JPH0437738B2 - - Google Patents

Info

Publication number
JPH0437738B2
JPH0437738B2 JP59076677A JP7667784A JPH0437738B2 JP H0437738 B2 JPH0437738 B2 JP H0437738B2 JP 59076677 A JP59076677 A JP 59076677A JP 7667784 A JP7667784 A JP 7667784A JP H0437738 B2 JPH0437738 B2 JP H0437738B2
Authority
JP
Japan
Prior art keywords
resin
exchange resin
tower
regeneration
regeneration tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59076677A
Other languages
Japanese (ja)
Other versions
JPS60220150A (en
Inventor
Shinichi Usui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP59076677A priority Critical patent/JPS60220150A/en
Publication of JPS60220150A publication Critical patent/JPS60220150A/en
Publication of JPH0437738B2 publication Critical patent/JPH0437738B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、復水脱塩装置に代表される塔外再生
式の混床式イオン交換脱塩装置における、混合イ
オン交換樹脂の再生装置に関するものである。詳
しくは、再生後の混合イオン交換樹脂を再び脱塩
処理に使用したときに、処理水中にリークするナ
トリウムイオン、塩化物イオンおよび硫酸イオン
の濃度を極めて低く抑えるために、再生後のカチ
オン交換樹脂におけるナトリウムイオン形の交換
基、ならびに再生後のアニオン交換樹脂における
塩化物イオン形および硫酸水素イオン形の交換基
の存在率を低く抑えるための装置に関する。 〔従来技術〕 近年、火力発電所や原子力発電所で使用される
復水脱塩装置の処理水水質に対する要求はますま
す厳しくなつてきており、ナトリウムイオン、塩
化物イオン、硫酸イオンなどの不純物イオンの処
理水中へのリーク濃度を0.1μg/以下に抑える
ことがしばしば要求され、場合によつてはナトリ
ウムイオンの濃度を0.005μg/程度、塩化物イ
オンまたは硫酸イオンの濃度を0.01μg/程度
にすることを要求されることもある。これはボイ
ラや蒸気発生器における不純物イオンの濃縮のメ
カニズムや腐蝕のメカニズムが次第に明らかにな
つたことや、不純物イオンの分析精度が向上し極
めて低い濃度における分析が可能になつたことに
よると思われる。 従来より、復水脱塩装置としてはおもに混床式
イオン交換脱塩装置が用いられており、その大部
分が塔外再生方式(脱塩塔内では再生を行なわず
別に設けた再生塔にイオン交換樹脂を移送して再
生を行なう方式)を採用している。塔外再生の場
合、混合イオン交換樹脂の再生に際しては、まず
脱塩塔内の樹脂を再生塔に移送し、再生塔におい
て逆洗を行なつてカチオン交換樹脂とアニオン交
換樹脂を二層に分離し、上層のアニオン交換樹脂
を別の再生塔に移送し、続いてカチオン交換樹脂
に塩酸または硫酸を通液し、アニオン交換樹脂に
苛性ソーダを通液し、両樹脂の洗浄を行ない、洗
浄の終わつた両樹脂を樹脂貯槽に移送して空気で
混合し、混合した樹脂を脱塩塔に戻すという手順
を基本としている。 しかるに、処理水中にリークする不純物イオ
ン、特にナトリウムイオンのリークが問題になる
にしたがい、再生時に両樹脂を分離する際の分離
の不完全さに関心が寄せられるようになつた。す
なわち、アニオン交換樹脂層に混入したカチオン
交換樹脂はアニオン交換樹脂の再生剤である苛性
ソーダと接触してナトリウムイオン形となり、こ
のナトリウムイオン形のカチオン交換樹脂が脱塩
塔に戻されて通水工程に用いられたときに、水素
イオン、アンモニウムイオンなどのカチオンとイ
オン交換反応をおこし、次に式に示すようにナト
リウムイオンのリークを生ずるということがわか
つたからである。 R−Na+H+→R−H+Na+……(1) R−Na+NH4 +→R−NH4+Na+ ……(2) (Rは樹脂母体を意味する) この現象は、特にアンモニウムイオンの破過後
も通水を続ける運転方式(いわゆるアンモニア、
サイクル運転)のときに著しいが、アンモニウム
イオンの破過の前に通水を停止する運転方式(い
わゆるH−OHサイクル運転)においても生ず
る。しかしながら、H−OHサイクル運転におい
ては、生ずるナトリウムイオンのリークがアンモ
ニアサイクル運転の場合に比べて非常に小さいた
め、従来はほとんど問題にならなかつた。ところ
が、近年の厳しい水質要求のもとではこの微小リ
ークさえも問題とするようになつたのである。 一方、塩化物イオンや硫酸イオンなどのアニオ
ンのリークは、それらの検出手段が十分発達して
いなかつたこともあつて、従来は見過ごされてき
たわけであるが、近年、イオンクロマトグラフイ
ーなどの微量分析手段の発達によつてアニオンの
検出が可能になるにしたがい、予想以上の塩化物
イオンや硫酸イオンのリークがあることがわかつ
てきた。これらのリークは、再生のときにカチオ
ン交換樹脂層に混入したアニオン交換樹脂がカチ
オン交換樹脂の再生剤である塩酸または硫酸と接
触して塩化物イオン形または硫酸水素イオン形と
なり、この樹脂が脱塩塔に戻されて通水工程に用
いられたときに、次式にしたがつて塩化物イオン
や硫酸イオンのリークを生ずることによると考え
られている。 R−Cl+OH-→R−OH+Cl- ……(3) R=(HSO42→R=SO4+2H++SO4 2-
……(4) 本発明者が実験的検討を行なつたところ、H−
OHサイクル運転においてナトリウムイオンリー
クを0.005μg/程度にするためには、全カチオ
ン交換基に対するナトリウムイオン形交換基の存
在率を0.2〜0.3%にする必要があることがわかつ
た。また、塩化物イオンリークを0.01μg/程
度にするためには、全アニオン交換基に対する塩
化物イオン形交換基の存在率を3〜5%にする必
要があることがわかつた。 本発明者らは以前に、特公昭58−41913号公報
に示されるようなカチオン交換樹脂とアニオン交
換樹脂の分離を改善する方法を発明した。この方
法によれば、アニオン交換樹脂層に混入するカチ
オン交換樹脂の量は全カチオン交換樹脂の0.1%
以下になる。また、カチオン交換樹脂層に混入す
るアニオン交換樹脂の量は全アニオン交換樹脂の
0.5〜2%になる。アニオン交換樹脂の混入率が
比較的高いのは、カチオン交換樹脂再生塔内で両
樹脂を逆洗分離したのちに上層のアニオン交換樹
脂をアニオン交換樹脂再生塔に移送する際に、分
離界面付近のカチオン交換樹脂をアニオン交換樹
脂と共に移送したとしても、若干量のアニオン交
換樹脂が残留するのが避けられないからである。 さて、本発明者がモデルカラムを用い、塔外再
生の復水脱塩装置を想定して通水および再生をく
り返す実験(実験1)を行なつたところ、表1に
示す結果を得た。
[Industrial Application Field] The present invention relates to a mixed ion exchange resin regeneration device in an external regeneration type mixed bed ion exchange desalination device, typified by a condensate desalination device. Specifically, in order to keep the concentration of sodium ions, chloride ions, and sulfate ions that leak into the treated water to an extremely low level when the recycled mixed ion exchange resin is used again for desalination treatment, the recycled cation exchange resin The present invention relates to a device for suppressing the abundance of sodium ion type exchange groups in a regenerated anion exchange resin, as well as chloride ion type and hydrogen sulfate ion type exchange groups in an anion exchange resin after regeneration. [Prior art] In recent years, requirements for the quality of treated water from condensate desalination equipment used in thermal power plants and nuclear power plants have become increasingly strict, and impurity ions such as sodium ions, chloride ions, and sulfate ions have become increasingly strict. It is often required to suppress the concentration of leakage into the treated water to 0.1μg/or less, and in some cases, the concentration of sodium ions is reduced to about 0.005μg/and the concentration of chloride or sulfate ions to about 0.01μg/. Sometimes you are asked to do something. This is thought to be due to the fact that the mechanisms of impurity ion concentration and corrosion in boilers and steam generators have gradually become clearer, and the accuracy of impurity ion analysis has improved, making analysis at extremely low concentrations possible. . Traditionally, mixed-bed ion exchange desalination equipment has been mainly used as condensate desalination equipment, and most of them use an outside-column regeneration method (no regeneration is performed inside the desalination tower, but ion exchange is carried out in a separate regeneration tower). This method uses a method in which replacement resin is transported and regenerated. In the case of external regeneration, when regenerating the mixed ion exchange resin, the resin in the demineralization tower is first transferred to the regeneration tower, and backwashed in the regeneration tower to separate the cation exchange resin and anion exchange resin into two layers. Then, the upper layer of anion exchange resin is transferred to another regeneration tower, and then hydrochloric acid or sulfuric acid is passed through the cation exchange resin, caustic soda is passed through the anion exchange resin, and both resins are washed. The basic procedure is to transfer both resins to a resin storage tank, mix them with air, and return the mixed resin to the desalination tower. However, as the leakage of impurity ions, particularly sodium ions, leaking into the treated water has become a problem, attention has been paid to the incompleteness of separation when separating both resins during regeneration. That is, the cation exchange resin mixed in the anion exchange resin layer comes into contact with caustic soda, which is a regenerating agent for the anion exchange resin, and becomes a sodium ion form, and this sodium ion form of the cation exchange resin is returned to the demineralization tower and passed through the water flow process. This is because it was found that when used in a chemical reaction, an ion exchange reaction occurs with cations such as hydrogen ions and ammonium ions, resulting in the leakage of sodium ions as shown in the following equation. R−Na+H + →R−H+Na + …(1) R−Na+NH 4 + →R−NH 4 +Na + …(2) (R means resin matrix) This phenomenon occurs especially after the breakthrough of ammonium ions. An operation method that continues water flow (so-called ammonia,
Although this problem is noticeable during cycle operation), it also occurs when water flow is stopped before ammonium ions break through (so-called H-OH cycle operation). However, in the H-OH cycle operation, the leakage of sodium ions that occurs is much smaller than in the ammonia cycle operation, so this has not been a problem in the past. However, under recent strict water quality requirements, even this minute leak has become a problem. On the other hand, the leakage of anions such as chloride ions and sulfate ions has traditionally been overlooked, partly because the means for detecting them have not been sufficiently developed. As analytical methods have developed and it has become possible to detect anions, it has become clear that chloride and sulfate ions leak more than expected. These leaks occur when the anion exchange resin mixed into the cation exchange resin layer during regeneration comes into contact with hydrochloric acid or sulfuric acid, which is a regenerant for the cation exchange resin, and becomes chloride ion form or hydrogen sulfate ion form, and this resin is desorbed. This is thought to be due to leakage of chloride ions and sulfate ions according to the following equation when the salt is returned to the salt tower and used in the water passing process. R-Cl+OH - →R-OH+Cl - ...(3) R=(HSO 4 ) 2 →R=SO 4 +2H + +SO 4 2-
...(4) The inventor conducted an experimental study and found that H-
It has been found that in order to reduce the sodium ion leakage to approximately 0.005 μg/degree in OH cycle operation, the abundance ratio of sodium ion exchange groups to all cation exchange groups needs to be 0.2 to 0.3%. It has also been found that in order to reduce the chloride ion leakage to about 0.01 μg/level, the abundance ratio of chloride ion exchange groups to all anion exchange groups needs to be 3 to 5%. The present inventors previously invented a method for improving the separation of cation exchange resins and anion exchange resins as shown in Japanese Patent Publication No. 58-41913. According to this method, the amount of cation exchange resin mixed into the anion exchange resin layer is 0.1% of the total cation exchange resin.
It becomes below. In addition, the amount of anion exchange resin mixed into the cation exchange resin layer is based on the total anion exchange resin.
It will be 0.5-2%. The reason why the contamination rate of anion exchange resin is relatively high is that after backwashing and separating both resins in the cation exchange resin regeneration tower, when the upper layer of anion exchange resin is transferred to the anion exchange resin regeneration tower, This is because even if the cation exchange resin is transferred together with the anion exchange resin, it is inevitable that some amount of the anion exchange resin remains. Now, the inventor conducted an experiment (experiment 1) in which water flow and regeneration were repeated using a model column, assuming a condensate desalination device with external regeneration, and obtained the results shown in Table 1. .

【表】 表1で目につくのは、塩化物イオン形のアニオ
ン交換樹脂の存在率が異常に高く、それに伴つて
やや高目の塩化物イオンリークが生じていること
である。通水中の塩化物イオンの負荷はなく、再
生時にカチオン交換樹脂層に混入するアニオン交
換樹脂の割合が0.5〜2%であることを考慮する
と、この塩化物イオン形のアニオン交換樹脂は再
生のときに生成した0.5〜2%が再生をくり返す
ごとに蓄積していつたとしか考えられない。実
際、塩化物イオン形のアニオン交換樹脂の再生効
率の悪さはよく知られているところで、特に塩化
物イオン形の割合を低くするためには大過剰の苛
性ソーダを流す必要がある。 また、実験1と同じモデルカラムを用い、カチ
オン交換樹脂の再生剤として硫酸を用いて通水お
よび再生実験(実験2)を行なつたところ、表2
に示す結果を得た。
[Table] What is noticeable in Table 1 is that the abundance of chloride ion-type anion exchange resins is abnormally high, and a somewhat high chloride ion leak occurs accordingly. Considering that there is no load of chloride ions in flowing water and that the proportion of anion exchange resin mixed into the cation exchange resin layer during regeneration is 0.5 to 2%, this chloride ion type anion exchange resin is It can only be assumed that the 0.5 to 2% generated in the process accumulates each time it is regenerated. In fact, it is well known that the regeneration efficiency of chloride ion type anion exchange resins is poor, and in order to particularly reduce the proportion of chloride ion type anion exchange resins, it is necessary to flush a large excess of caustic soda. In addition, using the same model column as in Experiment 1, we conducted a water flow and regeneration experiment (Experiment 2) using sulfuric acid as a regenerant for the cation exchange resin.
The results shown are obtained.

【表】 表2で目につくのは、通水初期における硫酸イ
オンリークが異常に高いことである。表1の結果
と比較すれば、硫酸水素イオン形交換基による硫
酸イオンリークは塩化物イオン形交換基による塩
化物イオンリークに比べて桁はずれに大きいこと
がわかる。なお、硫酸水素イオン形交換基を硫酸
イオン形交換基と別々に分析することはできない
ため表2の結果には現れていないが、硫酸水素イ
オン形交換基は(4)式にしたがつて通水中にほとん
ど硫酸イオン形交換基に変わつてしまつていると
考えられる。 ところで、実験1に用いたアニオン交換樹脂に
硫酸を通液し、続いて苛性ソーダを通液して再生
したものを、実験1に用いたカチオン交換樹脂を
塩酸で再生したものと混合して、これに模擬復水
を通水したところ(実験3)、表3に示す結果を
得た。
[Table] What is noticeable in Table 2 is that the leakage of sulfate ions at the initial stage of water flow is abnormally high. Comparison with the results in Table 1 shows that the sulfate ion leak due to the hydrogen sulfate ion type exchange group is orders of magnitude larger than the chloride ion leak due to the chloride ion type exchange group. Note that hydrogen sulfate ion exchange groups cannot be analyzed separately from sulfate ion exchange groups, so they do not appear in the results in Table 2, but hydrogen sulfate ion exchange groups are commonly analyzed according to equation (4). It is thought that most of it has been converted into sulfate ion type exchange groups in water. By the way, the anion exchange resin used in Experiment 1 was regenerated by passing sulfuric acid through it, followed by passing caustic soda through it, and mixed with the cation exchange resin used in Experiment 1 regenerated with hydrochloric acid. When simulated condensate was passed through (Experiment 3), the results shown in Table 3 were obtained.

【表】【table】

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記問題点を解決するためになされた
ものであつて、再生後のカチオン交換樹脂におけ
るナトリウムイオン形の交換基、ならびに再生後
のアニオン交換樹脂における塩化物イオン形およ
び硫酸水素イオン形の交換基の存在率を低く抑
え、脱塩処理に使用したときに処理水中にリーク
するナトリウムイオン、塩化物イオンおよび硫酸
イオンの濃度を極めて低くすることにある。 〔問題点を解決するための手段〕 本発明は、塔外再生式の混床式イオン交換脱塩
装置に付属する混合イオン交換樹脂の再生装置で
あつて、カチオン交換樹脂再生塔1、アニオン交
換樹脂再生塔2、樹脂貯槽3、塩酸供給装置4、
硫酸供給装置5、苛性ソーダ供給装置6および付
属する配管、弁類によつて構成され;カチオン交
換樹脂再生塔1は、脱塩塔から脱塩工程終了後の
樹脂を移送する配管901を接続し、塔中間部お
よび塔底部にそれぞれ樹脂引抜き口11,12を
備え、塔頂部および塔底部にそれぞれ集配水機構
13,14を備え、さらに塔中間部の樹脂引抜き
口11より上方で頂部の集配水機構13より下方
に塩酸流入口15を備えるとともに該流入口15
と塩酸供給装置4とを配管103にて接続し;ア
ニオン交換樹脂再生塔2は、塔中間部および塔底
部にそれぞれ樹脂引抜き口21,22を備え、塔
頂部および塔底部にそれぞれ集配水機構23,2
4を備え、さらに塔中間部の樹脂引抜き口21よ
り上方で頂部の集配水機構23より下方に硫酸お
よび苛性ソーダ流入口25を備えるとともに該流
入口25と硫酸供給装置5および苛性ソーダ供給
装置6とを配管203にて接続し;樹脂貯槽3
は、底部に樹脂引抜き口32を備え、該樹脂引抜
き口32に槽内樹脂を脱塩塔に移送する配管30
1を接続し、さらに槽頂部および槽底部にそれぞ
れ集配水機構33,34を備え;カチオン交換樹
脂再生塔1の中間樹脂引抜き口11とアニオン交
換樹脂再生塔2の上部を樹脂移送配管101で接
続し、カチオン交換樹脂再生塔1の底部樹脂引抜
き口12と樹脂貯槽3の上部を樹脂移送配管10
2で接続し、アニオン交換樹脂再生塔2の中間樹
脂引抜き口21と樹脂貯槽3の上部を樹脂移送配
管201で接続し、アニオン交換樹脂再生塔2の
底部樹脂引抜き口22とカチオン交換樹脂再生塔
1の上部を樹脂移送配管202で接続したことを
特徴とするものである。 〔実施例〕 本発明の一実施例を図面を参照しながら説明す
れば、1はカチオン交換樹脂再生塔、2はアニオ
ン交換樹脂再生塔、3は樹脂貯槽で、4は塩酸供
給装置、5は硫酸供給装置、6は苛性ソーダ供給
装置である。 カチオン交換樹脂再生塔1は、その上部に図示
しない脱塩塔の脱塩工程終了後の樹脂を移送する
樹脂移送配管901を接続し、塔1の中間部およ
び底部にはそれぞれ樹脂引抜き口11と12を備
え、また頂部と底部にはそれぞれ集配水機構13
と14を備えている。さらに、カチオン交換樹脂
再生塔1の中間部樹脂引抜き口11より上方で頂
部集配水機構13より下方には塩酸流入口15を
備え、この塩酸流入口15は塩酸供給装置4から
塩酸を吸引するエゼクタ41に弁を有する配管1
03にて接続されている。 アニオン交換樹脂再生塔2は、その中間部およ
び底部にそれぞれ樹脂引抜き口21と22を備
え、また頂部と底部にはそれぞれ集配水機構23
と24を備えている。さらに、アニオン交換樹脂
再生塔2の中間部樹脂引抜き口21より上方で頂
部集配水機構23より下方には、硫酸および苛性
ソーダ流入口25を備え、この流入口25は硫酸
供給装置5から硫酸を吸引するエゼクタ51およ
び苛性ソーダ供給装置6から苛性ソーダを吸引す
るエゼクタ61に弁を有する配管203にて接続
されている。 前記樹脂貯槽3は、底部に樹脂引抜き口32を
備え、この底部樹脂引抜き口32に槽内樹脂を図
示しない脱塩塔に移送するための弁を有する樹脂
移送配管301を接続し、さらに槽頂部と底部に
それぞれ集配水機構33と34を備えている。 さらに、カチオン交換樹脂再生塔1の中間部樹
脂引抜き口11とアニオン交換樹脂再生塔2の上
部を弁を有する樹脂移送配管101で接続し、底
部樹脂引抜き口12と樹脂貯槽3の上部を弁を有
する樹脂移送配管102で接続する。また、アニ
オン交換樹脂再生塔2の中間部樹脂引抜き口21
と樹脂貯槽3の上部を弁を有する樹脂移送配管2
01で接続し、底部樹脂引抜き口22とカチオン
交換樹脂再生塔1の上部を弁を有する樹脂移送配
管202で接続する。 また、カチオン交換樹脂再生塔1、アニオン交
換樹脂再生塔2、樹脂貯槽3の上部をそれぞれ空
気配管902に弁を介して接続するとともに排気
弁16,26,36に連絡させ、各頂部集配水機
構13,23,33を給水配管903およびそれ
ぞれの排水管104,204,304に弁を介し
て接続し、各底部集配水機構14,24,34を
空気配管904,給水配管905、およびそれぞ
れのドレン管105,205,305に弁を介し
て接続する。 図中、CRはカチオン交換樹脂、ARはアニオ
ン交換樹脂を示す。 次にその作用を説明すれば、脱塩塔(図示せ
ず)にて通水終了後の混合イオン交換樹脂は、脱
塩塔から樹脂移送配管901を経てカチオン交換
樹脂再生塔1内に受入れられる。カチオン交換樹
脂再生塔1内には予め分離補助用混合イオン交換
樹脂(脱塩用樹脂と同じ銘柄の樹脂を用いる)が
入つており、脱塩工程終了後の樹脂と共に逆洗さ
れる。逆洗後、静置すれば二層に分離成層し、上
層にアニオン交換樹脂、下層にカチオン交換樹脂
がくる。このとき、二層の分離界面が中間部樹脂
引抜き口11より上方になるようにする。次に、
樹脂移送配管101により中間部樹脂引抜き口1
1より上方の樹脂をアニオン交換樹脂再生塔2に
移送する。この操作により、アニオン交換樹脂の
ほぼ全量と分離界面付近のカチオン交換樹脂がア
ニオン交換樹脂再生塔に移送される。移送終了
後、両再生塔内の樹脂を逆洗し、静置する。この
とき、アニオン交換樹脂再生塔の底部にはカチオ
ン交換樹脂CR層ができるが、二層の分離界面が
中間部樹脂引抜き口より十分下方になるようにす
る。図面は工程がそこまで進んだ状態を表わして
いる。 続いて、配管103を通して塩酸がカチオン交
換樹脂再生塔1内に流入する。同時に、配管20
3を通して硫酸がアニオン交換樹脂再生塔2内に
流入する。硫酸の通液が終了した後、配管203
を通して苛性ソーダ溶液がアニオン交換樹脂再生
塔2に流入する。塩酸、苛性ソーダの通液が終了
した後、両再生塔内は純水で洗浄される。 次に、樹脂移送配管102によりカチオン交換
樹脂再生塔1内の樹脂を樹脂貯槽3に移送する。
また、樹脂移送配管201によりアニオン交換樹
脂再生塔2内の中間部樹脂引抜き口21より上方
の樹脂を樹脂貯槽3に移送する。続いて、樹脂貯
槽3内の底部集配水機構34より空気を導入して
樹脂貯槽3内の再生済カチオン交換樹脂と再生済
アニオン交換樹脂を混合する。さらに、アニオン
交換樹脂再生塔2内の中間部樹脂引抜き口21よ
り下方の樹脂は樹脂移送配管202によりカチオ
ン交換樹脂再生塔1に移送し、次の再生のときに
分離補助用混合イオン交換樹脂として用いる。 以上で再生工程を終了し、次の再生まで待機状
態となる。次の再生のときには樹脂移送配管90
1より脱塩工程終了後の混合イオン交換樹脂をカ
チオン交換樹脂再生塔1内に受け入れ、樹脂移送
配管301により樹脂貯槽3内の再生済混合イオ
ン交換樹脂を図示しない脱塩塔に移送し、以下は
上記手順と同様に再生工程を実行する。 このように本発明の装置を用いれば、分離界面
付近の樹脂は分離補助用樹脂として扱い、次の脱
塩工程に用いないため、脱塩工程に使う樹脂だけ
を考えると、アニオン交換樹脂層に混入するカチ
オン交換樹脂の量を極めて少なくすることが可能
であり、またカチオン交換樹脂層に混入するアニ
オン交換樹脂の量もかなり少なくすることができ
る。そして、カチオン交換樹脂の再生には塩酸を
用いるため、硫酸水素イオン形交換基の生成を防
ぐことができ、またアニオン交換樹脂を硫酸と苛
性ソーダによる二段再生とするために、再生のた
びに生成する塩化物イオン形交換基が蓄積してい
くこともない。なお、アニオン交換樹脂層に硫酸
を通液することによつて生成する硫酸水素イオン
形交換基は、ひき続いて行なう苛性ソーダ通液に
よつてすべて水酸化物イオン形または硫酸イオン
形に変わり、硫酸イオンのリークを生ずることは
ない。 なお、図示例は本発明の一実施態様を示したも
ので、本発明がこの図示例によつて限定されるわ
けではない。たとえば、再生用薬品供給装置とし
て、図示例では計量槽とエゼクタを用いている
が、計量槽を用いず直接再生用薬品貯槽から定量
ポンプを用いて薬品を供給してもよい。 〔発明の効果〕 以上述べたように本発明によれば、再生後のカ
チオン交換樹脂におけるナトリウムイオン形の交
換基、再生後のアニオン交換樹脂における塩化物
イオン形や硫酸水素イオン形の交換基の存在率を
低く抑え、処理水中にリークするナトリウムイオ
ン、塩化物イオン、硫酸イオンの濃度を極めて低
くし、厳密なる水質要求に十分対応することがで
きるものである。
The present invention has been made in order to solve the above-mentioned problems. The objective is to suppress the abundance of exchange groups to a low level and to extremely reduce the concentration of sodium ions, chloride ions, and sulfate ions that leak into treated water when used for desalting treatment. [Means for Solving the Problems] The present invention is a mixed ion exchange resin regeneration device attached to an external regeneration type mixed bed ion exchange desalination device, which comprises a cation exchange resin regeneration tower 1, an anion exchange Resin regeneration tower 2, resin storage tank 3, hydrochloric acid supply device 4,
The cation exchange resin regeneration tower 1 is composed of a sulfuric acid supply device 5, a caustic soda supply device 6, and attached piping and valves; the cation exchange resin regeneration tower 1 is connected to a piping 901 for transferring the resin after the desalination process is completed from the demineralization tower, Resin extraction ports 11 and 12 are provided at the middle part of the tower and at the bottom of the tower, water collection and distribution mechanisms 13 and 14 are provided at the top and bottom of the tower, respectively, and a water collection and distribution mechanism at the top is provided above the resin extraction port 11 in the middle part of the tower. A hydrochloric acid inlet 15 is provided below 13, and the inlet 15
and the hydrochloric acid supply device 4 are connected by a pipe 103; the anion exchange resin regeneration tower 2 is equipped with resin extraction ports 21 and 22 at the middle part of the tower and at the bottom part of the tower, respectively, and has a water collection and distribution mechanism 23 at the top part and the bottom part of the tower, respectively. ,2
4, and is further provided with a sulfuric acid and caustic soda inlet 25 above the resin extraction port 21 in the middle part of the tower and below the water collection and distribution mechanism 23 at the top, and connects the inlet 25 with the sulfuric acid supply device 5 and the caustic soda supply device 6. Connected with piping 203; resin storage tank 3
is equipped with a resin extraction port 32 at the bottom, and a pipe 30 for transferring the resin in the tank to the desalination tower.
1 is connected, and water collection and distribution mechanisms 33 and 34 are provided at the top and bottom of the tank, respectively; the intermediate resin extraction port 11 of the cation exchange resin regeneration tower 1 and the upper part of the anion exchange resin regeneration tower 2 are connected by a resin transfer pipe 101. The bottom resin extraction port 12 of the cation exchange resin regeneration tower 1 and the top of the resin storage tank 3 are connected to the resin transfer pipe 10.
2, the intermediate resin withdrawal port 21 of the anion exchange resin regeneration tower 2 and the upper part of the resin storage tank 3 are connected by the resin transfer pipe 201, and the bottom resin withdrawal port 22 of the anion exchange resin regeneration tower 2 and the cation exchange resin regeneration tower 1 is characterized in that the upper part of the resin transfer pipe 202 is connected to the resin transfer pipe 202. [Embodiment] An embodiment of the present invention will be described with reference to the drawings. 1 is a cation exchange resin regeneration tower, 2 is an anion exchange resin regeneration tower, 3 is a resin storage tank, 4 is a hydrochloric acid supply device, and 5 is a A sulfuric acid supply device, 6 is a caustic soda supply device. The cation exchange resin regeneration tower 1 has a resin transfer pipe 901 connected to its upper part for transporting the resin after the desalination process of the demineralization tower (not shown) is completed, and a resin extraction port 11 is connected to the middle and bottom of the tower 1, respectively. 12, and a water collection and distribution mechanism 13 at the top and bottom, respectively.
and 14. Furthermore, a hydrochloric acid inlet 15 is provided above the intermediate resin withdrawal port 11 of the cation exchange resin regeneration tower 1 and below the top water collection and distribution mechanism 13, and this hydrochloric acid inlet 15 is connected to an ejector for sucking hydrochloric acid from the hydrochloric acid supply device 4. Piping 1 with valve at 41
It is connected at 03. The anion exchange resin regeneration tower 2 is equipped with resin extraction ports 21 and 22 at the middle and bottom, respectively, and a water collection and distribution mechanism 23 at the top and bottom, respectively.
and 24. Furthermore, a sulfuric acid and caustic soda inlet 25 is provided above the intermediate resin withdrawal port 21 of the anion exchange resin regeneration tower 2 and below the top water collection and distribution mechanism 23, and this inlet 25 sucks sulfuric acid from the sulfuric acid supply device 5. It is connected to an ejector 51 for sucking caustic soda from the caustic soda supply device 6 and an ejector 61 for sucking caustic soda from the caustic soda supply device 6 through a pipe 203 having a valve. The resin storage tank 3 is provided with a resin drawing port 32 at the bottom, a resin transfer pipe 301 having a valve for transferring the resin in the tank to a desalination tower (not shown) is connected to the bottom resin drawing port 32, and a resin transfer pipe 301 is connected to the resin drawing port 32 at the top of the tank. Water collection and distribution mechanisms 33 and 34 are provided at the bottom and the bottom, respectively. Further, the intermediate resin withdrawal port 11 of the cation exchange resin regeneration tower 1 and the upper part of the anion exchange resin regeneration tower 2 are connected by a resin transfer pipe 101 having a valve, and the bottom resin withdrawal port 12 and the upper part of the resin storage tank 3 are connected with a valve. The resin transfer pipe 102 is used for connection. In addition, the intermediate resin extraction port 21 of the anion exchange resin regeneration tower 2
and a resin transfer pipe 2 having a valve at the upper part of the resin storage tank 3.
01, and the bottom resin drawing port 22 and the upper part of the cation exchange resin regeneration tower 1 are connected by a resin transfer pipe 202 having a valve. In addition, the upper parts of the cation exchange resin regeneration tower 1, anion exchange resin regeneration tower 2, and resin storage tank 3 are connected to the air pipe 902 through valves, and are also connected to the exhaust valves 16, 26, and 36, and the top water collection and distribution mechanisms are connected to each other. 13, 23, 33 are connected to the water supply pipe 903 and the respective drain pipes 104, 204, 304 via valves, and each bottom water collection and distribution mechanism 14, 24, 34 is connected to the air pipe 904, the water supply pipe 905, and the respective drains. It is connected to pipes 105, 205, and 305 via valves. In the figure, CR indicates a cation exchange resin, and AR indicates an anion exchange resin. Next, to explain its operation, the mixed ion exchange resin after water passage in the demineralization tower (not shown) is received from the demineralization tower into the cation exchange resin regeneration tower 1 via the resin transfer pipe 901. . A mixed ion exchange resin for assisting separation (the same brand of resin as the desalting resin is used) is placed in advance in the cation exchange resin regeneration tower 1, and is backwashed together with the resin after the desalting process is completed. After backwashing, if left to stand still, it will separate into two layers, with the anion exchange resin in the upper layer and the cation exchange resin in the lower layer. At this time, the separation interface between the two layers is made to be above the intermediate resin extraction port 11. next,
Intermediate resin extraction port 1 via resin transfer piping 101
The resin above 1 is transferred to an anion exchange resin regeneration tower 2. By this operation, almost the entire amount of the anion exchange resin and the cation exchange resin near the separation interface are transferred to the anion exchange resin regeneration tower. After the transfer is completed, the resin in both regeneration towers is backwashed and left to stand still. At this time, a cation exchange resin CR layer is formed at the bottom of the anion exchange resin regeneration tower, but the separation interface between the two layers is made to be sufficiently below the intermediate resin extraction port. The drawing shows the progress of the process. Subsequently, hydrochloric acid flows into the cation exchange resin regeneration tower 1 through the pipe 103. At the same time, piping 20
3, sulfuric acid flows into the anion exchange resin regeneration tower 2. After passing the sulfuric acid, the pipe 203
The caustic soda solution flows into the anion exchange resin regeneration tower 2 through. After hydrochloric acid and caustic soda have been passed through, the insides of both regeneration towers are washed with pure water. Next, the resin in the cation exchange resin regeneration tower 1 is transferred to the resin storage tank 3 by the resin transfer pipe 102.
Further, the resin above the intermediate resin extraction port 21 in the anion exchange resin regeneration tower 2 is transferred to the resin storage tank 3 by the resin transfer piping 201 . Subsequently, air is introduced from the bottom water collection and distribution mechanism 34 in the resin storage tank 3 to mix the recycled cation exchange resin and the recycled anion exchange resin in the resin storage tank 3. Furthermore, the resin below the intermediate resin withdrawal port 21 in the anion exchange resin regeneration tower 2 is transferred to the cation exchange resin regeneration tower 1 through the resin transfer pipe 202, and used as a mixed ion exchange resin for separation aid during the next regeneration. use This completes the regeneration process and enters a standby state until the next regeneration. During the next regeneration, the resin transfer pipe 90
1, the mixed ion exchange resin after the completion of the desalination process is received into the cation exchange resin regeneration tower 1, and the regenerated mixed ion exchange resin in the resin storage tank 3 is transferred to the demineralization tower (not shown) through the resin transfer piping 301. performs the regeneration process in the same manner as the above procedure. If the device of the present invention is used in this way, the resin near the separation interface will be treated as a separation-aiding resin and will not be used in the next desalination process. The amount of cation exchange resin mixed in can be extremely reduced, and the amount of anion exchange resin mixed in the cation exchange resin layer can also be significantly reduced. Since hydrochloric acid is used to regenerate the cation exchange resin, it is possible to prevent the generation of hydrogen sulfate ion type exchange groups, and because the anion exchange resin is regenerated in two stages using sulfuric acid and caustic soda, it is possible to prevent generation of hydrogen sulfate ion exchange groups. There is no accumulation of chloride ion type exchange groups. Note that the hydrogen sulfate ion type exchange groups generated by passing sulfuric acid through the anion exchange resin layer are all converted into hydroxide ion form or sulfate ion form by the subsequent passage of caustic soda, and sulfuric acid No ion leakage occurs. Note that the illustrated example shows one embodiment of the present invention, and the present invention is not limited to this illustrated example. For example, although a measuring tank and an ejector are used as the regeneration chemical supply device in the illustrated example, the medicine may be directly supplied from the regeneration chemical storage tank using a metering pump without using a measuring tank. [Effects of the Invention] As described above, according to the present invention, the sodium ion type exchange group in the regenerated cation exchange resin and the chloride ion type or hydrogen sulfate ion type exchange group in the regenerated anion exchange resin can be reduced. It is possible to keep the abundance rate low, extremely low the concentration of sodium ions, chloride ions, and sulfate ions that leak into the treated water, and fully meet strict water quality requirements.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示す系統説明図であ
る。 1……カチオン交換樹脂再生塔、2……アニオ
ン交換樹脂再生塔、3……樹脂貯槽、4……塩酸
供給装置、5……硫酸供給装置、6……苛性ソー
ダ供給装置、11,21……中間部樹脂引抜き
口、12,22,32……底部樹脂引抜き口、1
3,23,33……頂部集配水機構、14,2
4,34……底部集配水機構、15……塩酸流入
口、25……硫酸および苛性ソーダ流入口、1
6,26,36……排気弁、41,51,61…
…エゼクタ、101,102,201,202,
301,901……樹脂移送配管、103,20
3……配管、104,204,304……排水
管、105,205,305……ドレン管、90
2,904……空気配管、903,905……給
水配管、CR……カチオン交換樹脂、AR……ア
ニオン交換樹脂。
The drawing is a system explanatory diagram showing an embodiment of the present invention. 1... Cation exchange resin regeneration tower, 2... Anion exchange resin regeneration tower, 3... Resin storage tank, 4... Hydrochloric acid supply device, 5... Sulfuric acid supply device, 6... Caustic soda supply device, 11, 21... Middle resin extraction port, 12, 22, 32...Bottom resin extraction port, 1
3, 23, 33... Top water collection and distribution mechanism, 14, 2
4, 34... Bottom water collection and distribution mechanism, 15... Hydrochloric acid inlet, 25... Sulfuric acid and caustic soda inlet, 1
6, 26, 36... Exhaust valve, 41, 51, 61...
...Ejector, 101, 102, 201, 202,
301,901...Resin transfer piping, 103,20
3...Piping, 104,204,304...Drain pipe, 105,205,305...Drain pipe, 90
2,904...Air piping, 903,905...Water supply piping, CR...Cation exchange resin, AR...Anion exchange resin.

Claims (1)

【特許請求の範囲】[Claims] 1 塔外再生式の混床式イオン交換脱塩装置に付
属する混合イオン交換樹脂の再生装置であつて、
カチオン交換樹脂再生塔1、アニオン交換樹脂再
生塔2、樹脂貯槽3、塩酸供給装置4、硫酸供給
装置5、苛性ソーダ供給装置6および付属する配
管、弁類によつて構成され;カチオン交換樹脂再
生塔1は、脱塩塔から脱塩工程終了後の樹脂を移
送する配管901を接続し、塔中間部および塔底
部にそれぞれ樹脂引抜き口11,12を備え、塔
頂部および塔底部にそれぞれ集配水機構13,1
4を備え、さらに塔中間部の樹脂引抜き口11よ
り上方で頂部の集配水機構13より下方に塩酸流
入口15を備えるとともに該入口15と塩酸供給
装置4とを配管103にて接続し;アニオン交換
樹脂再生塔2は、塔中間部および塔底部にそれぞ
れ樹脂引抜き口21,22を備え、塔頂部および
塔底部にそれぞれ集配水機構23,24を備え、
さらに塔中間部の樹脂引抜き口21より上方で頂
部の集配水機構23より下方に硫酸および苛性ソ
ーダ流入口25を備えるとともに該流入口25と
硫酸供給装置5および苛性ソーダ供給装置6とを
配管203にて接続し;樹脂貯槽3は、底部に樹
脂引抜き口32を備え、該樹脂引抜き口32に槽
内樹脂を脱塩塔に移送する配管301を接続し、
さらに槽頂部および槽底部にそれぞれ集配水機構
33,34を備え;カチオン交換樹脂再生塔1の
中間樹脂引抜き口11とアニオン交換樹脂再生塔
2の上部を樹脂移送配管101で接続し、カチオ
ン交換樹脂再生塔1の底部樹脂引抜き口12と樹
脂貯槽3の上部を樹脂移送配管102で接続し、
アニオン交換樹脂再生塔2の中間樹脂引抜き口2
1と樹脂貯槽3の上部を樹脂移送配管201で接
続し、アニオン交換樹脂再生塔2の底部樹脂引抜
き口22とカチオン交換樹脂再生塔1の上部を樹
脂移送配管202で接続したことを特徴とする混
合イオン交換樹脂の再生装置。
1. A mixed ion exchange resin regeneration device attached to an external regeneration type mixed bed ion exchange desalination device,
The cation exchange resin regeneration tower is composed of a cation exchange resin regeneration tower 1, an anion exchange resin regeneration tower 2, a resin storage tank 3, a hydrochloric acid supply device 4, a sulfuric acid supply device 5, a caustic soda supply device 6, and attached piping and valves; 1 is connected to a pipe 901 for transferring the resin after the desalination process is completed from the demineralization tower, is equipped with resin extraction ports 11 and 12 at the middle part of the tower and at the bottom part of the tower, respectively, and has a water collection and distribution mechanism at the top part and the bottom part of the tower, respectively. 13,1
4, and further provided with a hydrochloric acid inlet 15 above the resin extraction port 11 in the middle of the column and below the water collection and distribution mechanism 13 at the top, and connecting the inlet 15 and the hydrochloric acid supply device 4 with a pipe 103; The exchange resin regeneration tower 2 is equipped with resin withdrawal ports 21 and 22 at the middle part and the bottom part of the tower, respectively, and water collection and distribution mechanisms 23 and 24 at the top part and the bottom part of the tower, respectively.
Further, a sulfuric acid and caustic soda inlet 25 is provided above the resin extraction port 21 in the middle of the tower and below the water collection and distribution mechanism 23 at the top, and the inlet 25 is connected to the sulfuric acid supply device 5 and the caustic soda supply device 6 through piping 203. Connect; the resin storage tank 3 is equipped with a resin withdrawal port 32 at the bottom, and a pipe 301 for transferring the resin in the tank to the desalination tower is connected to the resin withdrawal port 32;
Furthermore, water collection and distribution mechanisms 33 and 34 are provided at the top and bottom of the tank, respectively; the intermediate resin extraction port 11 of the cation exchange resin regeneration tower 1 and the upper part of the anion exchange resin regeneration tower 2 are connected by a resin transfer pipe 101, and the cation exchange resin The bottom resin extraction port 12 of the regeneration tower 1 and the upper part of the resin storage tank 3 are connected by a resin transfer pipe 102,
Intermediate resin extraction port 2 of anion exchange resin regeneration tower 2
1 and the upper part of the resin storage tank 3 are connected by a resin transfer pipe 201, and the bottom resin extraction port 22 of the anion exchange resin regeneration tower 2 and the upper part of the cation exchange resin regeneration tower 1 are connected by a resin transfer pipe 202. Mixed ion exchange resin regeneration equipment.
JP59076677A 1984-04-18 1984-04-18 Apparatus for regenerating ion exchange resin mixture Granted JPS60220150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59076677A JPS60220150A (en) 1984-04-18 1984-04-18 Apparatus for regenerating ion exchange resin mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59076677A JPS60220150A (en) 1984-04-18 1984-04-18 Apparatus for regenerating ion exchange resin mixture

Publications (2)

Publication Number Publication Date
JPS60220150A JPS60220150A (en) 1985-11-02
JPH0437738B2 true JPH0437738B2 (en) 1992-06-22

Family

ID=13612058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59076677A Granted JPS60220150A (en) 1984-04-18 1984-04-18 Apparatus for regenerating ion exchange resin mixture

Country Status (1)

Country Link
JP (1) JPS60220150A (en)

Also Published As

Publication number Publication date
JPS60220150A (en) 1985-11-02

Similar Documents

Publication Publication Date Title
US3414508A (en) Condensate purification process
TWI628147B (en) Condensate demineralizer and condensate demineralization method
JPH0437738B2 (en)
US4472282A (en) Mixed bed polishing process
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
CN105883971A (en) Transformation method of power generating unit condensation water treatment system
JPH10192718A (en) Resin regenerator for condensate desalter
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
US3585127A (en) Method for treating water by ion exchange
JP2007105558A (en) Method and apparatus for demineralizing recovered water
US3692670A (en) Treatment of cation and anion exchange resins with sodium sulfite
JPH0439382B2 (en)
JP2597552Y2 (en) Pure water production equipment
JP3066204B2 (en) Operation method of ammonia type condensate desalination equipment
JPS5841913B2 (en) Condensate treatment method
JPS5966354A (en) Regeneration of ion-exchange resin
JPH10128128A (en) Method for separation and regeneration of ion exchange resin
JPH01258749A (en) Regenerating agent for cation exchange resin and regenerating process using said regenerating agent
JP3238619B2 (en) Regeneration method of desalination equipment
JPS6265785A (en) Treatment of condensate
SU1673207A1 (en) Method of recovering h-cationite filter of first water desalting stage
JP2005296748A (en) Condensate demineralizer and its regeneration method
JPH05317729A (en) Method for regenerating of ion-exchange resin and plant therefor
JPS5813229B2 (en) Condensate treatment method
JP2965806B2 (en) Regeneration method of condensate desalination equipment