JPS6017717A - Semiconductor optical modulating element - Google Patents

Semiconductor optical modulating element

Info

Publication number
JPS6017717A
JPS6017717A JP58125471A JP12547183A JPS6017717A JP S6017717 A JPS6017717 A JP S6017717A JP 58125471 A JP58125471 A JP 58125471A JP 12547183 A JP12547183 A JP 12547183A JP S6017717 A JPS6017717 A JP S6017717A
Authority
JP
Japan
Prior art keywords
light
modulating
refractive index
modulation
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58125471A
Other languages
Japanese (ja)
Other versions
JPH0437405B2 (en
Inventor
Shigeyuki Akiba
重幸 秋葉
Katsuyuki Uko
宇高 勝之
Kazuo Sakai
堺 和夫
Yuichi Matsushima
松島 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP58125471A priority Critical patent/JPS6017717A/en
Publication of JPS6017717A publication Critical patent/JPS6017717A/en
Publication of JPH0437405B2 publication Critical patent/JPH0437405B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/0151Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction modulating the refractive index
    • G02F1/0152Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction modulating the refractive index using free carrier effects, e.g. plasma effect

Abstract

PURPOSE:To obtain a modulating output containing no excessive spectrum width, and also to form an optical modulating element which takes largely a percentage modulation and an extinction ratio, also is remarkably short in element length, and manufactured easily, by varying a waveguide function by using a current injection and modulating light. CONSTITUTION:When a modulating current as an arrow 13 of a broken line is made to flow, a carrier is closed up in an InGaAsP optical waveguide layer 7, a refractive index of a part to which the current has been injected by a plasma vibration effect drops, and a refractive index distribution becomes that which has a waveguide function whose center part is high and whose circumference is low as a broken line. Accordingly, input light is scarcely attenuated, and can be wave-guided to the output end. In this way, a waveguide function of a semiconductor is varied by utilizing a fact that a refractive index in the X axis direction of the InGaAsP optical waveguide layer 7 is varied depending on whether a modulating current flowing in a zinc diffusion area 12 exists or not, or it is large or small, with respect to input light having an electric power of a prescribed value. In this way, the magnitude of output light in the output end is varied.

Description

【発明の詳細な説明】 (技術分野) 本発明は光変調素子に係シ、特には消光比が充分に取れ
る製作が容易な半導体光変調素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a light modulation device, and more particularly to a semiconductor light modulation device that can have a sufficient extinction ratio and is easy to manufacture.

(背景技術) 光フアイバ通信の発光源として半導体レーザが実用化さ
れつつある。半導体レーザの利点としては、小型、高信
頼度などの特徴とともに、直接変調が可能であることが
あげられる。すなわち、注入電流を変調すればそれに応
じた光出力が直接得られる。ところが、この直接変調に
は1つの本質的な欠点がある。すなわち、光を発生する
領域の電子、あるいは正孔といったキャリアが変動する
ため、プラズマ振動効果によシ屈折率も変動し、ひいて
は、発振する光の波長が大きく変動する。
(Background Art) Semiconductor lasers are being put into practical use as light sources for optical fiber communications. Advantages of semiconductor lasers include small size, high reliability, and direct modulation. That is, by modulating the injected current, a corresponding optical output can be directly obtained. However, this direct modulation has one essential drawback. That is, since carriers such as electrons or holes in the region where light is generated fluctuate, the refractive index also fluctuates due to the plasma oscillation effect, and as a result, the wavelength of the emitted light fluctuates greatly.

従って、直接変調された半導体レーザのスペクトル幅は
1、変調信号の帯域に比べて異常に大きなものとなる。
Therefore, the spectral width of a directly modulated semiconductor laser is 1, which is abnormally large compared to the band of the modulation signal.

このように過剰なスペクトル幅は光フアイバ伝送におい
て信号劣化の要因となシ、性能を著しく低下させる。従
って、このような不都合を解消するには、半導体レーザ
の出力は一定でかつスペクトル幅を非常に狭く保って変
調する必要があシ、そのためには別の光変調素子を用い
て行う必要がある。
In this way, excessive spectral width causes signal deterioration in optical fiber transmission and significantly reduces performance. Therefore, in order to eliminate these inconveniences, it is necessary to modulate the output of the semiconductor laser while keeping it constant and keeping the spectral width very narrow. To do this, it is necessary to use a separate optical modulation element. .

従来の代表的な光変調素子としては、第1図の方向性結
合形、第2図のマツハツエンダ−干渉計形などがある。
Typical conventional optical modulation elements include the directional coupling type shown in FIG. 1 and the Matsuhatsu Ender interferometer type shown in FIG. 2.

第1図と第2図はいずれも平面図を示しており、1およ
び2の光導波路をZ、isb o 3等の結晶上に製作
し、電極3,4を設け、変調信号5で入力光を制御して
出力光を得るものである。
Both FIG. 1 and FIG. 2 show plan views, in which optical waveguides 1 and 2 are fabricated on crystals such as Z, ISBO 3, etc., electrodes 3 and 4 are provided, and input light is controlled by a modulation signal 5. The output light is obtained by controlling the

これらの光変調器の改良形やその他の例もいくつかある
が、はとんどが電気光学効果すなわち、制御電界による
rAybo、結晶又は光導波路2の屈折率の微小変化を
利用して、伝搬する光の位相あるいは2つの導波路間の
光結合などを制御している。
Although there are some improved versions and other examples of these optical modulators, most of them utilize the electro-optic effect, that is, the small change in the refractive index of the rAybo, crystal or optical waveguide 2 caused by a control electric field, to achieve propagation. It controls the phase of the light being transmitted and the optical coupling between the two waveguides.

しかし、電気光学効果による屈折率の変化は非常に小さ
いため、このようなタイプの光変調素子は素子長が数n
unから数mと長くなる欠点がある。また、第1図およ
び第2図に見られるように、2つの導波路]、2を用い
るタイプでは、2つの導波路がほぼ完全に同一であるこ
とが要求され、かつ導波路の断面と長さとの関係が厳し
く制限されるため、製作が非常に困難であった。
However, since the change in refractive index due to the electro-optic effect is very small, this type of light modulation element has an element length of several nanometers.
The disadvantage is that it is several meters long. In addition, as shown in Figs. 1 and 2, in the type using two waveguides], 2, the two waveguides are required to be almost completely identical, and the cross section and length of the waveguides are Production was extremely difficult due to severe restrictions on the relationship between the two.

(発明の課題) 本発明はこのような従来の光変調素子の欠点を解決する
ために、変調率や消光比が充分に取れ、製作上の制約も
少なく小型化が可能な光変調素子を提供することを目的
とするものである。以下に図面を用いて本発明の詳細な
説明する。
(Problems to be solved by the invention) In order to solve the drawbacks of the conventional optical modulation elements, the present invention provides an optical modulation element that has a sufficient modulation rate and extinction ratio, has few manufacturing restrictions, and can be miniaturized. The purpose is to The present invention will be described in detail below using the drawings.

(発明の構成および作用) 第3図(α)は本発明の一実施例を示すもので、半導体
光変調素子を正面から見た場合の断面図を示している。
(Structure and operation of the invention) FIG. 3(α) shows an embodiment of the invention, and shows a cross-sectional view of a semiconductor optical modulation element viewed from the front.

以下の説明においては、InP基板とほぼこれに格子整
合の取れたJnl−、GCLOcAs、、Pl−、C以
後、X。
In the following description, Jnl-, GCLOcAs, , Pl-, C, and X, which are substantially lattice-matched to the InP substrate, are used.

yを省略する)化合物半導体から成る光導波領域を用い
た例について説明する。
An example using an optical waveguide region made of a compound semiconductor (with y omitted) will be described.

入力光は破線で囲んだ領域、すなわち光導波領域のX軸
方向(半導体の長手方向)に入射される。
The input light is incident on the region surrounded by the broken line, that is, in the X-axis direction (longitudinal direction of the semiconductor) of the optical waveguide region.

6はn形InP基板、7はI<(LA8P 光導波路層
、8はP形1nl)、9はn形Ink(LAMP キャ
ップ層、10及び11は電極、12は亜鉛拡散領域をそ
れぞれ示す。InG(LA8P光導波路層7は6及び8
のInPに比べて屈折率が高いためにY軸(縦)方向で
は導波機能、すなわち入力光を光導波路層7に閉じ込め
る機能を有しているが、X軸(横)方向では同図(b)
の屈折率分布の実線で示すように一定の屈折率であるた
め導波機能を有していない。従って、入力光は徐々に周
囲に放射され、X軸方向のもう一方の出力端においては
出力光が極めて小さくなる。
6 is an n-type InP substrate, 7 is I<(LA8P optical waveguide layer, 8 is P-type 1nl), 9 is n-type Ink (LAMP cap layer, 10 and 11 are electrodes, and 12 is a zinc diffusion region. InG (LA8P optical waveguide layer 7 is 6 and 8
Because it has a higher refractive index than InP in the Y-axis (vertical) direction, it has a waveguide function, that is, a function to confine input light in the optical waveguide layer 7, but in the X-axis (horizontal) direction, it has a waveguide function (in the same figure). b)
As shown by the solid line in the refractive index distribution, the refractive index is constant, so it does not have a waveguide function. Therefore, the input light is gradually radiated to the surroundings, and the output light becomes extremely small at the other output end in the X-axis direction.

しかし、ここで破線の矢印13のような変調電流を流す
と、キャリアがIfLG(LA8P光導波路層7に閉じ
込められてプラズマ振動効果により電流が注入された部
分の屈折率が下がシ、屈折率分布が破線のように中央部
が高く周辺が低い導波機能を持ったものとなる。従って
、入力光は減衰をほとんど受けることなく出力端まで導
波することができる。
However, when a modulation current as shown by the broken arrow 13 is applied, the carriers are confined in the IfLG (LA8P optical waveguide layer 7) and the refractive index of the part where the current is injected decreases due to the plasma oscillation effect. As shown by the broken line, the distribution has a waveguide function where the center is high and the periphery is low.Therefore, the input light can be guided to the output end with almost no attenuation.

このように本実施例は一定値の電力を有する入力光に対
し、亜鉛拡散領域12を流れる変調電流の有無あるいは
大小でInGcLA8P光導波路層7のX軸方向の屈折
率が変わることを利用し、半導体の導波機能を変化させ
ることによって、出力端における出力光の大きさを変化
させることを特徴とする光変調素子である。
In this way, this embodiment utilizes the fact that the refractive index of the InGcLA8P optical waveguide layer 7 in the X-axis direction changes depending on the presence or absence or magnitude of the modulation current flowing through the zinc diffusion region 12 for input light having a constant value of power. This is an optical modulation element characterized by changing the magnitude of output light at an output end by changing the waveguide function of a semiconductor.

第4図(α)は第3図(α)において電流注入を行わな
い場合の入力光の放射効果をさらに上げることによって
変調率や消光比の改善を行った本発明の実施例である。
FIG. 4(α) shows an embodiment of the present invention in which the modulation factor and extinction ratio are improved by further increasing the radiation effect of input light when no current is injected in FIG. 3(α).

すなわち、第3図(α)の電極を10.10’。That is, the electrode of FIG. 3 (α) is 10.10'.

10“03つに分割し、電極10と10′とを共通にす
る。まず、電極10”に電流I、を流し、他の電極io
、io’には電流I2を流さない場合を考えると、第3
図で説明したように電流が流れた光導波路層7部分はキ
ャリアのプラズマ振動効果によシ屈折率分布が第4図(
b)の実線のように小さくなり、入力光は非常に短かい
距離で周囲に放射されてしまう。すなわち、入力光はX
軸方向の出力端にはほとんど出力光が現われなくなる。
10"0" is divided into three parts, and the electrodes 10 and 10' are made common.First, a current I is passed through the electrode 10", and the other electrodes io
, io', the third
As explained in the figure, the part of the optical waveguide layer 7 through which the current flowed has a refractive index distribution due to the plasma oscillation effect of the carriers, as shown in Figure 4 (
It becomes small as shown by the solid line in b), and the input light is radiated to the surroundings over a very short distance. That is, the input light is
Almost no output light appears at the output end in the axial direction.

逆にI、二〇とし、I、の電流を流した場合は、第4図
(b)の破線のように屈折率分布は中央部が高くなり、
入力光に対して導波機能を有し、はとんど減衰を受ける
ことなく出力端に出力光として取り出すことができる。
Conversely, if I is set to 20 and a current of I is applied, the refractive index distribution will be high in the center as shown by the broken line in Figure 4(b).
It has a waveguide function for input light, and can be extracted as output light at the output end without being attenuated.

このように3つに分割された電極に流す電流の有無によ
って導波機能を変化させ出力端に現われる出力光をまっ
たく無くした9、まだは入力光とほぼ同じ大きさの出力
光も取り出すことが可能となる。
In this way, the waveguide function is changed depending on the presence or absence of current flowing through the three divided electrodes, and no output light appears at the output end9, but it is still possible to extract output light that is almost the same size as the input light. It becomes possible.

第5図(a)は第4図(a)と同等の効果を得るだめに
、I−naaAsp導波路層7の中央部の厚さを僅かに
薄くしたものである。すなわち、変調電流13が無いか
あるいは小さい状態では、第5図(b)の実線のように
屈折率分布が中央部で小さくなり、導波機能を有さない
ので入力光は放射され出力端には現われない。また、逆
に変調電流13がある大きさ以上になると、破線のよう
に屈折率分布が中央部より周辺部が小さくなシ、導波機
能を有し、入力光は出力端に出力光として取シ出すこと
ができる。
In FIG. 5(a), the thickness of the central portion of the I-naaAsp waveguide layer 7 is slightly reduced in order to obtain the same effect as in FIG. 4(a). That is, when the modulation current 13 is absent or small, the refractive index distribution becomes small at the center as shown by the solid line in FIG. does not appear. Conversely, when the modulation current 13 exceeds a certain level, the refractive index distribution is smaller at the periphery than at the center, as shown by the broken line, and the input light is processed as output light at the output end. You can get it out.

以上の説明からも明らかなように、本発明の基本的なt
lす徴は変調電流の有無あるいは大小によって、光が導
波されるか否かという光の導波機能を変化させて変調を
行う点であシ、従来のような電気光学効果を用いること
なく、また2つの導波路も用いることなく変調できる光
変調素子を提供するものである。
As is clear from the above explanation, the basic t of the present invention
The main feature of this method is that modulation is performed by changing the waveguide function of light, that is, whether the light is guided or not, depending on the presence or absence or magnitude of a modulation current, without using the conventional electro-optic effect. The present invention also provides an optical modulation element that can perform modulation without using two waveguides.

また、以上の説明は光導波領域あるいはその近傍に変調
電流を注入して光の導波機能を変化させて変調を行う実
施例について説明したが、変調電流の代わりに変調光を
用いても同様の効果が得られる。
In addition, although the above explanation has been about an example in which modulation is performed by injecting a modulation current into the optical waveguide region or its vicinity to change the optical waveguide function, the same effect can be obtained by using modulated light instead of the modulation current. The effect of this can be obtained.

第6図は変調光を用いて導波機能を変化させ変調する本
発明の他の実施例であり、電極10をマスクとして変調
用光14を照射すると、光導波領域の周辺部のキャリア
を励起し、第3図(G)と同等の効果が得られる。ただ
し、光照射によって変調を行う場合には、照射される光
のエネルギーhνがInG(LASP光導波路層7の禁
制帯幅E(7よ)も大きいかまたは小さいかで動作原理
が異ってくる。
FIG. 6 shows another embodiment of the present invention in which the waveguide function is changed and modulated using modulated light. When modulating light 14 is irradiated using the electrode 10 as a mask, carriers in the peripheral area of the optical waveguide region are excited. However, the same effect as in FIG. 3(G) can be obtained. However, when modulating by light irradiation, the operating principle differs depending on whether the energy hν of the irradiated light is InG (the forbidden band width E (7) of the LASP optical waveguide layer 7 is also large or small). .

もし、光のエネルギーh、νがJnG(LASP光導波
路層7の禁制帯幅E、よシも大きい場合は、前述のよう
に光導波路層7内にキャリアを励起するために、電流底
入と同じく、プラズマ振動効果により変調用光が照射さ
れた部分の屈折率が下がり、屈折率分布は中央部が高く
周辺が低い導波機能を持っだものになる。
If the light energies h and ν are larger than JnG (the forbidden band width E of the LASP optical waveguide layer 7), the current bottoms out to excite carriers in the optical waveguide layer 7 as described above. Similarly, due to the plasma oscillation effect, the refractive index of the part irradiated with the modulating light decreases, and the refractive index distribution becomes one with a waveguide function, with the refractive index being high in the center and low in the periphery.

逆に、光のエネルギーAνが光導波路層7の禁制帯幅E
gよシも小さい場合には、キャリアは励起されずに非線
形効果に基づいた動作となる。すなわち、物質の屈折率
が照射された光によって僅かに異ってくる効果でちり、
この効果は通常極めて小さく、非線形効果を増大させる
には変調光の強度も大きくする必要がある。
Conversely, the optical energy Aν is the forbidden band width E of the optical waveguide layer 7.
When g is also small, carriers are not excited and the operation is based on nonlinear effects. In other words, the refractive index of the material changes slightly depending on the light irradiating it, causing dust,
This effect is usually very small, and to increase the nonlinear effect, the intensity of the modulated light must also be increased.

第7図は多層量子井戸構造を用いることによって、非線
形効果を著しく増大させ得る本発明の実施例である。本
図で、15はInPとInG(LASPとの非常に薄い
層から成る多層量子井戸層、16はn形InP、17は
InG(LASPから成る発光層である。
FIG. 7 shows an embodiment of the present invention in which the nonlinear effect can be significantly increased by using a multilayer quantum well structure. In this figure, 15 is a multilayer quantum well layer made of very thin layers of InP and InG (LASP), 16 is an n-type InP, and 17 is a light emitting layer made of InG (LASP).

そこで、電流13を注入するとInGCLASP層17
 が発光し、その光14が多層量子井戸層15に照射さ
れるために多層量子井戸層15は大きな屈折率変化を生
じる。ここで、多層量子井戸層15の物質によって定ま
る非線形効果を表わす定数が正の符号にすれば、電流注
入によって多層量子井戸層15に導波機能が生じ、同じ
く変調が可能となる。
Therefore, when the current 13 is injected, the InGCLASP layer 17
emits light and the multilayer quantum well layer 15 is irradiated with the light 14, causing a large change in the refractive index of the multilayer quantum well layer 15. Here, if the constant representing the nonlinear effect determined by the material of the multilayer quantum well layer 15 has a positive sign, a waveguide function is generated in the multilayer quantum well layer 15 by current injection, and modulation is also possible.

このように本実施例は変調用光を用いても導波機能を変
化させ、出力端に現われる出力光も変える変調が可能で
ある。
In this way, in this embodiment, even if modulation light is used, the waveguide function can be changed, and the output light appearing at the output end can also be modulated.

また、今までInP基板とほぼ格子整合のとれたIn、
1−z)Ga、A、8.Pl、から成る光導波領域の例
を用いて説明してきたが、InP基板とほぼ格子整合の
とれたIn (1−x y ) A l x Ga Y
ASまたはGαAS基板とほぼ格子整合のとれたAXl
−エGa工As化合物半導体でも全く同様の光変調素子
ができることは言うまでもない。
In addition, until now InP substrates and InP substrates have been almost lattice matched,
1-z) Ga, A, 8. The explanation has been given using an example of an optical waveguide region made of Pl, but In (1-x y ) A l x Ga Y which has almost lattice match with the InP substrate
AXl with almost lattice matching with AS or GαAS substrate
It goes without saying that a completely similar light modulation element can be made using a Ga-As compound semiconductor.

(発明の効果) 以上説明したように、本発明は電流注入や変調用光を用
いて導波機能を変化させることによって、変調を行う半
導体光変調素子を提供するものであシ、過剰なスペクト
ル幅を含まない変調出力を得られることはもちろんのこ
と、従来のものに比べて変調率や消光比も充分大きく取
れ、かつ素子長も大幅に短かく、製作が容易な光変調素
子である。
(Effects of the Invention) As explained above, the present invention provides a semiconductor optical modulator that performs modulation by changing the waveguide function using current injection or modulating light, and This optical modulation element not only provides a modulated output that does not include width, but also has a sufficiently large modulation factor and extinction ratio compared to conventional ones, and is also much shorter in element length, making it easier to manufacture.

従って、半導体レーザと本発明の半導体光変調素子との
モノリシック集積化も容易になシ、かつ変調素子として
重要な要素である消光比も充分大きく取れることから、
高性能光フアイバ通信等への応用ができ、その効果は極
めて大きいものである。
Therefore, it is easy to monolithically integrate the semiconductor laser and the semiconductor optical modulator of the present invention, and the extinction ratio, which is an important element for a modulator, can be made sufficiently large.
It can be applied to high-performance optical fiber communications, and its effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方向性結合形光変調器、第2図は従来の
マツハツエンダ−干渉計形光変調器、第3、図((L)
及び(b)は本発明の基本的な動作を説明するだめの、
電流注入により光導波機能を変化させて変調する半導体
光変調素子の実施例を示す図、第4図(CL)及び(b
)及び第5図(α)及び(b)は第3図の変調率や消光
比を改善した半導体光変調素子の本発明の実施例を示す
図、第6図及び第7図は本発明の光照射によ)導波機能
を変化させて変調する他の実施例を示す図である。 1.2・・・光導波路、3,4・・・電極、5・・・変
調信号、 6・・・n形1nP基板、7・・・InGc
LASP光導波路層、8−P形I′rLP層、9−−−
 n形1nGCLA8Fキャップ層、10 、10’、
 10’、 11・・・電極、12・・・亜鉛拡散領域
、13・・・変調電流、14・・・変調用光、15・・
・多層量子井戸構造、16・・・n形1.nP層、17
−1nGaASP層。 特許出願人 国際電信電話株式会社 特許出願代理人 弁理士 山 本 恵 − 第 1 図 112図 111i3 図 (a) (b) 第4図 (a) (b) 第5図 (a) (b)
Figure 1 shows a conventional directional coupling type optical modulator, Figure 2 shows a conventional Matsuhatsu Ender interferometer type optical modulator, and Figure 3 ((L)
and (b) is for explaining the basic operation of the present invention,
Figures 4 (CL) and (b) are diagrams showing an embodiment of a semiconductor optical modulation element that changes and modulates the optical waveguide function by current injection.
) and FIGS. 5(α) and (b) are diagrams showing an embodiment of the present invention of a semiconductor optical modulator with improved modulation factor and extinction ratio as shown in FIG. 3, and FIGS. FIG. 7 is a diagram illustrating another embodiment in which the waveguide function is changed and modulated (by light irradiation). 1.2... Optical waveguide, 3, 4... Electrode, 5... Modulation signal, 6... N-type 1nP substrate, 7... InGc
LASP optical waveguide layer, 8-P type I'rLP layer, 9---
n-type 1nGCLA8F cap layer, 10, 10',
10', 11... Electrode, 12... Zinc diffusion region, 13... Modulation current, 14... Modulation light, 15...
・Multilayer quantum well structure, 16...n type 1. nP layer, 17
-1nGaASP layer. Patent Applicant International Telegraph and Telephone Corporation Patent Attorney Megumi Yamamoto - No. 1 Figure 112 Figure 111i3 Figure (a) (b) Figure 4 (a) (b) Figure 5 (a) (b)

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上に光導波領域をもうけ、該光導波領
域の導波機能を外部から注入される変調エネルギーによ
シ制御することによシ、光導波領域に導入される入力光
を変調して出力することを特徴とする半導体光変調素子
(1) By forming an optical waveguide region on a semiconductor substrate and controlling the waveguide function of the optical waveguide region using modulation energy injected from the outside, the input light introduced into the optical waveguide region is modulated. What is claimed is: 1. A semiconductor optical modulation element characterized by outputting a signal.
(2)前記変調エネルギーが光導波領域又はその近傍に
注入される変調電流であることを特徴とする特許請求の
範囲第1項記載の半導体光変調素子。
(2) The semiconductor optical modulator according to claim 1, wherein the modulation energy is a modulation current injected into or near an optical waveguide region.
(3)前記変調エネルギーが光導波領域又はその近傍に
照射される変調光であることを特徴とする特許請求の範
囲第1項記載の半導体光変調素子。
(3) The semiconductor optical modulator according to claim 1, wherein the modulated energy is modulated light that is irradiated onto or near an optical waveguide region.
JP58125471A 1983-07-12 1983-07-12 Semiconductor optical modulating element Granted JPS6017717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58125471A JPS6017717A (en) 1983-07-12 1983-07-12 Semiconductor optical modulating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58125471A JPS6017717A (en) 1983-07-12 1983-07-12 Semiconductor optical modulating element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23726089A Division JPH0320723A (en) 1989-09-14 1989-09-14 Semiconductor optical modulation element

Publications (2)

Publication Number Publication Date
JPS6017717A true JPS6017717A (en) 1985-01-29
JPH0437405B2 JPH0437405B2 (en) 1992-06-19

Family

ID=14910905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58125471A Granted JPS6017717A (en) 1983-07-12 1983-07-12 Semiconductor optical modulating element

Country Status (1)

Country Link
JP (1) JPS6017717A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212823A (en) * 1985-03-18 1986-09-20 Nec Corp Optical modulator
JPS61270726A (en) * 1985-05-27 1986-12-01 Nec Corp Waveguide type optical gate switch
JPS63177109A (en) * 1987-01-19 1988-07-21 Hitachi Ltd Optical element
JPH01127855U (en) * 1988-02-24 1989-08-31

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342748A (en) * 1976-09-29 1978-04-18 Mitsubishi Electric Corp Photo semiconductor device
JPS5497054A (en) * 1978-01-14 1979-07-31 Nippon Telegr & Teleph Corp <Ntt> Transmission controlling system for optical signals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342748A (en) * 1976-09-29 1978-04-18 Mitsubishi Electric Corp Photo semiconductor device
JPS5497054A (en) * 1978-01-14 1979-07-31 Nippon Telegr & Teleph Corp <Ntt> Transmission controlling system for optical signals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212823A (en) * 1985-03-18 1986-09-20 Nec Corp Optical modulator
JPS61270726A (en) * 1985-05-27 1986-12-01 Nec Corp Waveguide type optical gate switch
JPS63177109A (en) * 1987-01-19 1988-07-21 Hitachi Ltd Optical element
JPH01127855U (en) * 1988-02-24 1989-08-31

Also Published As

Publication number Publication date
JPH0437405B2 (en) 1992-06-19

Similar Documents

Publication Publication Date Title
JP5858997B2 (en) Loss-modulated silicon evanescent laser
US6150667A (en) Semiconductor optical modulator
US5339370A (en) Optical modulator and optical communication system utilizing the same
JPS6155981A (en) Semiconductor light-emitting element
JPH07307530A (en) Polarizable and modulatable semiconductor laser
US4743087A (en) Optical external modulation semiconductor element
KR20220058907A (en) Monolithically Integrated InP Electro-Optical Tunable Ring Laser, Laser Device, and Corresponding Method
US7409113B2 (en) Semiconductor electro-absorption optical modulator, semiconductor electro-absorption optical modulator integrated laser, optical transmitter module and optical module
US5771257A (en) Light absorption modulator and integrated semiconductor laser and modulator
US7142342B2 (en) Electroabsorption modulator
JPH07230066A (en) Semiconductor optical modulator
JPS61168980A (en) Semiconductor light-emitting element
JPS6017717A (en) Semiconductor optical modulating element
JPS59165480A (en) Semiconductor light emitting element
JP3245940B2 (en) Semiconductor optical integrated device
US6760141B2 (en) Semiconductor optical modulator and semiconductor optical device
JPH0553246B2 (en)
JP2005135956A (en) Semiconductor optical amplifier, its manufacturing method, and optical communication device
JPS63186210A (en) Semiconductor integrated light modulating element
JPH0563179A (en) Optical integrated circuit and manufacture thereof
US20220360038A1 (en) Systems and methods for external modulation of a laser
KR102397557B1 (en) Electro-absorption modulated laser
JPS61107781A (en) Single axial-mode semiconductor laser device
JPS6170779A (en) Optical transmitter
JPS6237833B2 (en)