjustment device 7 being a1 and a2. When the room temperature reaches the set temperature, the control device 20 stops the compressor 1 and performs a blowing operation. When the room temperature changes and a temperature difference occurs between the room temperature and the set temperature, the control device 20 starts the operation of the compressor 1. The control device 20 determines the rotational speed B of the compressor 1 according to the temperature difference between the room temperature and the set temperature, and determines the opening degree of each of the flow rate adjusting devices 6 and 7 according to this rotational speed.

サーモオフにおいて圧縮機1の運転を開始するとき、制御装置20は、一旦膨張弁3および各流量調整装置6,7を全開して、冷媒回路の圧力の平衡を取る。この後、制御装置20は、決められた開度になるように膨張弁3および各流量調整装置6,7を動作させてから、圧縮機1を動作させる。   When starting the operation of the compressor 1 in the thermo-off state, the control device 20 once fully opens the expansion valve 3 and the flow rate adjusting devices 6 and 7, and balances the pressure of the refrigerant circuit. Thereafter, the control device 20 operates the expansion valve 3 and the flow rate adjustment devices 6 and 7 so that the determined opening degree is obtained, and then operates the compressor 1.

ここで、圧縮機1の停止前の回転数Aと運転開始時の回転数Bとが異なるとき、各流量調整装置6,7の開度は、運転停止前の開度から変更され、開度はそれぞれb1,b2となる。制御装置20は、変更後の圧縮機1の回転数B、各流量調整装置6,7の開度b1,b2をメモリに初期値として記憶する。制御装置20は、各流量調整装置6,7を一旦全開してから、決められた開度にする。以降、室温が設定温度に達するまで、空調運転が行われる。例えば、圧縮機1の回転数が上がると、制御装置20は、最適冷媒量が多くなるのに応じて、高圧側流量調整装置6の開度を小さくし、低圧側流量調整装置7の開度を大きくする。   Here, when the rotational speed A before the compressor 1 stops and the rotational speed B at the start of operation, the opening degree of each of the flow rate adjusting devices 6 and 7 is changed from the opening degree before the operation stop. Are b1 and b2, respectively. The control device 20 stores the rotation speed B of the changed compressor 1 and the opening degrees b1 and b2 of the flow rate adjusting devices 6 and 7 as initial values in the memory. The control device 20 once opens each of the flow rate adjusting devices 6 and 7 to a predetermined opening degree. Thereafter, the air conditioning operation is performed until the room temperature reaches the set temperature. For example, when the rotational speed of the compressor 1 increases, the control device 20 decreases the opening of the high-pressure side flow control device 6 and the opening of the low-pressure flow control device 7 as the optimum refrigerant amount increases. Increase

このように、圧縮機1の運転開始時に圧縮機1の回転数に応じて流量調整装置6,7の開度を調整することにより、すばやく室温を設定温度にすることができ、利用者の快適性を向上できる。また、圧縮機1が停止する時間が長くなり、省エネ運転を実現できる。   Thus, by adjusting the opening degree of the flow rate adjusting devices 6 and 7 according to the rotation speed of the compressor 1 at the start of the operation of the compressor 1, the room temperature can be quickly set to the set temperature, and the user's comfort Can be improved. Moreover, the time which the compressor 1 stops becomes long and can implement | achieve an energy saving driving | operation.

圧縮機1の停止前の回転数Aと運転開始時の回転数Bとが同じとき、各流量調整装置6,7の開度は、運転停止前の開度と同じにされる。各流量調整装置6,7の開度はそれぞれa1,a2に固定される。この場合、膨張弁3および流量調整装置6,7は全開されることなく、そのままの開度で圧縮機1の運転が再開される。このように、膨張弁3などの開度の調整を行う必要がないので、圧縮機1の運転をすぐに開始でき、室温を設定温度にするまでの時間を短縮できる。また、運転条件は変わらないので、すぐに最適冷媒量をとなり、効率のよい運転を行え、省エネを図れる。   When the rotational speed A before the compressor 1 stops and the rotational speed B at the start of operation are the same, the opening degree of each of the flow rate adjusting devices 6 and 7 is made the same as the opening degree before the operation stop. The opening degree of each of the flow rate adjusting devices 6 and 7 is fixed to a1 and a2, respectively. In this case, the expansion valve 3 and the flow rate adjusting devices 6 and 7 are not fully opened, and the operation of the compressor 1 is resumed with the opening degree as it is. Thus, since it is not necessary to adjust the opening degree of the expansion valve 3 or the like, the operation of the compressor 1 can be started immediately, and the time until the room temperature is set to the set temperature can be shortened. In addition, since the operating conditions do not change, the optimum refrigerant amount can be obtained immediately, efficient operation can be performed, and energy can be saved.

ところで、空調運転中、運転状況に変化があったとき、制御装置20は、運転状況の変化に応じて高圧側流量調整装置6および低圧側流量調整装置7を制御する。特に、外気温センサ25により検出された外気温に応じて、各流量調整装置6,7の開度が調整される。   By the way, when there is a change in the operating state during the air conditioning operation, the control device 20 controls the high-pressure side flow rate adjusting device 6 and the low-pressure side flow rate adjusting device 7 according to the change in the operating state. In particular, the opening degree of each of the flow rate adjusting devices 6 and 7 is adjusted according to the outside air temperature detected by the outside air temperature sensor 25.

圧縮機1の運転開始時の外気温が圧縮機1の停止時の外気温から変化したとき、制御装置20は、外気温および室温に基づいて圧縮機1の回転数を決める。例えば、冷房運転のとき、外気温が上がると、圧縮機1の回転数が停止前の回転数よりも上げられる。この回転数に応じて、冷媒回路を循環する冷媒量が多くなるように、高圧側流量調整装置6の開度を小さくし、低圧側流量調整装置7の開度を大きくする。外気温が下がった場合も、同様に冷媒回路を循環する冷媒量が少なくなるように、各流量調整装置6,7の開度が調整される。また、暖房運転の場合でも、同様に、外気温の変化に応じて最適冷媒量が増減するので、循環する冷媒量が増減するように、各流量調整装置6,7の開度が調整される。   When the outside air temperature at the start of operation of the compressor 1 changes from the outside air temperature when the compressor 1 is stopped, the control device 20 determines the rotation speed of the compressor 1 based on the outside air temperature and the room temperature. For example, during the cooling operation, when the outside air temperature rises, the rotational speed of the compressor 1 is increased from the rotational speed before stopping. In accordance with this rotational speed, the opening degree of the high pressure side flow rate adjustment device 6 is reduced and the opening degree of the low pressure side flow rate adjustment device 7 is increased so that the amount of refrigerant circulating in the refrigerant circuit increases. Similarly, when the outside air temperature decreases, the opening degree of each of the flow rate adjusting devices 6 and 7 is adjusted so that the amount of refrigerant circulating in the refrigerant circuit is reduced. Similarly, in the case of heating operation, the optimum refrigerant amount increases and decreases according to changes in the outside air temperature, so that the opening degree of each of the flow rate adjusting devices 6 and 7 is adjusted so that the circulating refrigerant amount increases and decreases. .

このように、外気温の変化に応じて流量調整装置6,7の開度を調整することにより、運転状況が変化しても、最適な冷媒量で冷媒が冷媒回路を循環する。したがって、効率のよい運転を行え、省エネとなる。   In this way, by adjusting the opening degree of the flow rate adjusting devices 6 and 7 according to the change in the outside air temperature, the refrigerant circulates through the refrigerant circuit with the optimum refrigerant amount even if the operating state changes. Therefore, efficient operation can be performed and energy saving can be achieved.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の範囲内で上記実施形態に多くの修正および変更を加え得ることは勿論である。レシーバは、出口と入口が別々に形成された構造であるが、1つの出入口を有する構造のレシーバであってもよい。この構造のレシーバでは、出入口に接続された1本の配管が分岐して、上流の連結管および下流の連結管にそれぞれ接続される。   In addition, this invention is not limited to the said embodiment, Of course, many corrections and changes can be added to the said embodiment within the scope of the present invention. The receiver has a structure in which an outlet and an inlet are formed separately, but may be a receiver having a structure having one inlet / outlet. In the receiver having this structure, one pipe connected to the entrance / exit is branched and connected to the upstream connecting pipe and the downstream connecting pipe, respectively.

空調運転中に、異なる種類の空調運転に切り替わる場合がある。例えば、暖房運転中に、除霜運転が行われる。除霜運転は冷房運転であるので、除霜運転が開始するとき、制御装置は、最適冷媒量が多くなるように、高圧側流量調整装置および低圧側流量調整装置の開度を調整する。除霜運転における空調能力が高まるので、短時間で除霜を行うことができる。   During the air conditioning operation, there may be a case of switching to a different type of air conditioning operation. For example, the defrosting operation is performed during the heating operation. Since the defrosting operation is a cooling operation, when the defrosting operation is started, the control device adjusts the opening degrees of the high pressure side flow rate adjustment device and the low pressure side flow rate adjustment device so that the optimum refrigerant amount increases. Since the air conditioning capability in the defrosting operation is increased, the defrosting can be performed in a short time.

空気調和機によっては、最適冷媒量が少ない空調運転が冷房運転、最適冷媒量が多い空調運転が暖房運転といった場合がある。このような空気調和機においても、高圧側流量調整装置および低圧側流量調整装置の開度を調整することにより、運転開始から最適冷媒量となるように冷媒量を調整できる。   Depending on the air conditioner, there are cases where the air conditioning operation with a small amount of optimum refrigerant is a cooling operation and the air conditioning operation with a large amount of optimum refrigerant is a heating operation. Also in such an air conditioner, the refrigerant amount can be adjusted so that the optimum refrigerant amount is obtained from the start of operation by adjusting the opening degrees of the high-pressure side flow rate adjusting device and the low-pressure side flow rate adjusting device.

高圧側流量調整装置と低圧側流量調整装置とが異なるタイプのものを使用してもよい。この場合、各流量調整装置の開度と通過する冷媒量との関係は、使用するタイプによって異なる。各流量調整装置の開度と通過する冷媒量との関係は、実験等により予め決められ、メモリに記憶されている。制御装置は、レシーバから冷媒を排出するとき、低圧側流量調整装置を通過する冷媒量が高圧側流量調整装置を通過する冷媒量より多くなるように、各流量調整装置の開度を制御する。レシーバに冷媒を溜めるとき、高圧側流量調整装置を通過する冷媒量が低圧側流量調整装置を通過する冷媒量より多くなるように、各流量調整装置の開度を制御する。   Different types may be used for the high pressure side flow rate adjustment device and the low pressure side flow rate adjustment device. In this case, the relationship between the opening degree of each flow control device and the amount of refrigerant passing therethrough varies depending on the type used. The relationship between the opening degree of each flow control device and the amount of refrigerant passing therethrough is determined in advance by experiments or the like and stored in the memory. When discharging the refrigerant from the receiver, the control device controls the opening degree of each flow rate adjustment device so that the refrigerant amount passing through the low pressure side flow rate adjustment device is larger than the refrigerant amount passing through the high pressure side flow rate adjustment device. When the refrigerant is stored in the receiver, the opening degree of each flow rate adjusting device is controlled so that the amount of refrigerant passing through the high pressure side flow rate adjusting device is larger than the amount of refrigerant passing through the low pressure side flow rate adjusting device.

1 圧縮機
2 凝縮器
3 膨張弁
4 蒸発器
5 レシーバ
6 高圧側流量調整装置
7 低圧側流量調整装置
10 室内機
11 室外機
12 四方弁
13 室内熱交換器
14 室外熱交換器
18 第1流量調整装置
19 第2流量調整装置
20 制御装置
21 凝縮器温度センサ
22 蒸発器温度センサ
23 吐出温度センサ
24 室温センサ
25 外気温センサ
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Expansion valve 4 Evaporator 5 Receiver 6 High pressure side flow rate adjustment device 7 Low pressure side flow rate adjustment device 10 Indoor unit 11 Outdoor unit 12 Four-way valve 13 Indoor heat exchanger 14 Outdoor heat exchanger 18 First flow rate adjustment Device 19 Second flow control device 20 Control device 21 Condenser temperature sensor 22 Evaporator temperature sensor 23 Discharge temperature sensor 24 Room temperature sensor 25 Outside air temperature sensor

Claims (5)

圧縮機、凝縮器、絞り装置、蒸発器を配管により接続して冷媒回路が形成され、冷媒回路に、冷媒を溜めるレシーバが設けられ、レシーバは、高圧側流量調整装置および低圧側流量調整装置を介して冷媒回路に接続され、冷媒回路を循環する冷媒が空調運転の種類に応じた最適冷媒量になるように、圧縮機の運転を開始するときに高圧側流量調整装置および低圧側流量調整装置を制御して冷媒量を調整する制御装置を備えたことを特徴とする空気調和機。 A refrigerant circuit is formed by connecting a compressor, a condenser, a throttling device, and an evaporator by piping, and a receiver for storing the refrigerant is provided in the refrigerant circuit. The receiver includes a high-pressure side flow control device and a low-pressure side flow control device. The high pressure side flow rate adjustment device and the low pressure side flow rate adjustment device when starting the operation of the compressor so that the refrigerant circulating through the refrigerant circuit has an optimum refrigerant amount according to the type of air conditioning operation. An air conditioner comprising a control device that controls the refrigerant amount by controlling the refrigerant. 制御装置は、最適冷媒量が少ない空調運転のとき、レシーバに冷媒を溜めるように、高圧側流量調整装置を通過する冷媒量が低圧側流量調整装置を通過する冷媒量より多くなるように高圧側流量調整装置および低圧側流量調整装置を動作させ、最適冷媒量が多い空調運転のとき、レシーバに冷媒を溜めないように、高圧側流量調整装置を通過する冷媒量が低圧側流量調整装置を通過する冷媒量より少なくなるように高圧側流量調整装置および低圧側流量調整装置を動作させることを特徴とする請求項1記載の空気調和機。 The control device is configured so that the amount of refrigerant passing through the high-pressure side flow control device is larger than the amount of refrigerant passing through the low-pressure flow control device so that the refrigerant is accumulated in the receiver during air-conditioning operation with a small amount of optimal refrigerant. When air conditioning operation is performed with a large amount of optimum refrigerant by operating the flow regulator and low-pressure flow regulator, the amount of refrigerant passing through the high-pressure flow regulator passes through the low-pressure flow regulator so that the refrigerant does not accumulate in the receiver. 2. The air conditioner according to claim 1, wherein the high-pressure side flow rate adjustment device and the low-pressure side flow rate adjustment device are operated so as to be smaller than a refrigerant amount to be reduced. 室温を検出する室温センサが設けられ、制御装置は、室温により空調運転の種類を判別し、室温が高いとき、最適冷媒量が多い空調運転であると判別し、室温が低いとき、最適冷媒量が少ない空調運転であると判別することを特徴とする請求項1または2記載の空気調和機。 A room temperature sensor for detecting the room temperature is provided, and the control device determines the type of air conditioning operation based on the room temperature. When the room temperature is high, the controller determines that the air conditioning operation has a large amount of optimal refrigerant. The air conditioner according to claim 1 or 2, wherein it is determined that the air-conditioning operation is less. 空調運転の開始に合わせて圧縮機の運転が開始され、制御装置は、空調運転を開始する前あるいは開始直後に、高圧側流量調整装置および低圧側流量調整装置を制御することを特徴とする請求項1〜3のいずれかに記載の空気調和機。 The operation of the compressor is started in accordance with the start of the air conditioning operation, and the control device controls the high pressure side flow rate adjustment device and the low pressure side flow rate adjustment device before or immediately after the start of the air conditioning operation. Item 4. The air conditioner according to any one of Items 1 to 3. 制御装置は、サーモオフ時に圧縮機の運転が開始するとき、高圧側流量調整装置および低圧側流量調整装置を制御することを特徴とする請求項1〜4のいずれかに記載の空気調和機。 The air conditioner according to any one of claims 1 to 4, wherein the control device controls the high-pressure side flow rate adjustment device and the low-pressure side flow rate adjustment device when the operation of the compressor is started when the thermostat is off.
JP2012272905A 2012-12-14 2012-12-14 Air conditioner Active JP6148001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012272905A JP6148001B2 (en) 2012-12-14 2012-12-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012272905A JP6148001B2 (en) 2012-12-14 2012-12-14 Air conditioner

Publications (2)

Publication Number Publication Date
JP2014119145A true JP2014119145A (en) 2014-06-30
JP6148001B2 JP6148001B2 (en) 2017-06-14

Family

ID=51174137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012272905A Active JP6148001B2 (en) 2012-12-14 2012-12-14 Air conditioner

Country Status (1)

Country Link
JP (1) JP6148001B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121068A1 (en) * 2015-01-29 2016-08-04 三菱電機株式会社 Refrigeration cycle device
WO2016139783A1 (en) * 2015-03-04 2016-09-09 三菱電機株式会社 Refrigeration cycle device
WO2017037771A1 (en) * 2015-08-28 2017-03-09 三菱電機株式会社 Refrigeration cycle device
WO2017061009A1 (en) * 2015-10-08 2017-04-13 三菱電機株式会社 Refrigeration cycle device
JPWO2017068642A1 (en) * 2015-10-20 2018-05-10 三菱電機株式会社 Refrigeration cycle equipment
JPWO2017061010A1 (en) * 2015-10-08 2018-06-07 三菱電機株式会社 Refrigeration cycle equipment
CN109579341A (en) * 2018-12-20 2019-04-05 南京天加环境科技有限公司 A kind of improved CO2Heat pump system
CN110762755A (en) * 2019-10-30 2020-02-07 Tcl空调器(中山)有限公司 Defrosting control device and control method of air conditioner
JPWO2020174530A1 (en) * 2019-02-25 2021-09-30 Atsジャパン株式会社 Refrigerant control system and cooling system
CN114704980A (en) * 2022-04-01 2022-07-05 珠海格力节能环保制冷技术研究中心有限公司 Air conditioner and method for adjusting refrigerant injection amount
WO2022149187A1 (en) * 2021-01-05 2022-07-14 三菱電機株式会社 Refrigeration cycle apparatus
WO2022180718A1 (en) * 2021-02-25 2022-09-01 三菱電機株式会社 Refrigeration cycle device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282060A (en) * 1988-09-19 1990-03-22 Matsushita Refrig Co Ltd Heat pump type air conditioner
JPH08313069A (en) * 1995-05-19 1996-11-29 Fujitsu General Ltd Air conditioning equipment
JPH11248266A (en) * 1998-03-05 1999-09-14 Mitsubishi Electric Corp Air conditioner and condenser
JP2001263859A (en) * 2000-03-17 2001-09-26 Hitachi Ltd Air conditioner
JP2002156166A (en) * 2000-11-20 2002-05-31 Fujitsu General Ltd Multi-chamber type air conditioner
JP2007212085A (en) * 2006-02-10 2007-08-23 Ishimoto Kenchiku Jimusho:Kk Control method for radiation panel air conditioning system
JP2009236447A (en) * 2008-03-28 2009-10-15 Daikin Ind Ltd Refrigeration apparatus
JP2010223457A (en) * 2009-03-19 2010-10-07 Daikin Ind Ltd Air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282060A (en) * 1988-09-19 1990-03-22 Matsushita Refrig Co Ltd Heat pump type air conditioner
JPH08313069A (en) * 1995-05-19 1996-11-29 Fujitsu General Ltd Air conditioning equipment
JPH11248266A (en) * 1998-03-05 1999-09-14 Mitsubishi Electric Corp Air conditioner and condenser
JP2001263859A (en) * 2000-03-17 2001-09-26 Hitachi Ltd Air conditioner
JP2002156166A (en) * 2000-11-20 2002-05-31 Fujitsu General Ltd Multi-chamber type air conditioner
JP2007212085A (en) * 2006-02-10 2007-08-23 Ishimoto Kenchiku Jimusho:Kk Control method for radiation panel air conditioning system
JP2009236447A (en) * 2008-03-28 2009-10-15 Daikin Ind Ltd Refrigeration apparatus
JP2010223457A (en) * 2009-03-19 2010-10-07 Daikin Ind Ltd Air conditioner

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3252397A4 (en) * 2015-01-29 2018-10-10 Mitsubishi Electric Corporation Refrigeration cycle device
WO2016121068A1 (en) * 2015-01-29 2016-08-04 三菱電機株式会社 Refrigeration cycle device
JPWO2016121068A1 (en) * 2015-01-29 2017-07-27 三菱電機株式会社 Refrigeration cycle equipment
EP3267130A4 (en) * 2015-03-04 2018-11-07 Mitsubishi Electric Corporation Refrigeration cycle device
WO2016139783A1 (en) * 2015-03-04 2016-09-09 三菱電機株式会社 Refrigeration cycle device
JPWO2016139783A1 (en) * 2015-03-04 2017-09-14 三菱電機株式会社 Refrigeration cycle equipment
JPWO2017037771A1 (en) * 2015-08-28 2018-04-12 三菱電機株式会社 Refrigeration cycle equipment
CN107923680A (en) * 2015-08-28 2018-04-17 三菱电机株式会社 Refrigerating circulatory device
CN107923680B (en) * 2015-08-28 2020-06-30 三菱电机株式会社 Refrigeration cycle device
US10563894B2 (en) 2015-08-28 2020-02-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP3343133A4 (en) * 2015-08-28 2018-09-12 Mitsubishi Electric Corporation Refrigeration cycle device
WO2017037771A1 (en) * 2015-08-28 2017-03-09 三菱電機株式会社 Refrigeration cycle device
US20180231286A1 (en) * 2015-08-28 2018-08-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10767912B2 (en) 2015-10-08 2020-09-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP3693680A1 (en) 2015-10-08 2020-08-12 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN108139119A (en) * 2015-10-08 2018-06-08 三菱电机株式会社 Refrigerating circulatory device
JPWO2017061010A1 (en) * 2015-10-08 2018-06-07 三菱電機株式会社 Refrigeration cycle equipment
EP3361184A4 (en) * 2015-10-08 2018-09-19 Mitsubishi Electric Corporation Refrigeration cycle device
WO2017061009A1 (en) * 2015-10-08 2017-04-13 三菱電機株式会社 Refrigeration cycle device
JPWO2017061009A1 (en) * 2015-10-08 2018-06-07 三菱電機株式会社 Refrigeration cycle equipment
CN108139119B (en) * 2015-10-08 2020-06-05 三菱电机株式会社 Refrigeration cycle device
EP3367021A4 (en) * 2015-10-20 2019-02-20 Mitsubishi Electric Corporation Refrigeration cycle device
JPWO2017068642A1 (en) * 2015-10-20 2018-05-10 三菱電機株式会社 Refrigeration cycle equipment
CN109579341A (en) * 2018-12-20 2019-04-05 南京天加环境科技有限公司 A kind of improved CO2Heat pump system
JPWO2020174530A1 (en) * 2019-02-25 2021-09-30 Atsジャパン株式会社 Refrigerant control system and cooling system
TWI797419B (en) * 2019-02-25 2023-04-01 日商Ats有限公司 Refrigerant control system and cooling system
US11841177B2 (en) 2019-02-25 2023-12-12 Ats Japan Co., Ltd. Refrigerant control system and cooling system
CN110762755A (en) * 2019-10-30 2020-02-07 Tcl空调器(中山)有限公司 Defrosting control device and control method of air conditioner
WO2022149187A1 (en) * 2021-01-05 2022-07-14 三菱電機株式会社 Refrigeration cycle apparatus
WO2022180718A1 (en) * 2021-02-25 2022-09-01 三菱電機株式会社 Refrigeration cycle device
JPWO2022180718A1 (en) * 2021-02-25 2022-09-01
JP7387054B2 (en) 2021-02-25 2023-11-27 三菱電機株式会社 Refrigeration cycle equipment
CN114704980A (en) * 2022-04-01 2022-07-05 珠海格力节能环保制冷技术研究中心有限公司 Air conditioner and method for adjusting refrigerant injection amount

Also Published As

Publication number Publication date
JP6148001B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP6148001B2 (en) Air conditioner
EP3062031B1 (en) Air conditioner
CN102272534B (en) Air conditioning apparatus
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
JP2008082589A (en) Air conditioner
JPWO2019053876A1 (en) Air conditioner
US8769968B2 (en) Refrigerant system and method for controlling the same
JP2001248937A (en) Heat pump hot water supply air conditioner
KR101414860B1 (en) Air conditioner and method of controlling the same
JP5881339B2 (en) Air conditioner
JP2014119154A (en) Air conditioner
JP2010007996A (en) Trial operation method of air conditioner and air conditioner
JP2017009269A (en) Air conditioning system
CN112594918A (en) Air conditioner heat exchange system and control method thereof
JP5517891B2 (en) Air conditioner
US11397035B2 (en) Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
JP6092606B2 (en) Air conditioner
JP6105270B2 (en) Air conditioner
JP2012247118A (en) Air-cooled heat pump chiller
JP5973336B2 (en) Air conditioner
CN114322220A (en) Air conditioning device and control method thereof
JP6105271B2 (en) Air conditioner
JP6251429B2 (en) Air conditioner
JP2016161235A (en) Refrigeration cycle device
JP6507598B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170518

R150 Certificate of patent or registration of utility model

Ref document number: 6148001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150