JPH0218216B2 - - Google Patents

Info

Publication number
JPH0218216B2
JPH0218216B2 JP13192884A JP13192884A JPH0218216B2 JP H0218216 B2 JPH0218216 B2 JP H0218216B2 JP 13192884 A JP13192884 A JP 13192884A JP 13192884 A JP13192884 A JP 13192884A JP H0218216 B2 JPH0218216 B2 JP H0218216B2
Authority
JP
Japan
Prior art keywords
gel
fibers
molded product
molecular weight
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13192884A
Other languages
Japanese (ja)
Other versions
JPS6111222A (en
Inventor
Shoichi Mori
Kenji Myasaka
Koichi Kono
Joichi Tabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP13192884A priority Critical patent/JPS6111222A/en
Publication of JPS6111222A publication Critical patent/JPS6111222A/en
Publication of JPH0218216B2 publication Critical patent/JPH0218216B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、スチレン系単量体を溶媒とする高分
子量ポリエチレンの溶液からゲル状成形物を成形
し、この成形物を加熱延伸することによる耐分繊
性、結節強度および引裂強度に優れ、かつ高強度
および高弾性を有する繊維またはフイルム等の高
分子量ポリエチレン成形物の製造方法に関する。 超高分子量ポリエチレンを原料とした高弾性率
および高強度の繊維を製造する方法は、例えばペ
ニングス(AJ.Pennings)の文献、特開昭55−
107506号公報、特開昭58−5228号公報などに記載
されている。これらの方法は、超高分子量のポリ
エチレンを非揮発性の溶媒に高温で溶解し、溶液
紡糸してゲル状繊維を得たのちこれを延伸する
か、あるいはゲル状物中に含まれる非揮発性溶媒
を揮発性溶媒で抽出し、これを然るべき弾性率お
よび強度まで熱延伸して繊維を得るものである。 しかしながら、これらの方法によれば超高分子
量のポリエチレンから高弾性および高強度の繊維
を得ることができるが、これらの繊維は高度に配
向結晶化した鎖状高分子に特有の性質を免れな
い。すなわち、配向度が増加すれば配向軸方向の
弾性率および強度は結晶弾性率および強度に漸近
するが、強度に異方性が生じ配向軸に垂直方向の
弾性率および強度は相対的に弱くなる。従つて、
この繊維は縦割れもしくは分繊が著しく、通常の
織機や編機を用いてトウ・プリプレク、布を得よ
うとするとガイドプーリー、ガイドロール、ガイ
ドリブなどを通過する際の曲げや摩擦により繊維
は何本もの細繊維に分繊されてしまい、装置の運
転が困難となるという欠点があつた。 このような欠点を改良するものとして、例えば
特開昭58−169521号公報には超高分子量ポリオレ
フインのフイラメント上にエチレンまたはプロピ
レンの結晶化度を有するポリマーを被覆すること
により繊維のフイブリル化を防止する被覆繊維の
記載がある。 しかしながら、この被覆繊維はフイラメントの
被覆にポリマーを用いるために、フイラメント中
の微細孔へのポリマーの含浸が難かしく、フイラ
メントのフイブリル化の防止は表面から行うもの
で、耐分繊性の改善は十分でなかつた。 本発明は、従来の方法により得られる高分子量
のポリエチレンから得られる高強度および高弾性
を有する成形物のこのような欠点を改良するもの
であつて、本発明の高分子量ポリエチレン成形物
の製造方法は、高分子量ポリエチレンをスチレン
系単量体に溶解して溶液を調製し、この溶液から
ゲル状成形物を成形し、この成形物を加熱延伸す
るものである。 本発明において用いられる高分子量ポリエチレ
ンとしては、結晶性のエチレン単独重合体または
エチレンと10モル%以下のα−オレフインとの共
重合体であつて、重量平均分子量が5×105以上、
好ましくは1×106以上、特に2×106以上の超高
分子量のものが好ましい。分子量が5×105未満
である通常のポリエチレンでは、高強度および高
弾性の成形物が得られないために好ましくない。 また、本発明において用いられるスチレン系単
量体としては、後述の高分子量ポリエチレンの溶
液から成形されるゲル状成形物に含まれて加熱し
延伸する過程において速みやかにラジカル重合が
進行するスチレンまたはその誘導体があげられ
る。スチレン誘導体としては、スチレンをメチ
ル,エチル,イソプロピル,t−ブチルなどのア
ルキル基、ビニル基、シクロヘキシル基、アミノ
基、オキシ基、メトキシ基、シアン基、その他フ
ツ素、塩素、臭素、ヨウ素などのハロゲンで置換
したものがあげられるが、これらのうちではオル
ト、メタまたはパラの置換物が好ましい。上記ス
チレン系単量体のうちではオルト、メタまたはパ
ラのメチルスチレンが好ましく、特にパラメチル
スチレンまたはパラメチルスチレンを主とするオ
ルトもしくはメタのメチルスチレンの混合物が反
応性および蒸気圧上から好ましい。また、これら
スチレン系単量体は、二種以上の混合物またはス
チレン系単量体と他の重合性単量体との混合物と
して用いることができる。スチレン系単量体と他
の重合性単量体との混合物としては、例えばパラ
メチルスチレンとマレイン酸、アクリル酸、メタ
クリル酸などの不飽和カルボン酸もしくはその誘
導体、イソシアヌル酸、ビニルナフタリン、ビニ
ルピリジンまたはビニルカプロラクタムなどとの
混合物があげられる。 本発明におけるスチレン系単量体を溶媒とする
高分子量ポリエチレンの溶液は、高分子量ポリエ
チレンを上記のスチレン系単量体に加熱溶解して
調製される。溶解温度は、使用される溶媒により
異なるが、一般には100〜160℃、好ましくは120
〜140℃の範囲である。また、溶液中に存在する
高分子量ポリエチレンの量は、1〜15重量%、好
ましくは4〜8重量%である。なお、上記の高分
子量ポリエチレンの溶解においては、加熱により
スチレン系単量体が一部ラジカル重合するため、
重合禁止剤を添加しておくことが好ましい。重合
禁止剤としては、例えばt−ブチルカテコール、
ジフエニルピクリルヒドラジル、p−ベンゾキノ
ンなどがあげられる。これらは0.05〜10.0重量
%、好ましくは0.5〜5.0重量%で添加する。 次に、この高分子量ポリエチレン溶解溶液から
ポリエチレンのゲル状成形物を成形する。このゲ
ル化の方法としては、該高分子量ポリエチレン溶
液を適宜選択されたダイス、例えば繊維の成形に
は断面が円形,長円形,X型,Y型などの孔を有
するもの、またフイルム、バンドなどの成形には
断面が長方形の孔を有するものを用いて押出す方
法があげられる。押出されたゲル状の成形物は、
水浴、空気浴等でゲル化温度以下、好ましくは15
〜25℃の温度に少くとも50℃/分の速度で冷却す
る。 得られるゲル状成形物は、高分子量ポリエチレ
ン溶解時のスチレン系単量体を含むもので、特に
重合禁止剤を用いたものは後述のゲル成形物の加
熱延伸におけるスチレン系単量体のラジカル重合
を妨害するために、ゲル状成形物中に含まれる重
合禁止剤を除去することが好ましい。この除去方
法としては、ゲル状成形物を水浴中に浸漬するこ
とよつて容易に達成できる。また、ゲル状成形物
の加熱延伸において、ゲル状成形物中のスチレン
単量体のラジカル重合を促進するために、ゲル状
成形物を反応開始剤、例えば過硫酸カリウム、過
硫酸アンモニウム等の濃度0.1〜1.0重量%の水溶
液で処理することが好ましい。 次に、スチレン系単量体を含むゲル状成形物
は、加熱して1段階または2段階以上で延伸す
る。このときの温度は、ゲル状成形物に含まれる
スチレン系単量体がラジカル重合して重合体を形
成し、かつゲル状成形物の配向が十分に行えるこ
とが必要である。具体的にはゲル状成形物の軟化
点から融点迄、特に融点直下で行うことが好まし
く、例えば80〜140℃、好ましくは100〜140℃の
範囲で延伸する。延伸温度が融点を越える場合
は、ゲル状成形物の配向が十分にできず、一方、
軟化点未満では前記スチレン系単量体の重合が十
分に行われず、しかも高強度および高弾性の成形
物を得るに必要な延伸比を得ることができないた
めに好ましくない。成形物の引張強さおよび弾性
率は、ほぼ延伸比に比例するために強度を大きく
する場合は延伸比を大きくすることが必要であ
り、延伸比は少なくとも10で、好ましくは20以上
である。 延伸した成形物中に重合して付加されるスチレ
ン系単量体の量は0.5〜25重量%で、好ましくは
1〜5重量%の範囲である。重合体の付加量が
0.5重量%未満では延伸成形物の耐分繊性、結節
強度、引裂強度等が改善されず、一方25重量%を
越える場合は成形物の高弾性、高強度損なわれる
ために好ましくない。上記の重合体付加量は、前
記のスチレン系単量体への重合禁止剤の添加量、
ゲル状成形物への反応開始剤の添加量あるいはゲ
ル状成形物の延伸条件等によつて調整することが
できる。 本発明の方法は、バツチ式および連続的な方法
で実施できる。次に、本発明の方法で連続的に製
造する場合の装置の一例を図面を用いて以下に説
明する。 第1図は本発明の方法による繊維を製造する装
置の一例を示す側面略図である。 高分子量ポリエチレン1、スチレン系単量体2
および重合禁止剤3とを混合槽4に供給して撹拌
機5でスラリー状とする。このスラリーは管6で
連続的に加熱撹拌機7に送られ撹拌プレート8で
撹拌して均一な溶液とする。この溶液はギアポン
プ9により紡糸用ダイ10に送られ溶液紡糸され
る。押出された溶液11は直ちに冷却槽12で冷
却ゲル化され原糸13となる。この原糸13は、
原糸中に含まれる重合禁止剤を除去するためロー
ル14により水槽15に供給され、さらにロール
16により反応開始剤を含む水槽17に供給され
た後、延伸工程に導かれる。反応開始剤の処理を
行つたゲル繊維18は、ロール19,21,23
で温度の異なる円筒加熱機20,22,24へそ
れぞれ供給して、温度を変えて3段階に延伸する
と同時にロール25で巻取り、ゲル繊維中に含ま
れるスチレン系単量体を重合させて延伸繊維26
の配向結晶間にスチレン系単合体を構成させる。
延伸繊維26は、熱セツト槽27で乾燥されロー
ル28を経て巻取機29に巻取る。 本発明は以上のように構成したもので、得られ
るポリエチレンの延伸成形物は、耐分繊性、結節
強度および引裂強度に優れ、かつ高強度および高
弾性を有するものである。また、本発明の方法は
複数の溶媒を用いないために、従来法に比べて工
程が簡略化でき、また溶解温度も低いため操作が
容易でありそのうえ経済的に有利である。また、
ポリエチレン延伸成形物は、配向結晶間にスチレ
ン系単合体を構成させるために、繊維を被覆する
従来法に比べて、耐分繊性、結節強度および引裂
強度をさらに向上することができる。 また、本発明の方法で得られる成形物、例えば
ポリエチレン延伸繊維は、摩擦や撚りを強く受け
るロープ,ケーブルに適し、また座屈に強いため
に単糸、網等の用途に好適である。さらに、ト
ウ・プリプレク、布等に通常の技術で二次加工が
できるために複合材料の強化材としての用途を拡
大するものである。 以下に、本発明の実施例を示す。なお、試験方
法は次の通りである。 (1) 引張弾性率、強力;インストロン型引張試験
機を用いてチヤツク間距離25mm、引張速度5
mm/分、温度23℃で、繊維の引張試験より求め
た。 (2) 結節強度;繊維を1回結びしたもので上記の
引張試験より求めた。 (3) 耐分繊性;一端を固定した繊維を直交する角
度で5cm間隔に平行に配した2本の金属棒にそ
れぞれ1回巻付け、他端に繊維のデニールの3
倍の荷重を下げ、該金属棒を5cmの距離で上下
に60回/分の速度で平行移動させ、繊維の切断
に至る回数を求めた。 (4) ポリパラメチルスチレン(PPMS)の含有
量;延伸繊維をクロロホルムで抽出し、溶解部
分の重量から求めた。なお、PPMSは赤外線分
析で確認した。 実施例 1 パラメチルスチレンに重量平均分子量240万の
ポリエチレンを加えて4.0重量%の混合液とし、
これに重合禁止剤(t−プチルカテコール)5.0
重量%を加えて室温で混合してスリラーを調製し
た。このスリラーを撹拌機を装備したオイルジヤ
ケツト付オートクレープに充填し、125℃迄加熱
して3時間撹拌して溶液を得た。この溶液を、ギ
ヤポンプおよび口径2mmの円錐ダイスを用い、温
度125℃、紡糸速度6cm3/分で紡糸した。この紡
糸した繊維を紡糸ダイの下3cmに設置した15〜20
℃の水浴に通し急冷してゲル状繊維を得た。この
ゲル状繊維を1.2m/分の速度で直径35mmのボビ
ンに連続的に巻取つた。 このパラメチルスチレンを含むゲル状繊維を、
長さ2mのオイルジヤケツト付円筒加熱管を用い
て、第1段目は延伸温度105℃、送り速度2.0m/
分、巻取速度14.0m/分、第2段目は延伸温度
125℃、送り速度2.0m/分、巻取速度6.0m/分
および第3段目は延伸温度135℃、送り速度2.0
m/分、巻取速度3.3m/分の延伸を行い延伸比
34.7の繊維を得た。この延伸繊維の特性を表−1
に示した。 実施例 2〜5 実施例1において、繊維へのポリパラメチルス
チレン(以下PPMSという)の付加量および延伸
比を変えた以外は実施例1と同様にして延伸繊維
を得た。この延伸繊維の特性を表−1に併記し
た。 比較例 1 重量平均分子量240万のポリエチレンを流動パ
ラフイン〔エツソ石油(株)社製 クリストール322
(商品名)〕に加えて4.0重量%の混合液とした。
この混合液100重量部当りに2.6−ジ−t−プチル
−P−クレゾール0.125重量部とテトラキス〔メ
チレン−3−(3.5−ジ−t−ブチル−4−ヒドロ
キシフエニル)−プロピオネート〕メタン0.25重
量部とを加えて室温で混合してスリラーを調製し
た。このスリラーを撹拌機を装備したオイルジヤ
ケツト付オートクレープに充填し、200℃迄加熱
して2時間撹拌して溶液を得た。この溶液を200
℃で紡糸口径が2mmの円錘ダイを用いて6cm3/分
の速度で紡糸した。この紡糸した繊維を紡糸ダイ
の下5cmに設置した15〜20℃の水浴に通し急冷し
てゲル状繊維を得た。このゲル状繊維を1.2m/
分の速度で直径35mmのボビンに連続的に巻取つ
た。 ゲル状繊維のボビンを室温に保つた塩化メチレ
ン中に浸漬し、ゲル状繊維中の流動パライン抽出
した。8時間毎に2回の抽出を行つた後、塩化メ
チレンを蒸発させて乾燥ゲル状繊維を得た。 得られた乾燥ゲル状繊維を、長さ2mのオイル
ジヤケツト付円筒加熱管を用いて、第1段目は延
伸温度125℃、送り速度2.0m/分、巻取速度12.5
m/分および第2段目は延伸温度135℃、送り速
度2.0m/分、巻取速度11.7m/分、の2段階延
伸を行い延伸比36.5とした以外は実施例1と同様
にして延伸繊維を得た。この延伸繊維の特性を表
−1に併記した。 比較例 2〜6 比較例1において、乾燥ゲル状繊維の延伸比を
変えた以外は比較例1と同様にして延伸繊維を得
た。この延伸繊維の特性を表−1に併記した。
The present invention has excellent fiber splitting resistance, knot strength, and tear strength by molding a gel-like molded product from a solution of high molecular weight polyethylene using a styrene monomer as a solvent and heating and stretching this molded product. The present invention relates to a method for manufacturing high molecular weight polyethylene molded products such as fibers or films having high strength and high elasticity. A method for producing fibers with high elastic modulus and high strength using ultra-high molecular weight polyethylene as a raw material is described, for example, in the literature of AJ.
It is described in JP-A No. 107506, Japanese Unexamined Patent Publication No. 58-5228, etc. These methods involve dissolving ultra-high molecular weight polyethylene in a non-volatile solvent at high temperature, performing solution spinning to obtain a gel-like fiber, and then drawing this, or The fiber is obtained by extracting the solvent with a volatile solvent and hot stretching it to the appropriate elastic modulus and strength. However, although these methods make it possible to obtain fibers with high elasticity and strength from ultra-high molecular weight polyethylene, these fibers are subject to properties specific to highly oriented and crystallized chain polymers. In other words, as the degree of orientation increases, the elastic modulus and strength in the direction of the orientation axis asymptotically approach the crystal elastic modulus and strength, but anisotropy occurs in the strength and the elastic modulus and strength in the direction perpendicular to the orientation axis become relatively weak. . Therefore,
These fibers are severely cracked or split in the vertical direction, and when trying to obtain tow, preplex, or cloth using a normal loom or knitting machine, the fibers are bent and rubbed as they pass through guide pulleys, guide rolls, guide ribs, etc. The problem was that the fibers were separated into fine fibers, making it difficult to operate the device. In order to improve these drawbacks, for example, Japanese Patent Application Laid-Open No. 169521/1983 discloses a method of coating a filament of ultra-high molecular weight polyolefin with a polymer having the crystallinity of ethylene or propylene to prevent fibrillation of the fiber. There is a description of coated fibers. However, since this coated fiber uses a polymer to coat the filament, it is difficult to impregnate the micropores in the filament with the polymer, and the prevention of fibrillation of the filament is done from the surface, so it is difficult to improve the fiber splitting resistance. It wasn't enough. The present invention aims to improve these drawbacks of molded products having high strength and high elasticity obtained from high molecular weight polyethylene obtained by conventional methods, and the method for producing high molecular weight polyethylene molded products of the present invention In this method, a solution is prepared by dissolving high molecular weight polyethylene in a styrene monomer, a gel-like molded product is molded from this solution, and this molded product is heated and stretched. The high molecular weight polyethylene used in the present invention is a crystalline ethylene homopolymer or a copolymer of ethylene and 10 mol% or less of α-olefin, and has a weight average molecular weight of 5×10 5 or more;
Preferably, those having an ultra-high molecular weight of 1×10 6 or more, particularly 2×10 6 or more are preferred. Ordinary polyethylene having a molecular weight of less than 5×10 5 is not preferred because a molded product with high strength and high elasticity cannot be obtained. In addition, the styrene monomer used in the present invention is styrene, which is contained in a gel-like molded product formed from a solution of high molecular weight polyethylene and rapidly undergoes radical polymerization during the heating and stretching process. or its derivatives. Styrene derivatives include styrene, alkyl groups such as methyl, ethyl, isopropyl, and t-butyl, vinyl groups, cyclohexyl groups, amino groups, oxy groups, methoxy groups, cyan groups, and other fluorine, chlorine, bromine, and iodine groups. Examples include those substituted with halogen, and among these, ortho, meta or para substitutions are preferred. Among the above-mentioned styrenic monomers, ortho-, meta-, or para-methylstyrene is preferred, and para-methylstyrene or a mixture of ortho- or meta-methylstyrene mainly containing para-methylstyrene is particularly preferred from the viewpoint of reactivity and vapor pressure. Moreover, these styrene monomers can be used as a mixture of two or more types or a mixture of a styrene monomer and another polymerizable monomer. Examples of mixtures of styrenic monomers and other polymerizable monomers include paramethylstyrene and unsaturated carboxylic acids such as maleic acid, acrylic acid, and methacrylic acid or derivatives thereof, isocyanuric acid, vinylnaphthalene, and vinylpyridine. Or a mixture with vinyl caprolactam or the like. The solution of high molecular weight polyethylene using a styrenic monomer as a solvent in the present invention is prepared by heating and dissolving high molecular weight polyethylene in the above styrenic monomer. The dissolution temperature varies depending on the solvent used, but is generally 100 to 160°C, preferably 120°C.
~140℃ range. Also, the amount of high molecular weight polyethylene present in the solution is 1 to 15% by weight, preferably 4 to 8% by weight. In addition, in dissolving the above-mentioned high molecular weight polyethylene, some of the styrenic monomers undergo radical polymerization due to heating, so
It is preferable to add a polymerization inhibitor. Examples of polymerization inhibitors include t-butylcatechol,
Examples include diphenylpicrylhydrazyl and p-benzoquinone. These are added in an amount of 0.05 to 10.0% by weight, preferably 0.5 to 5.0% by weight. Next, a polyethylene gel-like molded article is molded from this high molecular weight polyethylene dissolved solution. This gelation method involves applying the high molecular weight polyethylene solution to an appropriately selected die, for example, a die having holes with a circular, oval, X-shaped, or Y-shaped cross section for forming fibers, or a die such as a film, a band, etc. For molding, there is a method of extruding using a hole having a rectangular cross section. The extruded gel-like molded product is
Below the gelling temperature in a water bath, air bath, etc., preferably 15
Cool at a rate of at least 50°C/min to a temperature of ~25°C. The resulting gel-like molded product contains styrenic monomers when dissolved in high-molecular-weight polyethylene, and in particular, those using a polymerization inhibitor undergo radical polymerization of styrenic monomers during heating and stretching of the gel-like molded product, which will be described later. In order to prevent this, it is preferable to remove the polymerization inhibitor contained in the gel-like molded product. This removal method can be easily accomplished by immersing the gel-like molded product in a water bath. In addition, in heating and stretching the gel-like molded product, in order to promote radical polymerization of the styrene monomer in the gel-like molded product, the gel-like molded product is treated with a reaction initiator, such as potassium persulfate or ammonium persulfate, at a concentration of 0.1. It is preferred to treat with an aqueous solution of ~1.0% by weight. Next, the gel-like molded product containing the styrene monomer is heated and stretched in one or more stages. The temperature at this time must be such that the styrene monomer contained in the gel-like molded product undergoes radical polymerization to form a polymer, and the gel-like molded product can be sufficiently oriented. Specifically, stretching is preferably carried out from the softening point of the gel-like molded product to the melting point, particularly just below the melting point, for example at a temperature of 80 to 140°C, preferably 100 to 140°C. If the stretching temperature exceeds the melting point, the gel-like molded product cannot be oriented sufficiently;
If the temperature is below the softening point, the styrenic monomer will not be sufficiently polymerized, and the stretching ratio required to obtain a molded article with high strength and high elasticity cannot be obtained, which is not preferable. The tensile strength and elastic modulus of a molded article are approximately proportional to the stretching ratio, so when increasing the strength, it is necessary to increase the stretching ratio, and the stretching ratio is at least 10, preferably 20 or more. The amount of the styrenic monomer added by polymerization to the stretched molded product is in the range of 0.5 to 25% by weight, preferably in the range of 1 to 5% by weight. The amount of polymer added is
If it is less than 0.5% by weight, the fiber splitting resistance, knot strength, tear strength, etc. of the stretched molded product will not be improved, while if it exceeds 25% by weight, the high elasticity and high strength of the molded product will be impaired, which is not preferable. The amount of polymer added above is the amount of polymerization inhibitor added to the styrenic monomer,
It can be adjusted by adjusting the amount of reaction initiator added to the gel-like molded product or the stretching conditions of the gel-like molded product. The process of the invention can be carried out in batch and continuous processes. Next, an example of an apparatus for continuous production using the method of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic side view showing an example of an apparatus for producing fibers according to the method of the present invention. High molecular weight polyethylene 1, styrenic monomer 2
and polymerization inhibitor 3 are supplied to a mixing tank 4 and made into a slurry by an agitator 5. This slurry is continuously sent through a tube 6 to a heating stirrer 7 and stirred by a stirring plate 8 to form a uniform solution. This solution is sent to a spinning die 10 by a gear pump 9 and subjected to solution spinning. The extruded solution 11 is immediately cooled and gelled in a cooling tank 12 to become a yarn 13. This yarn 13 is
In order to remove the polymerization inhibitor contained in the yarn, it is supplied to a water tank 15 by a roll 14, and further supplied to a water tank 17 containing a reaction initiator by a roll 16, and then led to a stretching process. The gel fibers 18 treated with the reaction initiator are rolled on rolls 19, 21, 23.
The gel fibers are supplied to cylindrical heating machines 20, 22, and 24 with different temperatures, and stretched in three stages while changing the temperature. At the same time, the gel fibers are wound up with rolls 25, and the styrene monomer contained in the gel fibers is polymerized and stretched. fiber 26
A styrene-based monomer is formed between the oriented crystals.
The drawn fiber 26 is dried in a heat setting tank 27, passed through a roll 28, and wound up on a winder 29. The present invention is constructed as described above, and the obtained stretched polyethylene product has excellent splitting resistance, knot strength, and tear strength, as well as high strength and high elasticity. Furthermore, since the method of the present invention does not use a plurality of solvents, the steps can be simplified compared to conventional methods, and the dissolution temperature is low, making it easy to operate and moreover economically advantageous. Also,
Since the stretched polyethylene product constitutes a styrenic monomer between oriented crystals, it is possible to further improve splitting resistance, knot strength and tear strength compared to the conventional method of coating fibers. Furthermore, the molded products obtained by the method of the present invention, such as polyethylene drawn fibers, are suitable for ropes and cables that are subjected to strong friction and twisting, and are resistant to buckling, so they are suitable for applications such as single yarns and nets. Furthermore, since it can be secondary-processed into tow, preplex, cloth, etc. using normal techniques, it expands the use of composite materials as reinforcing materials. Examples of the present invention are shown below. The test method is as follows. (1) Tensile modulus, strength; using an Instron type tensile testing machine, the chuck distance was 25 mm, and the tensile speed was 5.
It was determined from a fiber tensile test at mm/min and a temperature of 23°C. (2) Knot strength: The fibers were tied once and determined from the above tensile test. (3) Resistance to splitting: A fiber with one end fixed is wrapped once around two metal rods arranged in parallel at 5 cm intervals at orthogonal angles, and the other end is wrapped with a
The load was doubled and the metal rod was moved vertically and parallelly at a speed of 60 times/minute over a distance of 5 cm, and the number of times the fibers were cut was determined. (4) Content of polyparamethylstyrene (PPMS): Extracted the drawn fiber with chloroform and determined from the weight of the dissolved portion. In addition, PPMS was confirmed by infrared analysis. Example 1 Polyethylene with a weight average molecular weight of 2.4 million was added to paramethylstyrene to make a 4.0% by weight mixed solution,
Add to this a polymerization inhibitor (t-butylcatechol) 5.0
A chiller was prepared by adding % by weight and mixing at room temperature. This chiller was packed into an oil jacketed autoclave equipped with a stirrer, heated to 125°C, and stirred for 3 hours to obtain a solution. This solution was spun using a gear pump and a conical die with a diameter of 2 mm at a temperature of 125° C. and a spinning speed of 6 cm 3 /min. This spun fiber was placed 3 cm below the spinning die.
The mixture was rapidly cooled by passing it through a water bath at ℃ to obtain a gel-like fiber. This gel-like fiber was continuously wound onto a bobbin having a diameter of 35 mm at a speed of 1.2 m/min. This gel fiber containing paramethylstyrene is
Using a 2m long cylindrical heating tube with an oil jacket, the first stage was drawn at a stretching temperature of 105℃ and a feed rate of 2.0m/
minutes, winding speed 14.0m/min, second stage stretching temperature
125℃, feeding speed 2.0m/min, winding speed 6.0m/min and third stage stretching temperature 135℃, feeding speed 2.0
m/min, and the winding speed was 3.3 m/min, and the stretching ratio was
34.7 fibers were obtained. Table 1 shows the properties of this drawn fiber.
It was shown to. Examples 2 to 5 Stretched fibers were obtained in the same manner as in Example 1, except that the amount of polyparamethylstyrene (hereinafter referred to as PPMS) added to the fibers and the stretching ratio were changed. The properties of this drawn fiber are also listed in Table-1. Comparative Example 1 Polyethylene with a weight average molecular weight of 2.4 million was mixed with liquid paraffin [Crystal 322 manufactured by Etsuo Oil Co., Ltd.]
(trade name)] and 4.0% by weight.
Per 100 parts by weight of this mixture, 0.125 parts by weight of 2.6-di-t-butyl-P-cresol and 0.25 parts by weight of tetrakis[methylene-3-(3.5-di-t-butyl-4-hydroxyphenyl)-propionate]methane. A chiller was prepared by adding and mixing at room temperature. This chiller was packed into an oil jacketed autoclave equipped with a stirrer, heated to 200°C and stirred for 2 hours to obtain a solution. Add this solution to 200
The fibers were spun at a speed of 6 cm 3 /min using a conical die with a spinning diameter of 2 mm. The spun fibers were passed through a 15-20°C water bath placed 5 cm below the spinning die to be rapidly cooled to obtain gel-like fibers. 1.2m/1.2m of this gel fiber
It was continuously wound onto a 35 mm diameter bobbin at a speed of 1 minute. A bobbin of gel-like fibers was immersed in methylene chloride kept at room temperature, and liquid parine was extracted from the gel-like fibers. After two extractions of 8 hours each, the methylene chloride was evaporated to obtain dry gel-like fibers. The obtained dried gel-like fibers were drawn using a 2 m long cylindrical heating tube with an oil jacket, at a first stage stretching temperature of 125°C, feeding speed of 2.0 m/min, and winding speed of 12.5°C.
Stretching was carried out in the same manner as in Example 1, except that the second stage was a two-step stretching at a stretching temperature of 135° C., a feeding speed of 2.0 m/min, and a winding speed of 11.7 m/min, and the stretching ratio was 36.5. Obtained fiber. The properties of this drawn fiber are also listed in Table-1. Comparative Examples 2 to 6 Stretched fibers were obtained in the same manner as in Comparative Example 1, except that the stretching ratio of the dry gel fiber was changed. The properties of this drawn fiber are also listed in Table-1.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法により繊維を製造するた
めの装置の具体例を示す概念図である。
FIG. 1 is a conceptual diagram showing a specific example of an apparatus for producing fibers by the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 高分子量ポリエチレンをスチレン系単量体に
溶解して溶液を調製し、この溶液からゲル状成形
物を成形し、この成形物を加熱延伸することを特
徴とする高分子量ポリエチレン成形物の製造方
法。
1. A method for producing a high-molecular-weight polyethylene molded product, which comprises dissolving high-molecular-weight polyethylene in a styrene monomer to prepare a solution, molding a gel-like molded product from this solution, and heating and stretching this molded product. .
JP13192884A 1984-06-28 1984-06-28 Manufacture of high-molecular weight polyethylene molding Granted JPS6111222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13192884A JPS6111222A (en) 1984-06-28 1984-06-28 Manufacture of high-molecular weight polyethylene molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13192884A JPS6111222A (en) 1984-06-28 1984-06-28 Manufacture of high-molecular weight polyethylene molding

Publications (2)

Publication Number Publication Date
JPS6111222A JPS6111222A (en) 1986-01-18
JPH0218216B2 true JPH0218216B2 (en) 1990-04-24

Family

ID=15069481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13192884A Granted JPS6111222A (en) 1984-06-28 1984-06-28 Manufacture of high-molecular weight polyethylene molding

Country Status (1)

Country Link
JP (1) JPS6111222A (en)

Also Published As

Publication number Publication date
JPS6111222A (en) 1986-01-18

Similar Documents

Publication Publication Date Title
KR860000202B1 (en) Process for producing high tenacity,high modulus crystalling thermoplastic article and novel product fibers
US5032338A (en) Method to prepare high strength ultrahigh molecular weight polyolefin articles by dissolving particles and shaping the solution
WO1986004936A1 (en) Polyethylene multifilament yarn
JPH0116924B2 (en)
JP4801200B2 (en) Method for producing wholly aromatic polyamide filament and wholly aromatic polyamide filament produced by the method
KR910009691B1 (en) The preparation of ultra stretchable polymer material
JP2017507216A5 (en)
US2716586A (en) Wet spinning of acrylonitrile polymers
US3066006A (en) Method of processing a tow
JPH02133605A (en) Polyvinyl alcohol-based fiber, tire cord therefrom and production thereof
JP2612667B2 (en) Polyethylene fiber having high strength and high elastic modulus and method for producing the same
JPH0218216B2 (en)
US3828014A (en) High shrinkage threads,yarn and fibers from acrylonitrile polymers
JPH0437861B2 (en)
JPH064923B2 (en) Manufacturing method of high strength and high modulus polyacrylonitrile fiber
JPH02210013A (en) Dry and wet spinning process
JPH0310724B2 (en)
JPH0233314A (en) High-tenacity polyvinyl alcohol based fiber and production thereof
JPS6233817A (en) Production of acrylic fiber having high tenacity and modulus
US3037240A (en) Method and apparatus for manufactureing shaped articles from solutions of acrylonitrile polymers and copolymers
EP0212133B2 (en) Method to prepare high strength ultrahigh molecular weight polyolefin articles by dissolving particles and shaping the solution
JPS61215708A (en) Production of multifilament yarn
JPH038830A (en) Manufacture of drawing rope
JPS60239509A (en) Production of high-strength and high-modulus polyolefin based fiber
JPS6022010B2 (en) Method for preparing high molecular weight polyethylene molding dope