JPH0572561B2 - - Google Patents

Info

Publication number
JPH0572561B2
JPH0572561B2 JP59170144A JP17014484A JPH0572561B2 JP H0572561 B2 JPH0572561 B2 JP H0572561B2 JP 59170144 A JP59170144 A JP 59170144A JP 17014484 A JP17014484 A JP 17014484A JP H0572561 B2 JPH0572561 B2 JP H0572561B2
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
germanium
light
waveguide region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59170144A
Other languages
Japanese (ja)
Other versions
JPS6147910A (en
Inventor
Shigeyuki Akiba
Katsuyuki Uko
Kazuo Sakai
Juichi Matsushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP17014484A priority Critical patent/JPS6147910A/en
Publication of JPS6147910A publication Critical patent/JPS6147910A/en
Publication of JPH0572561B2 publication Critical patent/JPH0572561B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は半導体から成る光スイツチや光変調器
等の光半導体素子に関するものである。 (従来技術とその問題点) 光スイツチや光変調器などの光半導体素子は光
フアイバ伝送の分野だけでなく、光交換あるいは
光情報処理の分野においても注目されつつあり、
一部開発が進められている。従来のこのような素
子は、LiNbO3、LiTaO3などの絶縁体、又は
AlGaAs系、InGaAsP系から成る半導体で構成さ
れていた。その理由は、例えば、LiNbO3などで
は電気光学効果が大きく、また、AlGaAs、
InGaAsP系などでは発光源や光検出器といつた
光素子としての開発がかなり進んでいることなど
である。しかしながら、これらの結晶材料は、価
格が高く例えば、光交換機のように大量の光スイ
ツチを必要とするものには適用が困難である。ま
た、光導波領域を再現性良く形成するのが難し
く、LiNbO3等では信頼性の点で問題があつた。 〔また、信頼性の面では大きな利点を有する半
導体材料については、特願昭49−22952号におい
てシリコン(Si)にゲルマニウム(Ge)を添加
した光波伝送路が開示されている。然るに、Siに
Geを拡散したり、Siの気相成長の際Geを添加す
るのでは、Siに対する屈折率は一般に少数点以下
2桁目が僅かに大きくなる程度であり、(例えば、
電子通信学会論文誌、vol.1, J−60−C No.
10,pp610−617にLiNbO3へのTi拡散の例が表示
されている。)、光波伝送路として機能するために
は、例えば光フアイバのコアのように導波路部分
の大きさが10μm乃至数10μmと大きくなり、半導
体の特徴である1μmあるいはそれ以下の薄膜を利
用した小型導波路を形成したことができない。従
つてSiにGeを添加した従来の光導波路は、半導
体技術の観点から見れば大きすぎてしかも極めて
高価となり、実用化ができないという欠点があつ
た。 (発明の目的と特徴) 本発明は、上述のような従来の光素子材料の有
する欠点を解決するためになされたもので、高い
製造精度で大量生産でき、かつ集積電子回路との
整合性も良い光スイツチや光変調器などの光半導
体素子を提供することを目的としており、シリコ
ン基板上の光導波領域をゲルマニウムの組成が16
%以上のシリコンとゲルマニウムの混晶を用いて
構成するところに特徴がある。 (発明の構成と作用) 以下に図面を用いて本発明を詳細に説明する。
(Technical Field of the Invention) The present invention relates to optical semiconductor devices such as optical switches and optical modulators made of semiconductors. (Prior art and its problems) Optical semiconductor devices such as optical switches and optical modulators are attracting attention not only in the field of optical fiber transmission but also in the field of optical switching and optical information processing.
Some development is underway. Conventional such elements are made of insulators such as LiNbO 3 , LiTaO 3 , or
It was composed of AlGaAs-based and InGaAsP-based semiconductors. The reason is that, for example, LiNbO 3 has a large electro-optic effect, and AlGaAs,
The development of InGaAsP systems as optical devices such as light emitting sources and photodetectors has progressed considerably. However, these crystal materials are expensive and difficult to apply to devices that require a large number of optical switches, such as optical exchangers. In addition, it is difficult to form the optical waveguide region with good reproducibility, and LiNbO 3 and the like have problems in terms of reliability. [Also, regarding semiconductor materials that have great advantages in terms of reliability, Japanese Patent Application No. 49-22952 discloses a light wave transmission line in which germanium (Ge) is added to silicon (Si). However, Si
When Ge is diffused or added during vapor phase growth of Si, the refractive index for Si is generally only slightly larger in the second digit after the decimal point (for example,
Journal of the Institute of Electronics and Communication Engineers, vol.1, J-60-C No.
10, pp610-617 shows an example of Ti diffusion into LiNbO3 . ), in order to function as a light wave transmission path, the size of the waveguide part, such as the core of an optical fiber, must be large, from 10 μm to several tens of μm, and it is necessary to use a thin film of 1 μm or smaller, which is a characteristic of semiconductors, to create a small waveguide. It is not possible to form a waveguide. Therefore, conventional optical waveguides made of Si doped with Ge have the drawback of being too large and extremely expensive from the perspective of semiconductor technology, making them impractical for practical use. (Objective and Features of the Invention) The present invention has been made to solve the above-mentioned drawbacks of conventional optical element materials, and it can be mass-produced with high manufacturing precision and has good compatibility with integrated electronic circuits. The aim is to provide optical semiconductor devices such as good optical switches and optical modulators, and the optical waveguide region on the silicon substrate is made of germanium with a composition of 16.
% or more of silicon and germanium. (Structure and operation of the invention) The present invention will be explained in detail below using the drawings.

【表】 表1はシリコン(Si)とゲルマニウム(Ge)
の格子定数a、屈折率n、および禁制帯幅Egを
示したものである。SiとGeの混晶Si1-xGexの格
子定数、屈折率、および禁制帯幅は線形近似を用
いて、すなわち、SiからGeまでxに対して直線
的に変化すると仮定して、推定できる。例えば、
x=0.1とすると、Si0.9Ge0.1の屈折率は3.56と見
積もることができる。逆に、Si1-xGexを光導波領
域として用いる場合、周囲のSiとの屈折率差Δn
が約0.1程度必要とすれば、x0.16となり、そ
の時の格子不整合Δa/a(Si)は約0.6%、禁制
帯幅の差ΔEgは約0.07eVとなる。これらの諸定
数データをもとに、次に具体的な光半導体素子の
〔構造例〕について説明する。 第1図は本発明の〔原理的構成〕を示したもの
で、光スイツチや光変調器として作動する光方向
性結合器の模式図である。n型Si基板1の表面
に、光導波領域となる場所に溝4が形成されてお
り、その上にn型のSiとGeの混晶Si1-xGex2、
およびn-型のSi3が積層されている。5および6
は電極であり、7は変調用信号電源を示してい
る。 第2図は第1図のA−B面に沿う断面を示した
もので、8はイオン打込み又は拡散によりp型と
なつた領域である。SiとGeの混晶比xを前述の
ように、例えば約0.16とすれば、Si0.84Ge0.16光導
波路2とSiとの屈折率差が約0.1となり、第2図
のような溝4を設けることにより、点線で示した
光導波領域9が容易に形成される。溝に沿つて導
びかれる光は、二つの溝4の間隔を適当に設定す
ることにより一方の溝から他方の溝へ移つてい
く。すなわち方向性結合器が生じる。ここで、例
えば変調信号源7から電極5およびp型Si領域8
を通して変調電流を溝と溝との間のSi1-xGex層2
に注入すると、その部分の屈折率がプラズマ振動
効果により変化する。従つて、二つの光導波領域
間の結合定数が変化するため、導波される光は変
調を受けることになる。 第3図は本発明の実施例を示したものである。
Si基板10の表面に溝4が設けられており、その
上にSi1-xGexとSi1-yGeyとの超格子層11および
Si12が積層されている。ここで、0x≠y
1である。例えば、x=0.5、y=0とすれば、
11はSi0.5Ge0.5とSiとの超格子層となる。13
は光遮断膜、14は変調光を示している。光はこ
の場合も第2図と同様に溝部の光導波領域9に沿
つて導波される。溝と溝との間の超格子部分に変
調光を照射することにより、その部分の屈折率が
変化し、二つの光導波路間の結合定数が変化す
る。従つて、導波される光は変調を受けることに
なる。 以上の説明では、光導波領域を形成するためSi
基板表面に溝が設けられていたが、例えばSi1-x
Gexの周囲が全てSiとなつているような埋込み型
の光導波路も可能である。また、方向性結合器型
の素子を例として説明したがマツハツエンダー干
渉器型の光変調素子あるいは受光素子など他の光
半導体素子も同様に実現されることは言うまでも
ない。 (発明の効果) 以上説明したように、本発明によれば、〔半導
体技術の特徴が十分に生かされ、薄膜の導波路を
用いた小型の〕光スイツチや光変調器等の光半導
体素子がプロセス技術の極めて進んでいるSi基板
を用いて実現されるため、安価にかつ精密に大量
生産することができる。また、同一のSi基板上
に、それらの光半導体素子を駆動させるための電
子回路を集積化することも可能であり、大規模な
集積光スイツチが実現されるので、光交換機にも
応用できその効果は極めて大である。
[Table] Table 1 shows silicon (Si) and germanium (Ge)
The figure shows the lattice constant a, refractive index n, and forbidden band width Eg. The lattice constant, refractive index, and forbidden band width of Si and Ge mixed crystal Si 1-x Ge x are estimated using a linear approximation, i.e., assuming that they vary linearly with x from Si to Ge. can. for example,
When x=0.1, the refractive index of Si 0.9 Ge 0.1 can be estimated to be 3.56. Conversely, when Si 1-x Ge x is used as an optical waveguide region, the refractive index difference Δn with the surrounding Si
If approximately 0.1 is required, then x0.16 is obtained, the lattice mismatch Δa/a(Si) is approximately 0.6%, and the difference in forbidden band width ΔEg is approximately 0.07 eV. Based on these constant data, a specific example of a structure of an optical semiconductor element will be described next. FIG. 1 shows the [principle configuration] of the present invention, and is a schematic diagram of an optical directional coupler that operates as an optical switch or an optical modulator. A groove 4 is formed on the surface of the n-type Si substrate 1 at a location that will become an optical waveguide region, and on the groove 4 is formed an n-type Si and Ge mixed crystal Si 1-x Ge x 2,
and n - type Si3 are stacked. 5 and 6
is an electrode, and 7 indicates a signal power source for modulation. FIG. 2 shows a cross section taken along the line A-B in FIG. 1, and 8 is a region that has become p-type by ion implantation or diffusion. As mentioned above, if the mixed crystal ratio x of Si and Ge is about 0.16, the refractive index difference between the Si 0.84 Ge 0.16 optical waveguide 2 and Si is about 0.1, and the groove 4 as shown in Fig. 2 is provided. As a result, the optical waveguide region 9 shown by the dotted line can be easily formed. The light guided along the grooves is transferred from one groove to the other by appropriately setting the interval between the two grooves 4. In other words, a directional coupler is created. Here, for example, from the modulation signal source 7 to the electrode 5 and the p-type Si region 8
Modulate the current through the Si 1-x Ge x layer 2 between the grooves
When injected into a region, the refractive index of that region changes due to the plasma oscillation effect. Therefore, since the coupling constant between the two optical waveguide regions changes, the guided light will be modulated. FIG. 3 shows an embodiment of the present invention.
A groove 4 is provided on the surface of the Si substrate 10, and a superlattice layer 11 of Si 1-x Ge x and Si 1-y Ge y is formed on the groove 4.
Si12 is laminated. Here, 0x≠y
It is 1. For example, if x=0.5 and y=0,
11 is a superlattice layer of Si 0.5 Ge 0.5 and Si. 13
14 indicates a light blocking film, and 14 indicates modulated light. In this case as well, the light is guided along the optical waveguide region 9 of the groove as in FIG. By irradiating the superlattice portion between the grooves with modulated light, the refractive index of that portion changes, and the coupling constant between the two optical waveguides changes. Therefore, the guided light will be modulated. In the above explanation, Si is used to form the optical waveguide region.
Although grooves were provided on the substrate surface, for example, Si 1-x
A buried optical waveguide in which the entire area around Ge x is Si is also possible. Further, although the directional coupler type element has been described as an example, it goes without saying that other optical semiconductor elements such as a Matsuhatsu Ender interferometer type optical modulation element or a light receiving element can be similarly realized. (Effects of the Invention) As explained above, according to the present invention, optical semiconductor devices such as optical switches and optical modulators [which fully utilize the characteristics of semiconductor technology and are small-sized using thin-film waveguides] Since it is realized using a Si substrate with extremely advanced process technology, it can be mass-produced at low cost and with precision. It is also possible to integrate electronic circuits for driving these optical semiconductor elements on the same Si substrate, making it possible to realize large-scale integrated optical switches, which can also be applied to optical switching equipment. The effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の〔原理的構成を示す〕斜視
図、第2図は第1図A−B部分の断面模式図、第
3図は本発明の実施例の断面模式図である。 1……n型Si基板、2……Si1-xGex層、3……
n-Si層、4……溝、5,6……電極、7……変調
信号源、8……p型Si、9……光導波領域、10
……Si基板、11……Si1-xGexとSi1-yGeyとの超
格子層、12……Si層、13……光遮断膜、14
……変調光。
FIG. 1 is a perspective view showing the basic structure of the present invention, FIG. 2 is a schematic cross-sectional view taken along line AB in FIG. 1, and FIG. 3 is a schematic cross-sectional view of an embodiment of the present invention. 1...n-type Si substrate, 2...Si 1-x Ge x layer, 3...
n - Si layer, 4... Groove, 5, 6... Electrode, 7... Modulation signal source, 8... P-type Si, 9... Optical waveguide region, 10
...Si substrate, 11...Superlattice layer of Si 1-x Ge x and Si 1-y Ge y , 12... Si layer, 13... Light blocking film, 14
...Modulated light.

Claims (1)

【特許請求の範囲】 1 シリコン基板上にゲルマニウムの組成が16%
以上のシリコンとゲルマニウムの混晶を用いた超
格子により光導波領域が形成されていることを特
徴とする光半導体素子。 2 前記光導波領域が混晶比の異なるシリコンと
ゲルマニウムの混晶の超格子から成ることを特徴
とする特許請求の範囲第1項記載の光半導体素
子。
[Claims] 1. Germanium composition is 16% on a silicon substrate.
An optical semiconductor device characterized in that an optical waveguide region is formed by a superlattice using a mixed crystal of silicon and germanium as described above. 2. The optical semiconductor device according to claim 1, wherein the optical waveguide region is composed of a superlattice of mixed crystals of silicon and germanium having different mixed crystal ratios.
JP17014484A 1984-08-15 1984-08-15 Optical semiconductor element Granted JPS6147910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17014484A JPS6147910A (en) 1984-08-15 1984-08-15 Optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17014484A JPS6147910A (en) 1984-08-15 1984-08-15 Optical semiconductor element

Publications (2)

Publication Number Publication Date
JPS6147910A JPS6147910A (en) 1986-03-08
JPH0572561B2 true JPH0572561B2 (en) 1993-10-12

Family

ID=15899483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17014484A Granted JPS6147910A (en) 1984-08-15 1984-08-15 Optical semiconductor element

Country Status (1)

Country Link
JP (1) JPS6147910A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198212A (en) * 1985-02-28 1986-09-02 Tokyo Inst Of Technol Optical circuit function element
US4861129A (en) * 1987-04-17 1989-08-29 Hoechst Celanese Corp. Inorganic-organic composite compositions exhibiting nonlinear optical response
JP2901333B2 (en) * 1990-10-12 1999-06-07 日本電気株式会社 Active wavelength selective semiconductor device
JP2006133723A (en) * 2004-10-08 2006-05-25 Sony Corp Light guide module and optoelectric hybrid device, and their manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922952A (en) * 1972-06-19 1974-02-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922952A (en) * 1972-06-19 1974-02-28

Also Published As

Publication number Publication date
JPS6147910A (en) 1986-03-08

Similar Documents

Publication Publication Date Title
US4166669A (en) Planar optical waveguide, modulator, variable coupler and switch
JP5433919B2 (en) Optical functional element, driving method and manufacturing method thereof
US5285507A (en) Controllable polarisation transformer
US5133027A (en) Optical waveguide apparatus for controlling a signal light traveling through an optical waveguide by means of other light
US5283842A (en) Operating point trimming method for optical waveguide modulator and switch
US5757985A (en) Semiconductor mach-zehnder-type optical modulator
US4733927A (en) Stress waveguides in bulk crystalline materials
JP3109934B2 (en) Photoelectron field effect transistor
US6618179B2 (en) Mach-Zehnder modulator with individually optimized couplers for optical splitting at the input and optical combining at the output
JPH0572561B2 (en)
Reinhart et al. Electrooptic polarization modulation in multielectrode Al x Ga 1-x As rib waveguides
TAKEUCHI et al. Low switching voltage InGaAsP/InP wave-guide interferometric modulator for integrated optics
JPS63313120A (en) Optical polarization control element
US5050947A (en) Optical waveguide control device employing directional coupler on substrate
JPH04172316A (en) Wave guide type light control device
Chen et al. GaAs-GaAlAs heterostructure single-mode channel-waveguide cutoff modulator and modulator array
JPS6051822A (en) Light control element and its manufacture
JPH0437405B2 (en)
RU2129721C1 (en) Method for switching and modulation of unidirectional parent-distribution waves and device which implements said method
JPH02114243A (en) Optical control device and its manufacture
Taylor Optical modulation in thin films
RU2120649C1 (en) Method of commutation and modulation of unidirectional distributively-coupled waves ( versions ) and device for its realization
Wilkinson Integrated optics-devices
JPH0561002A (en) Waveguide type optical isolator and optical circulator
JPS6236631A (en) Waveguide type optical modulator