JPH0437861B2 - - Google Patents

Info

Publication number
JPH0437861B2
JPH0437861B2 JP8614484A JP8614484A JPH0437861B2 JP H0437861 B2 JPH0437861 B2 JP H0437861B2 JP 8614484 A JP8614484 A JP 8614484A JP 8614484 A JP8614484 A JP 8614484A JP H0437861 B2 JPH0437861 B2 JP H0437861B2
Authority
JP
Japan
Prior art keywords
gel
fibers
molded product
fiber
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8614484A
Other languages
Japanese (ja)
Other versions
JPS60231743A (en
Inventor
Kenji Myasaka
Koichi Kono
Shoichi Mori
Joichi Tabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP8614484A priority Critical patent/JPS60231743A/en
Publication of JPS60231743A publication Critical patent/JPS60231743A/en
Publication of JPH0437861B2 publication Critical patent/JPH0437861B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、高分子量ポリオレフむン成圢物の補
造方法に関し、詳现には耐分繊性、結節匷床およ
び匕裂匷床に優れる高匷床および高匟性率を有す
る繊維たたはフむルムなどの高分子量ポリオレフ
むン成圢物の補造方法に関する。 超高分子量のポリ゚チレンを原料ずした高匟性
率および高匷床の繊維を補造する方法は、䟋えば
ペニングスAJ.Penningsの文献、特開昭55−
107506号公報、特開昭58−5228号公報などに蚘茉
されおいる。これらの方法は、超高分子量のポリ
゚チレンを非揮発性の溶媒に高枩で溶解し、溶液
玡糞しおゲル状繊維を埗たのちこれを延䌞する
か、あるいはゲル状物䞭に含たれる非揮発性溶媒
を揮発性溶媒で抜出し、これを然るべき匟性率お
よび匷床たで熱延䌞しお繊維を埗るものである。 しかしながら、これらの方法によれば超高分子
量のポリ゚チレンから高匟性および高匷床の繊維
を埗るこずができるが、これらの繊維は高床に配
向結晶化した鎖状高分子に特有の性質を免れな
い。すなわち、配向床が増加すれば配向軞方向の
匟性率および匷床は結晶匟性率および匷床に挞近
するが、匷床に異方性が生じ配向軞に垂盎方向の
匟性率および匷床は盞察的に匱くなる。埓぀お、
この繊維は瞊割れもしくは分繊が著しく、通垞の
織機や線機を甚いおトり・ブリブレグ、垃を埗よ
うずするずガむドプヌリヌ、ガむドロヌル、カむ
トリブなどを通過する際の曲げや摩擊より繊維は
䜕本もの现繊維に分繊されおしたい装眮の運転が
困難ずなるずいう欠点があ぀た。 このような欠点を改良するものずしお、䟋えば
特開昭58−169521号公報には超高分子量ポリオレ
フむンのフむラメント䞊に゚チレンたたはプロピ
レンの結晶化床を有するポリマヌを被芆するこず
により繊維のフむブリル化を防止する被芆繊維の
蚘茉がある。 しかしながら、この被芆繊維はフむラメントの
被芆にポリマヌを甚いるために、フむラメント䞭
の埮现孔ぞのポリマヌの含浞が難かしく、フむラ
メントのフむブリル化の防止は衚面から行うもの
で、耐分繊性の改善は十分でなか぀た。 本発明は、埓来の方法により埗られる高分子量
のポリオレフむンから埗られる高匷力および高匟
性を有する成圢物のこのような欠点を改善するも
のであ぀お、本発明は、超高分子量ポリオレフむ
ン溶液からゲル状成圢物を成圢し、該ゲル状成圢
物䞭の溶媒を陀去した埌に、該ゲル状成圢物䞭に
スチレン系単量䜓を含たせ、次いで加熱し延䌞す
るこずを特城ずする高分子量ポリオレフむン成圢
物の補造方法である。 本発明においお甚いられる高分子量ポリオレフ
むンずしおは、結晶性のオレフむンの単独重合䜓
もしくは共重合䜓で、重量平均分子量が500000以
䞊、奜たしくは1000000以䞊、特に奜たしくは
2000000以䞊のもので、䟋えばポリ゚チレン、ポ
リプロピレン、゚チレン−プロピレン共重合䜓、
ポリブテン−、ポリメチルペンテン−、ポリ
オキシメチレンなどがあげられる。これらのうち
では重量平均分子量が2000000以䞊のポリ゚チレ
ンたたはポリプロピレンが奜たしい。 たた、本発明においお甚いられるスチレン系単
量䜓ずしおは、埌述の高分子量ポリオレフむンの
溶液から成圢されるゲル状成圢物の脱溶媒埌に含
浞させお加熱し延䌞する過皋においお速みやかに
ラゞカル重合が進行するスチレンたたはその誘導
䜓があげられる。スチレン誘導䜓ずしおは、スチ
レンをメチル、゚チル、む゜プロピル、−ブチ
ルなどのアルキル基、ビニル基、シクロヘキシル
基、アミノ基、オキシ基、メトキシ基、シアン
基、その他フツ玠、塩玠、臭玠、ペり玠などのハ
ロゲンで眮換したものがあげられるが、これらの
うちではオルト、メタたたはパラの眮換物が奜た
しい。䞊蚘スチレン系単量䜓のうちではオルト、
メタたたはパラのメチルスチレンが奜たしく、特
にパラメチルスチレンたたはパラメチルスチレン
を䞻ずするオルトもしくはメタメチルスチレンの
混合物が反応性および蒞気圧のうえから奜たし
い。たた、これらスチレン系単量䜓は、二皮以䞊
の混合物たたはスチレン系単量䜓を䞻ずする他の
重合性単量䜓䟋えばむ゜シアヌル酞、ビニルナフ
タリン、ビニルピリゞン、ビニルカプロラクタム
などずの混合物ずしお甚いるこずができる。 本発明における高分子量ポリオレフむンの溶液
は、前蚘の高分子量ポリオレフむンを溶媒に加熱
溶解しお調補される。このずきの溶媒ずしおは、
該重合䜓を十分に溶解できるもので、䟋えば飜和
脂肪族炭化氎玠、環匏炭化氎玠、芳銙族炭化氎玠
たたはこれらの混合物などがあげられる。奜適な
䟋ずしおは、パラフむン油、デカン、りンデカ
ン、ドデカン、テトラリンなどの脂肪族たたは環
匏の炭化氎玠あるいは沞点がこれらに察応する鉱
油留分などがあげられる。加熱溶解は、該ポリオ
レフむンが溶解䞭でゲル化する枩床よりも高く溶
媒䞭に完党に溶解する枩床で行われる。枩床は䜿
甚される溶媒により異なるが、䞀般には140〜250
℃の範囲である。たた、溶液䞭に存圚するポリオ
レフむンの濃床は〜15重量、奜たしくは〜
重量である。 次に、この加熱溶解溶液からポリオレフむンの
ゲル状成圢物を成圢する。このゲル化の方法ずし
おは、該ポリオレフむン溶液を適宜遞択されたダ
むス、䟋えば繊維の成圢には断面が円圢、長円
圢、型、型などの孔を有するもの、たたフむ
ルム、バンドなどの成圢には断面が長方圢の孔を
有するものを甚いお抌出す方法があげられる。抌
出されたゲル状の成圢物は、氎济、空気济たたは
溶媒の抜出甚溶剀などでゲル化枩床以䞋、奜たし
くは15〜25℃の枩床に少くずも50℃分の速床で
冷华される。埗られるゲル状成圢物は、ポリオレ
フむン溶解時の溶媒を含むものであり脱溶媒凊理
を行うこずが必芁である。 ゲル状成圢物䞭の溶媒を陀去する方法ずしお
は、ゲル状成圢物の加熱による溶媒の蒞発陀去、
たたは揮発性の溶剀による溶媒の抜出陀去などが
あげられるが、ゲル状成圢物の構造を著しく倉化
させるこずなく溶媒を陀去するためには、揮発性
溶剀による抜出陀去が奜たしい。ゲル成圢物䞭の
溶媒は重量以䞋たで陀去するこずが奜たし
い。この揮発性溶剀ずしおは、䟋えばペンタン、
ヘキサン、ヘブタン、トル゚ンなどの炭化氎玠、
塩化メチレン、四塩化炭玠などの塩玠化炭化氎
玠、䞉塩化䞉フツ化゚タンなどのフツ化炭化氎
玠、ゞ゚チル゚ヌテル、ゞオキサンなどの゚ヌテ
ル類、その他メタノヌル、゚タノヌルなどのアル
コヌル類などがあげられる。溶媒が抜出された揮
発性溶媒を含むゲル状成圢物は、揮発性溶媒を陀
去しお実質的に完党な固䜓網状重合䜓を残すよう
な条件で也燥されるか、たたは揮発性溶剀を含ん
だ状態でスチレン系単量䜓を含浞させる。 脱溶媒されたゲル状成圢物ぞの重合性のスチレ
ン系単量䜓以䞋単量䜓ずいうの含浞は、反応
開始剀の存圚䞋たたは䞍存圚䞋の単量䜓の䞭に成
圢物を浞挬するこずによ぀お達成される。反応開
始剀は、有効な重合をさせるために添加するこず
が奜たしく、䟋えばベンゟむルパヌオキサむド、
ラりロむルパヌオキサむド、アゟビスむ゜ブチロ
ニトリル、ゞクミルパヌオキサむド、−ゞ
メチル−−ゞ−ブチルパヌオキシヘ
キサン、−ゞメチル−−ゞ−ブ
チルパヌオキシヘキシン−、ゞ−−ブチル
−パヌオキサむドなどがあげられる。この反応開
始剀の添加量は、特に制限されないが、通垞は単
量䜓100重量郚に察し0.005〜重量郚である。こ
の時の単量䜓の枩床は、単量䜓の凝固点を越え、
たたゲル状成圢物が単量䜓ぞ溶解する迄の枩床
で、具䜓的には凝固点を越えおから90℃の範囲
で、特に20〜25℃の宀枩で行うこずが経枈的にも
奜たしい。単量䜓の枩床が凝固点以䞋ではゲル状
成圢物䞭に単量䜓が含浞されず、䞀方90℃を越え
る高枩ではゲル状成圢物が単量䜓に溶解したり、
重合速床が著しく䞊昇したり、たた単量䜓が蒞発
するために奜たしくない。たた、ゲル状成圢物の
単量䜓䞭ぞの浞挬時間は、埌述のゲル状成圢物の
加熱延䌞においお、ゲル状成圢物䞭で単量䜓が重
合しお付加される量によ぀お遞択される。ゲル成
圢物䞭で重合しお付加する重合䜓の奜たしい量は
0.5〜25重量で、特に奜たしくは〜重量
の範囲である。重合䜓の付加量が0.5重量未満
では成圢物の耐分繊性、結節匷床、匕裂匷床など
が改善されず、䞀方25重量を越える堎合は成圢
物の高匟性、高匷床が損なわれるために奜たしく
ない。 次に、単量䜓を含浞したゲル状成圢物は、加熱
しお段階たたは段階以䞊で延䌞する。この時
の枩床は、ゲル状成圢物に含浞させた単量䜓が重
合し、か぀ゲル状成圢物の配向が十分に行えるこ
ずが必芁である。具䜓的にはゲル状成圢物の軟化
点から融点以䞋、特に融点盎䞋で行うこずが奜た
しく、䟋えばポリ゚チレンの堎合は110〜140℃、
ポリプロピレンの堎合は110〜160℃で行うこずが
奜たしい。延䌞時の枩床が融点を越える堎合は、
ゲル状成圢物の配向ができず、䞀方、軟化点未満
では前蚘単量䜓の重合が十分に行われず、しかも
高匷床および高匟性の成圢物を埗るに必芁な延䌞
比を埗るこずができないために奜たしくない。成
圢物の匕匵匷さおよび匟性率は、ほが延䌞比に比
䟋するために匷床を倧きくする堎合には延䌞比を
倧きくするこずが必芁であり、延䌞比は少くずも
10で、奜たしくは20以䞊である。 延䌞した成圢物は、未反応の単量䜓を陀去する
ずずもに熱凊理を斜しお也燥する。 本発明の方法は、バツチ匏および連続的な方法
で実斜できる。次に、本発明の方法で連続的に補
造する堎合の装眮の䞀䟋を図面を甚いお以䞋に説
明する。 第図は本発明の方法による繊維を補造する装
眮の䞀䟋を瀺す偎面略図である。 高分子量のポリオレフむンおよび非揮発性の
溶媒ずを混合槜に䟛絊しお撹拌機でスラリ
ヌ状ずする。このスラリヌは管で連続的に加熱
撹拌槜に送られ撹拌プレヌトで撹拌しお均䞀
な溶液ずする。この溶液はギアポンプにより玡
糞甚ダむに送られ溶液玡糞される。抌出された
溶液は盎ちに冷华槜で冷华ゲル化され原
糞ずなる。ゲル化繊維はロヌルによ
り揮発性溶剀による抜出槜に䟛絊され非
揮発性溶媒を抜出陀去した埌、ロヌルにより
送られ也燥宀を経お也燥ゲル繊維キセ
ロゲルを埗る。也燥ゲル繊維はロヌル
により送られ単量䜓の浞挬槜を経お単量
䜓を含浞させお延䌞工皋ぞ導かれる。単量䜓
を含むゲル繊維は、ロヌル
で枩床の異なる円筒加熱機
ぞそれぞれ䟛絊し、たたは巻取り、枩床を倉
えお段階に延䌞するず同時にゲル繊維䞭に含た
せた単量䜓を重合させお延䌞繊維の配向結晶
間に単量䜓の重合䜓を構成させる。延䌞繊維
は熱セツト槜で也燥されロヌルを経お巻
取機に巻取られる。 以䞊、本発明の方法によれば高分子量のポリオ
レフむンから埗られる延䌞成圢物の高匟性および
高匷床を損うこずなく、耐分繊性、結節匷床およ
び匕裂匷床を著しく向䞊するこずができる。䟋え
ば、本発明の方法で埗られる繊維は、摩擊や撚り
を匷く受けるロヌプ、ケヌブルなどに適し、たた
座屈に匷いために単糞、網などの甚途に奜適であ
る。たた、トり・プリプレグ、垃などに通垞の技
術で二次加工ができるために耇合材料の匷化材ず
しおの甚途を拡倧するものである。 以䞋に、本発明の実斜䟋を瀺す。なお、詊隓方
法は次の通りである。 (1) 匕匵匟性率、匷力むンストロン型匕匵詊隓
機を甚いおチダク間距離25mm、匕匵速床mm
分、枩床25℃で、繊維の匕匵詊隓より求めた。 (2) 結節匷床繊維を回結びしたもので䞊蚘の
匕匵詊隓より求めた。 (3) 耐分繊性䞀端を固定した繊維を盎亀する角
床でcm間隔に平行に配した本の金属棒にそ
れぞれ回巻付け、他端に繊維のデニヌルの
倍の荷重を䞋げ、該金属棒をcmの距離で䞊䞋
に60回分の速床で平行移動させ、繊維の切断
に至る回数を求めた。 (4) ポリパラメチルスチレンPPMSの含有
量延䌞繊維をクロロホルムで抜出し、溶解郚
分の重量から求めた。なお、PPMSは赀倖線分
析で確認した。 実斜䟋  重量平均分子量240䞇のポリ゚チレンを流動パ
ラフむン〔゚ツ゜石油(æ ª)瀟補クリストヌル322商
品名〕に加えお4.0重量の混合液ずした。この
混合液100重量郚圓りに−ゞ−−ブチル
−−クレゟヌル0.125重量郚ずテトラキス〔メ
チレン−−−ゞ−−ブチル−−ヒ
ドロキシプニル−ブロピオネヌト〕メタン
0.25重量郚ずを加えお宀枩で混合しお゚マルゞペ
ン液を調補した。この゚マルゞペン液を撹拌機を
装備したオむルゞダケツト付オヌトクレヌブに充
填し、200℃迄加熱しお時間撹拌しお溶液を埗
た。この溶液を200℃で玡糞口埄がmmの円錐ダ
むを甚いおcm3分の速床で玡糞した。この玡糞
した繊維を玡糞ダむの䞋cmに蚭眮した15〜20℃
の氎济に通し急冷しおゲル状繊維を埗た。このゲ
ル状繊維を1.2m分の速床で盎埄3.5cmのボビン
に連続的に巻取぀た。 ゲル状繊維のボビンを宀枩に保぀た塩化メチレ
ン䞭に浞挬し、ゲル状繊維䞭の流動パラむンを抜
出した。時間毎に回の抜出を行぀た埌、塩化
メチレンを蒞発させお也燥ゲル状繊維を埗た。 この也燥したゲル状繊維を反応開始剀ベンゟ
むルパヌオキサむドを重量含む23℃のパラ
メチルスチレン䞭に時間浞挬した。 この反応開始剀を含むパラメチルスチレンを含
浞させたゲル状繊維を、長さ2mのオむルゞダケ
ツト付円筒加熱管を甚いお、第段目は延䌞枩床
115℃、くり出速床2.0m分、巻取速床4.0m分、
第段目は延䌞枩床125℃、くり出速床2.0m
分、巻取速床10.0m分および第段目は延䌞枩
床135℃、くり出速床2.0m分、巻取速床8.0m
分の段階の延䌞を行い延䌞比40.4の繊維を埗
た。この延䌞繊維を60℃で24時間熱凊理しお埗ら
れた繊維の特性を衚−に瀺した。 実斜䟋 〜15 実斜䟋においお、也燥ゲル状繊維ぞのポリパ
ラメチルスチレン以䞋PPMSずいうの付加量
および延䌞比を倉えた以倖は実斜䟋ず同様にし
お延䌞繊維を埗た。この延䌞繊維の特性を衚−
に䜵蚘した。 比范䟋  実斜䟋においお埗られた也燥ゲル状繊維を、
長さ2mのオむルゞダケツ付円筒加熱管を甚いお、
第段目は延䌞枩床125℃、くり出速床2.0m
分、巻取速床12.5m分および第段目は延䌞枩
床135℃、くり出速床2.0m分、巻取速床4.0m
分の段階延䌞を行い延䌞比12.5ずした以倖は実
斜䟋ず同様にしお延䌞繊維を埗た。この延䌞繊
維の特性を衚−に䜵蚘した。 比范䟋 〜 比范䟋においお、也燥ゲル状繊維の延䌞比を
倉えた以倖は比范䟋ず同様にしお延䌞繊維を埗
た。この延䌞繊維の特性を衚−に䜵蚘した。
The present invention relates to a method for producing a high molecular weight polyolefin molded product, and more particularly, a method for producing a high molecular weight polyolefin molded product such as a fiber or film having high strength and high elastic modulus with excellent splitting resistance, knot strength and tear strength. Regarding. A method for producing fibers with high elastic modulus and high strength using ultra-high molecular weight polyethylene as a raw material is described, for example, in the literature of AJ.
It is described in JP-A No. 107506, Japanese Unexamined Patent Publication No. 58-5228, etc. These methods involve dissolving ultra-high molecular weight polyethylene in a non-volatile solvent at high temperature, performing solution spinning to obtain a gel-like fiber, and then drawing this, or The fiber is obtained by extracting the solvent with a volatile solvent and hot stretching it to the appropriate elastic modulus and strength. However, although these methods make it possible to obtain fibers with high elasticity and strength from ultra-high molecular weight polyethylene, these fibers are subject to properties specific to highly oriented and crystallized chain polymers. In other words, as the degree of orientation increases, the elastic modulus and strength in the direction of the orientation axis asymptotically approach the crystal elastic modulus and strength, but anisotropy occurs in the strength and the elastic modulus and strength in the direction perpendicular to the orientation axis become relatively weak. . Therefore,
These fibers have significant vertical cracking or splitting, and when trying to obtain tow/bleb legs or cloth using a normal loom or knitting machine, the fibers are damaged due to bending and friction when passing through guide pulleys, guide rolls, kite ribs, etc. The disadvantage was that the actual fibers were separated into fine fibers, making it difficult to operate the device. In order to improve these drawbacks, for example, Japanese Patent Application Laid-Open No. 169521/1983 discloses a method of coating a filament of ultra-high molecular weight polyolefin with a polymer having the crystallinity of ethylene or propylene to prevent fibrillation of the fiber. There is a description of coated fibers. However, since this coated fiber uses a polymer to coat the filament, it is difficult to impregnate the micropores in the filament with the polymer, and the prevention of fibrillation of the filament is done from the surface, so it is difficult to improve the fiber splitting resistance. It wasn't enough. The present invention aims to improve these drawbacks of molded products having high strength and high elasticity obtained from high molecular weight polyolefins obtained by conventional methods. Molding of a high molecular weight polyolefin characterized by molding a gel-like molded product, removing the solvent in the gel-like molding, impregnating a styrenic monomer in the gel-like molding, and then heating and stretching it. It is a method of manufacturing something. The high molecular weight polyolefin used in the present invention is a crystalline olefin homopolymer or copolymer with a weight average molecular weight of 500,000 or more, preferably 1,000,000 or more, particularly preferably
2,000,000 or more, such as polyethylene, polypropylene, ethylene-propylene copolymer,
Examples include polybutene-1, polymethylpentene-1, and polyoxymethylene. Among these, polyethylene or polypropylene having a weight average molecular weight of 2,000,000 or more is preferred. In addition, the styrene monomer used in the present invention rapidly undergoes radical polymerization during the process of impregnating, heating, and stretching a gel-like molded product formed from a solution of a high-molecular-weight polyolefin, which will be described later, after removing the solvent. Examples include progressive styrene or its derivatives. Styrene derivatives include styrene, alkyl groups such as methyl, ethyl, isopropyl, and t-butyl, vinyl groups, cyclohexyl groups, amino groups, oxy groups, methoxy groups, cyan groups, and other groups such as fluorine, chlorine, bromine, and iodine. Examples include those substituted with halogen, and among these, ortho, meta or para substitutions are preferred. Among the above styrenic monomers, ortho,
Meta- or para-methylstyrene is preferred, and para-methylstyrene or a mixture of ortho- or meta-methylstyrene mainly consisting of para-methylstyrene is particularly preferred in terms of reactivity and vapor pressure. In addition, these styrene monomers are used as a mixture of two or more types or as a mixture with other polymerizable monomers such as isocyanuric acid, vinylnaphthalene, vinylpyridine, vinylcaprolactam, etc. mainly composed of styrene monomers. be able to. The solution of high molecular weight polyolefin in the present invention is prepared by heating and dissolving the high molecular weight polyolefin in a solvent. The solvent at this time is
The material can sufficiently dissolve the polymer, such as saturated aliphatic hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, or mixtures thereof. Suitable examples include paraffin oil, aliphatic or cyclic hydrocarbons such as decane, undecane, dodecane, and tetralin, and mineral oil fractions whose boiling points correspond to these hydrocarbons. The heating dissolution is carried out at a temperature at which the polyolefin completely dissolves in the solvent, which is higher than the temperature at which it gels during dissolution. The temperature varies depending on the solvent used, but is generally between 140 and 250.
℃ range. Further, the concentration of polyolefin present in the solution is 1 to 15% by weight, preferably 4 to 15% by weight.
It is 8% by weight. Next, a gel-like molded product of polyolefin is molded from this heated and dissolved solution. This gelation method involves applying the polyolefin solution to an appropriately selected die, for example, a die having holes with a circular, elliptical, X-shaped, or Y-shaped cross section for forming fibers, or a die for forming films, bands, etc. One example is a method of extruding using a hole having a rectangular cross section. The extruded gel-like molded product is cooled at a rate of at least 50°C/min to a temperature below the gelling temperature, preferably from 15 to 25°C, in a water bath, an air bath, or an extraction solvent. The resulting gel-like molded product contains the solvent used to dissolve the polyolefin, and therefore requires a solvent removal treatment. Methods for removing the solvent in the gel-like molded product include evaporation and removal of the solvent by heating the gel-like molded product;
Alternatively, removal of the solvent by extraction using a volatile solvent may be mentioned, but in order to remove the solvent without significantly changing the structure of the gel-like molded product, extraction removal using a volatile solvent is preferable. It is preferable to remove the solvent in the gel molded product to 1% by weight or less. Examples of this volatile solvent include pentane,
Hydrocarbons such as hexane, hebutane, toluene,
Examples include chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, fluorinated hydrocarbons such as trichlorotrifluoroethane, ethers such as diethyl ether and dioxane, and alcohols such as methanol and ethanol. The gel-like extrusion containing the volatile solvent from which the solvent has been extracted is dried under conditions that remove the volatile solvent and leave a substantially intact solid network polymer or containing the volatile solvent. impregnated with styrenic monomer. Impregnation of a polymerizable styrenic monomer (hereinafter referred to as monomer) into a gel-like molded product that has been desolvated is performed by immersing the molded product in the monomer in the presence or absence of a reaction initiator. This is achieved by doing. A reaction initiator is preferably added to effect effective polymerization, such as benzoyl peroxide,
lauroyl peroxide, azobisisobutyronitrile, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 2,5-dimethyl-2,5-di(t- butylperoxy)hexyne-3, di-t-butyl peroxide, and the like. The amount of the reaction initiator added is not particularly limited, but is usually 0.005 to 5 parts by weight per 100 parts by weight of the monomer. The temperature of the monomer at this time exceeds the freezing point of the monomer,
Furthermore, it is economically preferable to carry out the reaction at a temperature until the gel-like molded product dissolves into the monomer, specifically at a temperature in the range of 90°C after the freezing point, particularly at a room temperature of 20 to 25°C. If the temperature of the monomer is below the freezing point, the monomer will not be impregnated into the gel-like molded product, while at high temperatures exceeding 90°C, the gel-like molded product will dissolve into the monomer,
This is not preferred because the polymerization rate increases significantly and the monomer evaporates. In addition, the immersion time of the gel-like molded product in the monomer is selected depending on the amount of monomer added by polymerization in the gel-like molded product in the heating stretching of the gel-like molded product described below. Ru. The preferred amount of polymer added by polymerization in the gel molded product is
0.5-25% by weight, particularly preferably 1-5% by weight
is within the range of If the amount of polymer added is less than 0.5% by weight, the fiber splitting resistance, knot strength, tear strength, etc. of the molded product will not be improved, while if it exceeds 25% by weight, the high elasticity and high strength of the molded product will be impaired. unfavorable to Next, the gel-like molded product impregnated with the monomer is heated and stretched in one or more stages. The temperature at this time must be such that the monomer impregnated into the gel-like molded product is polymerized and the gel-like molded product can be sufficiently oriented. Specifically, it is preferable to conduct the heating at a temperature between the softening point and the melting point of the gel-like molded product, particularly just below the melting point.
In the case of polypropylene, the temperature is preferably 110 to 160°C. If the temperature during stretching exceeds the melting point,
This is because the gel-like molded product cannot be oriented, and on the other hand, below the softening point, the monomer is not sufficiently polymerized, and the stretching ratio necessary to obtain a high-strength and high-elastic molded product cannot be obtained. unfavorable to The tensile strength and elastic modulus of a molded product are approximately proportional to the stretching ratio, so when increasing the strength, it is necessary to increase the stretching ratio, and the stretching ratio is at least
10, preferably 20 or more. The stretched molded product is heat-treated and dried to remove unreacted monomers. The process of the invention can be carried out in batch and continuous processes. Next, an example of an apparatus for continuous production using the method of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic side view showing an example of an apparatus for producing fibers according to the method of the present invention. A high molecular weight polyolefin 1 and a non-volatile solvent 2 are supplied to a mixing tank 3 and made into a slurry by a stirrer 4. This slurry is continuously sent through a tube 5 to a heated stirring tank 6 and stirred by a stirring plate 7 to form a uniform solution. This solution is sent to a spinning die 9 by a gear pump 8 and subjected to solution spinning. The extruded solution 10 is immediately cooled and gelled in a cooling tank 11 to become a yarn 12. The gelled fibers 12 are supplied by rolls 13 to an extraction tank 15 using a volatile solvent 14 to extract and remove the nonvolatile solvent, and then sent by rolls 16 to a drying chamber 17 to obtain dry gel fibers 18 (xerogel). The dry gel fiber 18 is rolled into a roll 19
The film is sent through a monomer 20 dipping tank 21, impregnated with monomer, and led to a stretching process. monomer 20
The gel fiber 22 containing the rolls 23, 25, 2
Cylindrical heating machines 24, 26 with different temperatures at 7, 29,
The gel fibers are supplied to the gel fibers 28 or wound up, and stretched in three stages while changing the temperature. At the same time, the monomers contained in the gel fibers are polymerized to form a polymer of monomers between the oriented crystals of the stretched fibers 30. let Stretched fiber 30
is dried in a heat setting tank 31, passed through a roll 32, and wound up on a winder 33. As described above, according to the method of the present invention, the splitting resistance, knot strength and tear strength of a stretched product obtained from a high molecular weight polyolefin can be significantly improved without impairing the high elasticity and high strength. For example, the fibers obtained by the method of the present invention are suitable for ropes, cables, etc. that are subject to strong friction and twisting, and are resistant to buckling, so they are suitable for applications such as single yarns and nets. In addition, it can be used for secondary processing of tow, prepreg, cloth, etc. using normal techniques, expanding its use as a reinforcing material for composite materials. Examples of the present invention are shown below. The test method is as follows. (1) Tensile modulus, strength: Using an Instron type tensile tester, the distance between the cracks was 25 mm, and the tensile speed was 5 mm/
It was determined from a tensile test of fibers at a temperature of 25°C. (2) Knot strength: The fibers were tied once and determined by the above tensile test. (3) Resistance to splitting: A fiber with one end fixed is wrapped once each around two metal rods arranged in parallel at 5 cm intervals at orthogonal angles, and the other end is wrapped with a
The load was doubled and the metal rod was moved vertically and parallelly at a speed of 60 times/minute over a distance of 5 cm, and the number of times the fibers were cut was determined. (4) Content of polyparamethylstyrene (PPMS): The drawn fiber was extracted with chloroform, and the content was determined from the weight of the dissolved portion. In addition, PPMS was confirmed by infrared analysis. Example 1 Polyethylene having a weight average molecular weight of 2.4 million was added to liquid paraffin (Crystal 322 (trade name) manufactured by Etsuo Oil Co., Ltd.) to form a 4.0% by weight liquid mixture. 0.125 parts by weight of 2,6-di-t-butyl-p-cresol and tetrakis[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)-propionate] per 100 parts by weight of this mixed solution. 〕methane
0.25 parts by weight were added and mixed at room temperature to prepare an emulsion liquid. This emulsion liquid was filled into an oil jacketed autoclave equipped with a stirrer, heated to 200°C, and stirred for 2 hours to obtain a solution. This solution was spun at 200° C. using a conical die with a spinning diameter of 2 mm at a speed of 6 cm 3 /min. The spun fibers were placed 5 cm below the spinning die at 15 to 20℃.
The fibers were rapidly cooled through a water bath to obtain gel-like fibers. This gel-like fiber was continuously wound onto a bobbin with a diameter of 3.5 cm at a speed of 1.2 m/min. A bobbin of gel-like fibers was immersed in methylene chloride kept at room temperature to extract liquid paraline from the gel-like fibers. After two extractions of 8 hours each, the methylene chloride was evaporated to obtain dry gel-like fibers. The dried gel-like fibers were immersed for 2 hours in paramethylstyrene containing 4% by weight of a reaction initiator (benzoyl peroxide) at 23°C. The gel-like fiber impregnated with para-methylstyrene containing this reaction initiator is stretched at the first stage using a 2m long cylindrical heating tube with an oil jacket.
115℃, drawing speed 2.0m/min, winding speed 4.0m/min,
In the second stage, the drawing temperature is 125℃ and the drawing speed is 2.0m/
The winding speed is 10.0 m/min, and the third stage is the stretching temperature of 135°C, the drawing speed is 2.0 m/min, and the winding speed is 8.0 m/min.
The fiber was drawn in 3 stages with a draw ratio of 40.4. Table 1 shows the properties of the fibers obtained by heat-treating the drawn fibers at 60°C for 24 hours. Examples 2 to 15 Stretched fibers were obtained in the same manner as in Example 1, except that the amount of polyparamethylstyrene (hereinafter referred to as PPMS) added to the dry gel fiber and the stretching ratio were changed. Table 1 shows the properties of this drawn fiber.
Also listed. Comparative Example 1 The dried gel-like fiber obtained in Example 1 was
Using a 2m long cylindrical heating tube with an oil jacket,
The first stage is a drawing temperature of 125℃ and a drawing speed of 2.0m/
12.5m/min, winding speed 12.5m/min, second stage stretching temperature 135℃, drawing speed 2.0m/min, winding speed 4.0m/min.
A drawn fiber was obtained in the same manner as in Example 1, except that the two-step drawing was carried out at a draw ratio of 12.5. The properties of this drawn fiber are also listed in Table 1. Comparative Examples 2 to 6 Stretched fibers were obtained in the same manner as in Comparative Example 1, except that the stretching ratio of the dry gel fiber was changed. The properties of this drawn fiber are also listed in Table 1.

【衚】【table】

【衚】 実斜䟋 16〜20 実斜䟋においお埗られた也燥ゲル状繊維を、
ゞビニルベンれンを重量含むパラメチルスチ
レン䞭に浞挬した以倖は実斜䟋ず同様にしお延
䌞繊維を埗た。この延䌞繊維の特性を衚−に瀺
した。
[Table] Examples 16-20 The dried gel-like fibers obtained in Example 1 were
A drawn fiber was obtained in the same manner as in Example 1 except that it was immersed in paramethylstyrene containing 5% by weight of divinylbenzene. The properties of this drawn fiber are shown in Table 2.

【衚】  パラメチルスチレンずゞビニルベンれンの重合
䜓。
実斜䟋 21 実斜䟋においお、ポリ゚チレンに代り重量平
均分子量250䞇のポリプロピレンを甚いお濃床
重量の流動パラフむン溶液を調補したこず、お
よびパラメチルスチレンを含浞させたゲル状繊維
の延䌞を、第段は延䌞枩床115℃、くり出速床
2.0m分、巻取速床4.0m分、第段目は延䌞
枩床135℃、くり出速床2.0m分、巻取速床
10.0m分および第段目は延䌞枩床155℃、く
り出速床2.0m分、巻取速床3.0分の段階延
䌞を行い延䌞比15.5ずした以倖は実斜䟋ず同様
にしお延䌞繊維を埗た。この延䌞繊維の特性を衚
−に瀺した。 比范䟋  実斜䟋21においお埗られた也燥ゲル状繊維を、
長さ2mのオむルゞダケツト付円筒加熱管を甚い
お、第段目は延䌞枩床135℃、くり出速床
2.0m分、巻取速床20.m分および第段目は
延䌞枩床155℃、くり出速床2.0m分、巻取速床
4.2m分の段階で行い、延䌞比15.3ずした以倖
は実斜䟋21ず同様にしお延䌞繊維を埗た。この延
䌞繊維の特性を衚−に䜵蚘した。
[Table] * Polymer of paramethylstyrene and divinylbenzene.
Example 21 In Example 1, polypropylene with a weight average molecular weight of 2.5 million was used instead of polyethylene, and the concentration was 8.
% by weight liquid paraffin solution was prepared, and the gel-like fibers impregnated with para-methylstyrene were stretched at a stretching temperature of 115°C and a drawing speed in the first stage.
2.0m/min, winding speed 4.0m/min, second stage stretching temperature 135℃, drawing speed 2.0m/min, winding speed
Stretching was carried out in the same manner as in Example 1, except that the stretching temperature was 155°C, the drawing speed was 2.0 m/min, and the winding speed was 3.0/min, and the stretching ratio was 15.5 at 10.0 m/min and the third stage. Obtained fiber. The properties of this drawn fiber are shown in Table 3. Comparative Example 7 The dried gel-like fiber obtained in Example 21 was
Using a 2 m long cylindrical heating tube with an oil jacket, the first stage was drawn at a drawing temperature of 135°C and a drawing speed.
2.0m/min, winding speed 20.m/min, second stage stretching temperature 155℃, drawing speed 2.0m/min, winding speed
A drawn fiber was obtained in the same manner as in Example 21, except that the drawing was carried out in two stages at 4.2 m/min and the drawing ratio was 15.3. The properties of this drawn fiber are also listed in Table 3.

【衚】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明の補造方法の実斜態様を瀺す偎
面略図である。
FIG. 1 is a schematic side view showing an embodiment of the manufacturing method of the present invention.

Claims (1)

【特蚱請求の範囲】[Claims]  高分子量ポリオレフむンの溶液からゲル状成
圢物を成圢し、該ゲル状成圢物䞭の溶媒を陀去し
た埌に、該ゲル状成圢物䞭にスチレン系単量䜓を
含たせ、次いで加熱し延䌞するこずを特城ずする
高分子量ポリオレフむン成圢物の補造方法。
1 Molding a gel-like molded product from a solution of a high molecular weight polyolefin, removing the solvent in the gel-like molding, impregnating a styrene monomer in the gel-like molding, and then heating and stretching. A method for producing a high molecular weight polyolefin molded product, characterized by:
JP8614484A 1984-05-01 1984-05-01 Production of high-molecular polyolefin molding Granted JPS60231743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8614484A JPS60231743A (en) 1984-05-01 1984-05-01 Production of high-molecular polyolefin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8614484A JPS60231743A (en) 1984-05-01 1984-05-01 Production of high-molecular polyolefin molding

Publications (2)

Publication Number Publication Date
JPS60231743A JPS60231743A (en) 1985-11-18
JPH0437861B2 true JPH0437861B2 (en) 1992-06-22

Family

ID=13878532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8614484A Granted JPS60231743A (en) 1984-05-01 1984-05-01 Production of high-molecular polyolefin molding

Country Status (1)

Country Link
JP (1) JPS60231743A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8903010D0 (en) * 1989-02-10 1989-03-30 Shell Int Research Process for preparation of stable interpenetrating polymer blends,comprising a poly(vinyl aromatic)polymer phase and a poly(alkylene)phase
CA2040890A1 (en) * 1990-04-23 1991-10-24 Daniel W. Klosiewicz Uhmwpe/styrenic molding compositions with improved flow properties and impact strength

Also Published As

Publication number Publication date
JPS60231743A (en) 1985-11-18

Similar Documents

Publication Publication Date Title
KR860000202B1 (en) Process for producing high tenacity,high modulus crystalling thermoplastic article and novel product fibers
JPH0116924B2 (en)
JP6193992B2 (en) Two-stage sulfonation process for conversion of polymer fiber to carbon fiber
US3048465A (en) Polyolefin wet spinning process
JP6193991B2 (en) Carbon fiber preparation process using gaseous sulfur trioxide
WO2008055405A1 (en) A process for producing fiber of ultra high molecular weight polyethylene
US3198868A (en) Process for vulcanizing pre-shaped articles formed from vulcanizable polymeric materials
US3066006A (en) Method of processing a tow
JPH0343368B2 (en)
US2585499A (en) Production of shaped articles from acrylonitrile polymers
JPH0437861B2 (en)
US3828014A (en) High shrinkage threads,yarn and fibers from acrylonitrile polymers
JP2016145441A (en) High performance fiber and method for producing the same
EP0144793A2 (en) High tenacity and modulus polyacrylonitrile fiber and method
JPH0218216B2 (en)
JPH0233314A (en) High-tenacity polyvinyl alcohol based fiber and production thereof
JPS61215708A (en) Production of multifilament yarn
US3037240A (en) Method and apparatus for manufactureing shaped articles from solutions of acrylonitrile polymers and copolymers
JPS6022010B2 (en) Method for preparing high molecular weight polyethylene molding dope
JPS60239509A (en) Production of high-strength and high-modulus polyolefin based fiber
JPH01162816A (en) Novel polyethylene fiber
AT223811B (en) Process for making molded articles from elastomers
JPH02229208A (en) Production of multifilament yarn
JPH01162814A (en) Production of novel polyethylene fiber
JPS62262B2 (en)