JPH0437405B2 - - Google Patents

Info

Publication number
JPH0437405B2
JPH0437405B2 JP58125471A JP12547183A JPH0437405B2 JP H0437405 B2 JPH0437405 B2 JP H0437405B2 JP 58125471 A JP58125471 A JP 58125471A JP 12547183 A JP12547183 A JP 12547183A JP H0437405 B2 JPH0437405 B2 JP H0437405B2
Authority
JP
Japan
Prior art keywords
current
refractive index
current injection
optical waveguide
waveguide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58125471A
Other languages
Japanese (ja)
Other versions
JPS6017717A (en
Inventor
Shigeyuki Akiba
Katsuyuki Uko
Kazuo Sakai
Juichi Matsushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP58125471A priority Critical patent/JPS6017717A/en
Publication of JPS6017717A publication Critical patent/JPS6017717A/en
Publication of JPH0437405B2 publication Critical patent/JPH0437405B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/0151Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction modulating the refractive index
    • G02F1/0152Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction modulating the refractive index using free carrier effects, e.g. plasma effect

Description

【発明の詳細な説明】 (技術分野) 本発明は光変調素子に係り、特には消光比が充
分に取れる製作が容易な半導体光変調素子に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a light modulation device, and more particularly to a semiconductor light modulation device that can have a sufficient extinction ratio and is easy to manufacture.

(背景技術) 光フアイバ通信の発光源として半導体レーザが
実用化されつつある。半導体レーザの利点として
は、小型、高信頼度などの特徴とともに、直接変
調が可能であることがあげられる。すなわち、注
入電流を変調すればそれに応じた光出力が直接得
られる。ところが、この直接変調には1つの本質
的な欠点がある。すなわち、光を発生する領域の
電子、あるいは正孔といつたキヤリアが変動する
ため、プラズマ振動効果により屈折率も変動し、
ひいては、発振する光の波長が大きく変動する。
従つて、直接変調された半導体レーザのスペクト
ル幅は、変調信号の帯域に比べて異常に大きなも
のとなる。このように過剰なスペクトル幅は光フ
アイバ伝送において信号劣化の要因となり、性能
を著しく低下させる。従つて、このような不都合
を解消するには、半導体レーザの出力は一定でか
つスペクトル幅を非常に狭く保つて変調する必要
があり、そのためには別の光変調素子を用いて行
う必要がある。
(Background Art) Semiconductor lasers are being put into practical use as light sources for optical fiber communications. Advantages of semiconductor lasers include small size, high reliability, and direct modulation. That is, by modulating the injected current, a corresponding optical output can be directly obtained. However, this direct modulation has one essential drawback. In other words, since the carriers such as electrons or holes in the region where light is generated fluctuate, the refractive index also fluctuates due to the plasma oscillation effect.
As a result, the wavelength of the oscillated light fluctuates significantly.
Therefore, the spectral width of a directly modulated semiconductor laser is abnormally large compared to the band of the modulation signal. Such an excessive spectral width causes signal deterioration in optical fiber transmission, significantly reducing performance. Therefore, in order to eliminate these inconveniences, it is necessary to modulate the output of the semiconductor laser while keeping it constant and keeping the spectral width very narrow, and to do this, it is necessary to use a separate optical modulation element. .

従来の代表的な光変調素子としては、第1図の
方向性結合形、第2図のマツハツエンダー干渉計
形などがある。第1図と第2図はいずれも平面図
を示しており、1および2の光導波路をLiNbO3
等の結晶上に製作し、電極3,4を設け、変調信
号5で入力光を制御して出力光を得るものであ
る。これらの光変調器の改良形やその他の例もい
くつかあるが、ほとんどが電気光学効果すなわ
ち、制御電界によるLiNbO3結晶又は光導波路2
の屈折率の微小変化を利用して、伝搬する光の位
相あるいは2つの導波路間の光結合などを制御し
ている。しかし、電気光学効果による屈折率の変
化は非常に小さいため、このようなタイプの光変
調素子は素子長が数mmから数cmと長くなる欠点が
ある。また、第1図および第2図に見られるよう
に、2つの導波路1,2を用いるタイプでは、2
つの導波路がほぼ完全に同一であることが要求さ
れ、かつ導波路の断面と長さとの関係が厳しく制
限されるため、製作が非常に困難であつた。
Typical conventional optical modulation elements include the directional coupling type shown in FIG. 1 and the Matsuhatsu Ender interferometer type shown in FIG. 2. Figures 1 and 2 both show plan views, and the optical waveguides 1 and 2 are made of LiNbO 3
It is fabricated on a crystal such as, and provided with electrodes 3 and 4, and output light is obtained by controlling input light with a modulation signal 5. Although there are some modifications and other examples of these optical modulators, most are based on electro-optic effects, i.e. LiNbO 3 crystals or optical waveguides with controlled electric fields.
Microscopic changes in the refractive index of the waveguide are used to control the phase of propagating light or the optical coupling between two waveguides. However, since the change in refractive index due to the electro-optic effect is very small, this type of light modulation element has the disadvantage that the element length is long, ranging from several mm to several centimeters. In addition, as shown in FIGS. 1 and 2, in the type using two waveguides 1 and 2, two waveguides are used.
The two waveguides are required to be almost completely identical, and the relationship between the waveguide cross section and length is severely restricted, making fabrication extremely difficult.

(発明の課題) 本発明はこのような従来の光変調素子の欠点を
解決するために、変調率や消光比が充分に取れ、
製作上の制約も少なく小型化が可能な光変調素子
を提供することを目的とするものである。以下に
図面を用いて本発明を詳細に説明する。
(Problems to be solved by the invention) In order to solve the drawbacks of such conventional optical modulation elements, the present invention aims to solve the problems of conventional optical modulation elements by providing sufficient modulation rate and extinction ratio.
It is an object of the present invention to provide an optical modulation element that has fewer manufacturing restrictions and can be miniaturized. The present invention will be explained in detail below using the drawings.

(発明の構成および作用) 第3図aは本発明の一実施例を示すもので、半
導体光変調素子を正面から見た場合の断面図を示
している。
(Structure and operation of the invention) FIG. 3a shows an embodiment of the invention, and shows a cross-sectional view of a semiconductor optical modulation element viewed from the front.

以下の説明においては、IoP基板とほぼこれに
格子整合の取れたIo1-xGaxAsyP1-y(以後、x,y
を省略する)化合物半導体から成る光導波領域を
用いた例について説明する。
In the following explanation, I o1 - x G ax A sy P 1-y (hereinafter x, y
An example using an optical waveguide region made of a compound semiconductor (omitted) will be described.

入力光は破線で囲んだ領域、すなわち光導波領
域のZ軸方向(半導体の長手方向)に入射され
る。6はn形IoP基板、7はIoGaAsP光導波路
層、8はP形IoP、9はn形IoGaAsPキヤツプ
層、10及び11は電極、12は亜鉛拡散領域を
それぞれ示す。IoGaAsP光導波路層7は6及び
8のIoPに比べて屈折率が高いためにY軸(縦)
方向では導波機能、すなわち入力光を光導波路層
7に閉じ込める機能を有しているが、X軸(横)
方向では同図bの屈折率分布の実線で示すように
一定の屈折率であるため導波機能を有していな
い。従つて、入力光は徐々に周囲に放射され、Z
軸方向のもう一方の出力端においては出力光が極
めて小さくなる。
The input light is incident on the region surrounded by the broken line, that is, in the Z-axis direction (longitudinal direction of the semiconductor) of the optical waveguide region. 6 is an n-type IoP substrate, 7 is an IoGaAsP optical waveguide layer, 8 is a P-type IoP , 9 is an n - type IoGaAsP cap layer, 10 and 11 are electrodes, 12 each indicate a zinc diffusion region. Since the I o G a A s P optical waveguide layer 7 has a higher refractive index than the I o P layers 6 and 8, the Y axis (vertical)
In the direction, it has a waveguide function, that is, a function to confine input light in the optical waveguide layer 7, but in the X-axis (horizontal)
In this direction, the refractive index is constant as shown by the solid line of the refractive index distribution in Figure b, so it does not have a waveguide function. Therefore, the input light is gradually radiated to the surroundings and Z
At the other output end in the axial direction, the output light becomes extremely small.

しかし、ここで破線の矢印13のような変調電
流を流すと、キヤリアがIoGaAsP光導波路層7
に閉じ込められてプラズマ振動効果により電流が
注入された部分の屈折率が下がり、屈折率分布が
破線のように中央部が高く周辺に低い導波機能を
持つたものとなる。従つて、入力光は減衰をほと
んど受けることなく出力端まで導波することがで
きる。
However, if a modulated current as shown by the broken line arrow 13 is applied here, the carrier will flow through the I o G a A s P optical waveguide layer 7.
The refractive index of the part where the current is injected decreases due to the plasma oscillation effect, and the refractive index distribution becomes high in the center and low in the periphery, as shown by the broken line. Therefore, input light can be guided to the output end with almost no attenuation.

このように本実施例は一定値の電力を有する入
力光に対し、亜鉛拡散領域12を流れる変調電流
の有無あるいは大小でIoGaAsP光導波路層7の
X軸方向の屈折率が変わることを利用し、半導体
の導波機能を変化させることによつて、出力端に
おける出力光の大きさを変化させることを特徴と
する光変調素子である。
In this way, in this embodiment, the refractive index in the X-axis direction of the I o G a A s P optical waveguide layer 7 changes depending on the presence or absence or magnitude of the modulation current flowing through the zinc diffusion region 12 for input light having a constant value of power. This is an optical modulation element characterized in that it changes the magnitude of output light at an output end by changing the waveguide function of a semiconductor.

第4図aは第3図aにおいて電流注入を行わな
い場合の入力光の放射効果をさらに上げることに
よつて変調率や消光比の改善を行つた本発明の実
施例である。すなわち、第3図aの電極を10,
10′,10″の3つに分割し、電極10と10′
とを共通にする。まず、電極10″に電流I1を流
し、他の電極10,10′には電流I2を流さない
場合を考えると、第3図で説明したように電流が
流れた光導波路層7部分はキヤリアのプラズマ振
動効果により屈折率分布が第4図bの実線のよう
に小さくなり、入力光は非常に短かい距離で周囲
に放射されてしまう。すなわち、入力光はZ軸方
向の出力端にはほとんど出力光が現われなくな
る。逆にI1=0とし、I2の電流を流した場合は、
第4図bの破線のように屈折率分布は中央部が高
くなり、入力光に対して導波機能を有し、ほとん
ど減衰を受けることなく出力端に出力光として取
り出すことができる。
FIG. 4a shows an embodiment of the present invention in which the modulation factor and extinction ratio are improved by further increasing the radiation effect of input light when no current is injected in FIG. 3a. That is, the electrodes in FIG. 3a are 10,
Divided into three parts, 10' and 10'', electrodes 10 and 10'
to have in common. First, considering the case where a current I 1 is passed through the electrode 10'' and a current I 2 is not passed through the other electrodes 10 and 10', the portion of the optical waveguide layer 7 where the current flows as explained in FIG. Due to the plasma oscillation effect of the carrier, the refractive index distribution becomes small as shown by the solid line in Figure 4b, and the input light is radiated to the surroundings over a very short distance.In other words, the input light is radiated to the output end in the Z-axis direction. Almost no output light appears. Conversely, if I 1 = 0 and a current of I 2 flows,
As shown by the broken line in FIG. 4B, the refractive index distribution is high at the center, has a waveguide function for input light, and can be taken out as output light at the output end with almost no attenuation.

このように3つに分割された電極に流す電流の
有無によつて導波機能を変化させ出力端に現われ
る出力光をまつたく無くしたり、または入力光と
ほぼ同じ大きさの出力光も取り出すことが可能と
なる。
By changing the waveguide function depending on the presence or absence of current flowing through the three divided electrodes, it is possible to completely eliminate the output light appearing at the output end, or to extract output light that is approximately the same size as the input light. becomes possible.

第5図aは第4図aと同等の効果を得るため
に、IoGaAsP導波路層7の中央部の厚さを僅か
に薄くしたものである。すなわち、変調電流13
が無いかあるいは小さい状態では、第5図bの実
線のように屈折率分布が中央部で小さくなり、導
波機能を有さないので入力光は放射され出力端に
は現われない。また、逆に変調電流13がある大
きさ以上になると、破線のように屈折率分布が中
央部より周辺部が小さくなり、導波機能を有し、
入力光は出力端に出力光として取り出すことがで
きる。
In FIG. 5a, the thickness of the central portion of the I o G a A s P waveguide layer 7 is slightly thinner in order to obtain the same effect as in FIG. 4 a. That is, the modulation current 13
In a state where there is no or a small value, the refractive index distribution becomes small at the center as shown by the solid line in FIG. Conversely, when the modulation current 13 exceeds a certain level, the refractive index distribution becomes smaller at the periphery than at the center, as shown by the broken line, and it has a waveguide function.
Input light can be taken out as output light at the output end.

以上の説明からも明らかなように、本発明の基
本的な特徴は変調電流の有無あるいは大小によつ
て、光が導波されるか否かという光の導波機能を
変化させて変調を行う点であり、従来のような電
気光学効果を用いることなく、また2つの導波路
も用いることなく変調できる光変調素子を提供す
るものである。
As is clear from the above explanation, the basic feature of the present invention is that modulation is performed by changing the waveguide function of light, that is, whether light is guided or not, depending on the presence or absence or magnitude of a modulation current. The present invention provides an optical modulation element that can perform modulation without using conventional electro-optic effects or without using two waveguides.

また、以上の説明は光導波領域あるいはその近
傍に変調電流を注入して光の導波機能を変化させ
て変調を行う実施例について説明したが、変調電
流の代わりに変調光を用いても同様の効果が得ら
れる。
In addition, although the above explanation has been about an example in which modulation is performed by injecting a modulation current into the optical waveguide region or its vicinity to change the optical waveguide function, the same effect can be obtained by using modulated light instead of the modulation current. The effect of this can be obtained.

第6図は多層量子井戸構造を用いることによつ
て、非線形効果を著しく増大させ得る本発明の実
施例である。本図で、15はIoPとIoGaAsPとの
非常に薄い層から成る多層量子井戸層、16はn
形IoP、17はIoGaAsPから成る発光層である。
そこで、電流13を注入するとIoGaAsP層17
が発光し、その光14が多層量子井戸層15に照
射されるために多層量子井戸層15は大きな屈折
率変化を生じる。ここで、多層量子井戸層15の
物質によつて定まる非線形効果を表わす定数が正
の符号にすれば、電流注入によつて多層量子井戸
層15に導波機能が生じ、同じく変調が可能とな
る。
FIG. 6 shows an embodiment of the present invention in which the nonlinear effect can be significantly increased by using a multilayer quantum well structure. In this figure, 15 is a multilayer quantum well layer consisting of very thin layers of I o P and I o G a A s P, and 16 is a n
The type I o P, 17 is a luminescent layer consisting of I o G a A s P.
Therefore, when current 13 is injected, I o G a A s P layer 17
emits light and the multilayer quantum well layer 15 is irradiated with the light 14, causing a large change in the refractive index of the multilayer quantum well layer 15. Here, if the constant representing the nonlinear effect determined by the material of the multilayer quantum well layer 15 is set to a positive sign, a waveguide function is generated in the multilayer quantum well layer 15 by current injection, and modulation is also possible. .

このように本実施例は変調用光を用いても導波
機能を変化させ、出力端に現われる出力光も変え
る変調が可能である。
In this way, in this embodiment, even if modulation light is used, the waveguide function can be changed, and the output light appearing at the output end can also be modulated.

また、今までIoP基板とほぼ格子整合のとれた
Io(1-x)GaxAsyP1-yから成る光導波領域の例を用い
て説明してきたが、IoP基板とほぼ格子整合のと
れたIo(1-x-y)AxGayAsまたはGaAs基板とほぼ格子
整合のとれたAl1-xGaxAs化合物半導体でも全く
同様の光変調素子ができることは言うまでもな
い。
In addition, until now there has been almost lattice matching with the I o P substrate.
The explanation has been given using the example of an optical waveguide region consisting of I o (1-x) G ax A sy P 1-y , but I o (1- xy ) A It goes without saying that a completely similar optical modulation element can be produced using an Al 1-x G ax A s compound semiconductor that is substantially lattice-matched to the G ay As or Ga As substrate.

(発明の効果) 以上説明したように、本発明は電流注入や変調
用光を用いて導波機能を変化させることによつ
て、変調を行う半導体光変調素子を提供するもの
であり、過剰なスペクトル幅を含まない変調出力
を得られることはもちろんのこと、従来のものに
比べて変調率や消光比も充分大きく取れ、かつ素
子長も大幅に短かく、製作が容易な光変調素子で
ある。
(Effects of the Invention) As explained above, the present invention provides a semiconductor optical modulation element that performs modulation by changing the waveguide function using current injection or modulation light, and it This light modulation element not only provides a modulated output that does not include the spectral width, but also has a sufficiently large modulation rate and extinction ratio compared to conventional ones, and the element length is significantly shorter, making it easier to manufacture. .

従つて、半導体レーザと本発明の半導体光変調
素子とのモノリシツク集積化も容易になり、かつ
変調素子として重要な要素である消光比も充分大
きく取れることから、高性能光フアイバ通信等へ
の応用ができ、その効果は極めて大きいものであ
る。
Therefore, monolithic integration of a semiconductor laser and the semiconductor optical modulator of the present invention becomes easy, and the extinction ratio, which is an important element for a modulator, can be maintained sufficiently large, making it suitable for application to high-performance optical fiber communications, etc. can be done, and the effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の方向性結合形光変調器、第2図
は従来のマツハツエンダー干渉計形光変調器、第
3図a及びbは本発明の基本的な動作を説明する
ための、電流注入により光導波機能を変化させて
変調する半導体光変調素子の実施例を示す図、第
4図a及びb及び第5図a及びbは第3図の変調
率や消光比を改善した半導体光変調素子の本発明
の実施例を示す図、第6図は本発明の光照射によ
り導波機能を変化させて変調する他の実施例を示
す図である。 1,2……光導波路、3,4……電極、5……
変調信号、6……n形IoP基板、7……IoGaAs
光導波路層、8……P形IoP層、9……n形IoGa
AsPキヤツプ層、10,10′,10″,11…
…電極、12……亜鉛拡散領域、13……変調電
流、14……変調用光、15……多層量子井戸構
造、16……n形IoP層、17……IoGaAsP層。
FIG. 1 shows a conventional directional coupling type optical modulator, FIG. 2 shows a conventional Matsuhatsu Ender interferometer type optical modulator, and FIGS. 3 a and 3 b illustrate the basic operation of the present invention. Diagrams showing examples of semiconductor optical modulators that change and modulate optical waveguide functions by current injection. Figures 4a and b and Figures 5a and b are semiconductors with improved modulation factor and extinction ratio as in Figure 3. FIG. 6 is a diagram showing an embodiment of the optical modulation element of the present invention. FIG. 6 is a diagram showing another embodiment of the present invention in which the waveguide function is changed and modulated by light irradiation. 1, 2... Optical waveguide, 3, 4... Electrode, 5...
Modulation signal, 6...n-type I o P board, 7... I o G a A s P
Optical waveguide layer, 8...P type I o P layer, 9...n type I o G a
A s P cap layer, 10, 10', 10'', 11...
... Electrode, 12 ... Zinc diffusion region, 13 ... Modulation current, 14 ... Modulation light, 15 ... Multilayer quantum well structure, 16 ... N-type I o P layer, 17 ... I o G a A s P layer.

Claims (1)

【特許請求の範囲】 1 半導体基板上に該基板の屈折率よりも大なる
屈折率を有する光導波路層と電極とを備え、該光
導波路層の導波機能を変化させて入射光を変調す
る半導体光変調素子において、 前記光導波路層に直接キヤリアを注入する電流
注入手段と、 該電流注入手段を介して予め定められた幅に電
流が注入され、PN接合により構成される2つの
電流注入領域とを有し、 さらに、前記導波領域は前記光導波路層の層厚
を一部薄くして構成するとともに、前記導波領域
を挟むように2つの前記電流注入領域を配置し、
前記電流注入手段から該2つの電流注入領域に電
流を注入したときに、電流が注入された部分の光
導波路層がプラズマ振動効果により屈折率が低下
して、前記導波領域の屈折率が相対的に高くなる
ように導波機能を形成し、逆に前記2つの電流注
入領域に電流を注入しないときに前記導波領域の
屈折率が前記2つの電流注入領域に相当する前記
光導波路層の領域の屈折率よりも相対的に低くし
て前記入射光を放射させるように構成したことを
特徴とする半導体光変調素子。 2 半導体基板上に該基板の屈折率よりも大なる
屈折率を有する光導波路層と電極とを備え、該光
導波路層の導波機能を変化させて入射光を変調す
る半導体光変調素子において、 前記光導波路層に直接キヤリアを注入する電流
注入手段と、 該電流注入手段を介して予め定められた幅に電
流が注入され、PN接合により構成され、近接し
た3つの電流注入領域とを有し、 両側の前記電流注入領域に電流を注入すること
により電流が注入された部分の前記光導波路層の
屈折率を前記導波領域の屈折率よりも低下させ
て、前記両側の前記電流注入領域に挟まれた部分
に相当する前記導波領域に前記導波機能を形成
し、逆に中央の前記電流注入領域のみに電流を注
入して前記導波領域の屈折率を両側の前記電流注
入領域に相当する前期光導波路層の屈折率よりも
低下させるように構成したことを特徴とする半導
体光変調素子。
[Claims] 1. An optical waveguide layer having a refractive index larger than that of the substrate and an electrode are provided on a semiconductor substrate, and the waveguide function of the optical waveguide layer is changed to modulate incident light. In a semiconductor optical modulation device, a current injection means for directly injecting a carrier into the optical waveguide layer, and two current injection regions configured by a PN junction, into which a current is injected to a predetermined width through the current injection means. Further, the waveguide region is configured by partially reducing the layer thickness of the optical waveguide layer, and the two current injection regions are arranged so as to sandwich the waveguide region,
When a current is injected from the current injection means into the two current injection regions, the refractive index of the optical waveguide layer in the portion where the current is injected is reduced due to the plasma vibration effect, and the refractive index of the waveguide regions is relatively different. of the optical waveguide layer such that the refractive index of the waveguide region corresponds to that of the two current injection regions when no current is injected into the two current injection regions. 1. A semiconductor light modulator, characterized in that the semiconductor light modulator is configured to emit the incident light with a refractive index relatively lower than that of the region. 2. A semiconductor optical modulation element comprising an optical waveguide layer having a refractive index larger than that of the substrate and an electrode on a semiconductor substrate, and modulating incident light by changing the waveguide function of the optical waveguide layer, A current injection means for directly injecting a carrier into the optical waveguide layer; and three adjacent current injection regions configured by a PN junction, in which a current is injected to a predetermined width through the current injection means. , by injecting current into the current injection regions on both sides, the refractive index of the optical waveguide layer in the portion where the current is injected is lowered than the refractive index of the waveguide region, and the current injection regions on both sides are The waveguide function is formed in the waveguide region corresponding to the sandwiched portion, and conversely, a current is injected only into the central current injection region to change the refractive index of the waveguide region to the current injection regions on both sides. 1. A semiconductor optical modulation device, characterized in that it is configured to have a refractive index lower than that of a corresponding optical waveguide layer.
JP58125471A 1983-07-12 1983-07-12 Semiconductor optical modulating element Granted JPS6017717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58125471A JPS6017717A (en) 1983-07-12 1983-07-12 Semiconductor optical modulating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58125471A JPS6017717A (en) 1983-07-12 1983-07-12 Semiconductor optical modulating element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23726089A Division JPH0320723A (en) 1989-09-14 1989-09-14 Semiconductor optical modulation element

Publications (2)

Publication Number Publication Date
JPS6017717A JPS6017717A (en) 1985-01-29
JPH0437405B2 true JPH0437405B2 (en) 1992-06-19

Family

ID=14910905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58125471A Granted JPS6017717A (en) 1983-07-12 1983-07-12 Semiconductor optical modulating element

Country Status (1)

Country Link
JP (1) JPS6017717A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212823A (en) * 1985-03-18 1986-09-20 Nec Corp Optical modulator
JPH0646272B2 (en) * 1985-05-27 1994-06-15 日本電気株式会社 Waveguide type optical gate switch
JPS63177109A (en) * 1987-01-19 1988-07-21 Hitachi Ltd Optical element
JP2521341Y2 (en) * 1988-02-24 1996-12-25 シャープ株式会社 Thermal transfer printer device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342748A (en) * 1976-09-29 1978-04-18 Mitsubishi Electric Corp Photo semiconductor device
JPS5497054A (en) * 1978-01-14 1979-07-31 Nippon Telegr & Teleph Corp <Ntt> Transmission controlling system for optical signals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342748A (en) * 1976-09-29 1978-04-18 Mitsubishi Electric Corp Photo semiconductor device
JPS5497054A (en) * 1978-01-14 1979-07-31 Nippon Telegr & Teleph Corp <Ntt> Transmission controlling system for optical signals

Also Published As

Publication number Publication date
JPS6017717A (en) 1985-01-29

Similar Documents

Publication Publication Date Title
US4813757A (en) Optical switch including bypass waveguide
US4803692A (en) Semiconductor laser devices
US5339370A (en) Optical modulator and optical communication system utilizing the same
JPS5844785A (en) Semiconductor laser
JP3839710B2 (en) Semiconductor optical modulator, Mach-Zehnder optical modulator, and optical modulator integrated semiconductor laser
US4811352A (en) Semiconductor integrated light emitting device
KR20220058907A (en) Monolithically Integrated InP Electro-Optical Tunable Ring Laser, Laser Device, and Corresponding Method
US7409113B2 (en) Semiconductor electro-absorption optical modulator, semiconductor electro-absorption optical modulator integrated laser, optical transmitter module and optical module
US5757985A (en) Semiconductor mach-zehnder-type optical modulator
US8498501B2 (en) Semiconductor optical modulator and semiconductor mach-zehnder optical modulator
JPS61168980A (en) Semiconductor light-emitting element
JPH0437405B2 (en)
JPH07231132A (en) Semiconductor optical device
JPH0553246B2 (en)
CA2267018C (en) Optical wavelength converter with active waveguide
JPH0563179A (en) Optical integrated circuit and manufacture thereof
JPS60260017A (en) Optical modulation element
JPH0572561B2 (en)
EP4033618A1 (en) Mach zehnder-modulated lasers
JPS61107781A (en) Single axial-mode semiconductor laser device
KR100526545B1 (en) Distributed feedback laser
JPS6237833B2 (en)
JPS62176184A (en) Semiconductor light emitting device having modulator
JP2841860B2 (en) Optical semiconductor device
JPS63122188A (en) Photo-semiconductor device