JPS63313120A - Optical polarization control element - Google Patents

Optical polarization control element

Info

Publication number
JPS63313120A
JPS63313120A JP14941287A JP14941287A JPS63313120A JP S63313120 A JPS63313120 A JP S63313120A JP 14941287 A JP14941287 A JP 14941287A JP 14941287 A JP14941287 A JP 14941287A JP S63313120 A JPS63313120 A JP S63313120A
Authority
JP
Japan
Prior art keywords
substrate
control element
polarization control
optical
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14941287A
Other languages
Japanese (ja)
Other versions
JP2646558B2 (en
Inventor
Minoru Kiyono
實 清野
Naoyuki Mekata
直之 女鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62149412A priority Critical patent/JP2646558B2/en
Publication of JPS63313120A publication Critical patent/JPS63313120A/en
Application granted granted Critical
Publication of JP2646558B2 publication Critical patent/JP2646558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain an element which allows low-voltage driving by forming a thin film having the dielectric constant lower than the dielectric constant of an electrooptic crystal substrate on the surface of said substrate, on which surface a light guide is provided, and providing electrodes on this thin film and the rear face of the substrate. CONSTITUTION:The light guide 11 formed by diffusion of Ti, etc., is provided on one face of the substrate 10 consisting of the electrooptic crystal such as LiNbO3 and further a buffer layer 12 consisting of SiO2, etc., is formed on the surface thereof. The two upper electrodes 13-1, 13-2 consisting of Au, etc., are formed on the layer 12 equidistantly from the light guide 11 and the one lower electrode 13-3 is formed on the rear face of the substrate 10 around the region nearest the light guide 11. Voltages are impressed between the electrodes 13-1, 13-2 and the electrodes 13-3 by power supplies 14, 15 to generate the rotating electric field in the direction perpendicular to the light guide 11, by which the direction of the polarization of the incident light on the light guide 11 is rotated perpendicularly to the plane of the figure.

Description

【発明の詳細な説明】 〔概要〕 先導波路が設けられている高誘電率の電気光学結晶の表
面に、低誘電率のバッファ層を形成し。
[Detailed Description of the Invention] [Summary] A low dielectric constant buffer layer is formed on the surface of a high dielectric constant electro-optic crystal provided with a leading waveguide.

この薄膜上と電気光学結晶の裏面とに電極を設け。Electrodes are provided on this thin film and on the back surface of the electro-optic crystal.

先導波路の光軸、すなわち先導波路における光の進行方
向、に垂直な回転電界を発生させることによって、低電
圧駆動の導波路型光偏波制御素子を、提供する。
By generating a rotating electric field perpendicular to the optical axis of the guide waveguide, that is, the direction in which light travels in the guide waveguide, a low-voltage driven waveguide-type optical polarization control element is provided.

〔産業上の利用分野〕[Industrial application field]

本発明はコヒーレント光通信に用いられる導波路型の光
偏波制御素子に関する。
The present invention relates to a waveguide type optical polarization control element used in coherent optical communication.

〔従来の技術〕[Conventional technology]

光通信技術の発展とともに、光の波動性を利用した通信
技術(コヒーレント光通信)の開発が行われている。現
在のコヒーレント光通信においては、一般に、受信局で
信号光と他の光(局部発振光)を混合し1両者の干渉を
利用して信号光によって運ばれてきた情報を読み取る方
式が用いられている。この場合、信号光と局部発振光の
偏光状態が一致していないと損失が生じ、甚だしい場合
には、信号が完全に消滅してしまう。この対策として、
「信号光を直交する二つの偏光に分離して処理する」と
か「円偏光と混合するj等の方法が採られているが、な
お損失が避けられない。
Along with the development of optical communication technology, communication technology that utilizes the wave nature of light (coherent optical communication) is being developed. In current coherent optical communications, a method is generally used in which the signal light and other light (local oscillation light) are mixed at the receiving station, and the interference between the two is used to read the information carried by the signal light. There is. In this case, if the polarization states of the signal light and the local oscillation light do not match, a loss will occur, and in extreme cases, the signal will disappear completely. As a countermeasure for this,
Methods such as ``separating the signal light into two orthogonal polarized lights'' and ``mixing the signal light with circularly polarized light'' have been adopted, but losses are still unavoidable.

このために1局部発振光の偏光状態を、信号光の偏光状
態に完全に一致するように制御する技術が期待されてい
る。これを実現するためには、任意の偏光状態をある一
定の偏光状態に変換する手段が必要である。一方、受信
された信号光の偏光状態は時々刻々と変化しているため
、この変換手段は、受信先の偏光状態に無限に追随でき
ることが要求される。
For this reason, a technique is expected to control the polarization state of one locally oscillated light so that it completely matches the polarization state of the signal light. In order to realize this, a means for converting an arbitrary polarization state into a certain polarization state is required. On the other hand, since the polarization state of the received signal light changes from moment to moment, the conversion means is required to be able to infinitely follow the polarization state of the receiving destination.

上記の偏光状態を変換する手段として、第2図(a)お
よび(b)に示すような構造を有するバルク型の光偏波
制御素子が知られている。これは。
As a means for converting the above polarization state, a bulk type optical polarization control element having a structure as shown in FIGS. 2(a) and 2(b) is known. this is.

ニオブ酸リチウム(LiNb03)のような電気光学結
晶のブロック20の表面に、電極21−1.21−2.
21−3゜21−4から成る一組と、電極22−1.2
2−2.22−3.22−4から成る別の一組との二組
を設ける。
Electrodes 21-1, 21-2.
21-3, 21-4, and electrode 22-1.2.
2-2.22-3.22-4 and another set consisting of 2-2.22-3.22-4.

次いで、互いに対向する電極21−1と21−3.21
−2と21−4の間に、それぞれ、電源23および24
により電圧を印加する。それぞれの電圧を制御すること
により電界の方向および強度を制御し、任意の方向に1
/2波長板と等価な屈折率変化を生じさせる。これによ
り、矢印の方向に電気光学結晶ブロック20の内部を通
過する直線偏光25の偏波の方向が、172波長板を通
過したと等価なだけ回転される。このようにして、直線
偏光25は任意の角度傾いた直線偏光に変換される。
Next, electrodes 21-1 and 21-3.21 facing each other
-2 and 21-4, respectively, power supplies 23 and 24
Apply voltage. By controlling each voltage, the direction and strength of the electric field can be controlled, and 1
/2 wavelength plate produces a change in refractive index equivalent to that of a 2-wave plate. As a result, the direction of polarization of the linearly polarized light 25 passing through the electro-optic crystal block 20 in the direction of the arrow is rotated by an amount equivalent to passing through a 172-wave plate. In this way, the linearly polarized light 25 is converted into linearly polarized light tilted at an arbitrary angle.

同様に、互いに対向する電極22−1と22−3.22
−2と22−4の間にも9図示しない電源により電圧を
印加し、これらの電圧を制御することにより電界の方向
および強度を制御し、任意の方向に1/4波長板を通過
したと等価な屈折率変化を生じさせる。
Similarly, electrodes 22-1 and 22-3.22 facing each other
A voltage is applied between -2 and 22-4 by a power source (9) not shown, and by controlling these voltages, the direction and intensity of the electric field can be controlled, and the electric field can be passed through the quarter-wave plate in any direction. produces an equivalent refractive index change.

これにより、前記のようにして傾斜された直線偏光の位
相が変化され、任意の楕円率を有する楕円偏光に変換さ
れる。このようにして、1/4波長板を回転させたこと
に相当する偏光の楕円率の制御を行うことができる。
As a result, the phase of the linearly polarized light tilted as described above is changed and converted into elliptically polarized light having an arbitrary ellipticity. In this way, it is possible to control the ellipticity of polarized light, which corresponds to rotating a quarter-wave plate.

上記の光偏波制御素子を用い3局部発振光(受信局側の
変調用レーザから発生される)を、光フアイバー中を伝
送されてきた信号光5に整合する楕円偏光に変換したの
ち、この信号光と混合する。
The above optical polarization control element is used to convert the three local oscillation lights (generated from the modulation laser at the receiving station) into elliptically polarized light that matches the signal light 5 transmitted through the optical fiber. Mix with signal light.

な゛お、前記の無限追従については、それぞれの電源電
圧の位相を時間的に無限にずらすことにより可能である
Note that the above-mentioned infinite tracking is possible by infinitely shifting the phase of each power supply voltage in time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、第2図に示す素子では、電気光学結晶ブ
ロック20の厚さ小さくすることが困難であり9通常、
数ミリメートルであり、高度の熟練を以て精密加工を行
っても高々数100μ■程度である。このために1例え
ば、数100Vのような高い動作電圧が必要となるとい
う難点があった。したがって、低電圧駆動が可能な光偏
波制御素子が要望されていた。
However, in the device shown in FIG. 2, it is difficult to reduce the thickness of the electro-optic crystal block 20;
The diameter is several millimeters, and even if precision machining is performed with a high level of skill, the diameter is approximately several 100 micrometers at most. For this reason, there is a problem in that a high operating voltage of, for example, several hundred volts is required. Therefore, there has been a demand for an optical polarization control element that can be driven at low voltage.

〔問題点を解決するための手段〕[Means for solving problems]

上記従来のバルク型光偏波制御素子の問題点は。 What are the problems with the above-mentioned conventional bulk type optical polarization control element?

互いに平行な平面から成る二つの表面を有する電気光学
結晶基板と、この基板内における第一の前記表面の近傍
に、この表面に平行な光軸を有するようにして形成され
た先導波路と。
An electro-optic crystal substrate having two surfaces consisting of planes parallel to each other; and a guide waveguide formed in the vicinity of the first surface in the substrate so as to have an optical axis parallel to the surfaces.

前記電気光学結晶基板に比して小さい誘電率を有し、前
記第一の表面に形成されたバッファ層と。
a buffer layer formed on the first surface and having a lower dielectric constant than the electro-optic crystal substrate;

前記先導波路上の異なる二つの位置における前記バッフ
ァ層上および第二の前記表面上にそれぞれ一組宛設けら
れ、各組が前記バッファ層および第二の表面のそれぞれ
の上に設けられた少なくとも1本を含む3本ないしそれ
以上の電極から構成され、対応するそれぞれの位置にお
いて前記先導波路の光軸に垂直な回転電界を発生するた
めの二組の電極群とを備えたことを特徴とする本発明に
係る光偏波制御素子により解決される。
At least one set is provided on each of the buffer layer and the second surface at two different positions on the leading waveguide, and each set is provided on each of the buffer layer and the second surface. It is characterized in that it is composed of three or more electrodes including a book, and includes two sets of electrode groups for generating a rotating electric field perpendicular to the optical axis of the leading waveguide at each corresponding position. This problem is solved by the optical polarization control element according to the present invention.

〔作用〕[Effect]

電気光学結晶基板における光導波路が設けられている表
面に、基板より低誘電率の薄膜を形成し。
A thin film with a dielectric constant lower than that of the substrate is formed on the surface of the electro-optic crystal substrate where the optical waveguide is provided.

この薄膜上および基板裏面に電極を設けることにより、
低電圧駆動が可能な導波路型光偏波制御素子を構成する
By providing electrodes on this thin film and on the back of the substrate,
A waveguide-type optical polarization control element that can be driven at low voltage is constructed.

〔実施例〕〔Example〕

第1図は本発明に係る光偏波制御素子の一実施例を示す
断面図である0例えばLiNbO3のような電気光学結
晶から成る基板10の一方の表面(第一の表面)には、
チタン(Ti)等を拡散して形成した光導波路11が設
けられている。さらに、この表面には3例えば二酸化シ
リコン(Si02)から成るバッファ層12が形成され
ている。さらに、バッファ層12の上には3例えば金(
Au)から成る二つの上部電極13−1および13.2
が、先導波路11から等距離に形成されており、一方、
基板10の裏面(第二の表面)には、少な(とも光導波
路11に最近接する領域を中心として、一つの下部電極
13−3が形成されている。上部電8i13−1および
13−2のそれぞれと下部電極13−3との間に、電源
14および15により電圧を印加することによって、先
導波路11に垂直な方向に回転電界を生じさせる。これ
により3紙面に垂直に先導波路11に入射する光の偏波
の方向が回転される。
FIG. 1 is a sectional view showing one embodiment of the optical polarization control element according to the present invention. On one surface (first surface) of a substrate 10 made of an electro-optic crystal such as LiNbO3, for example,
An optical waveguide 11 formed by diffusing titanium (Ti) or the like is provided. Furthermore, a buffer layer 12 made of silicon dioxide (Si02), for example, is formed on this surface. Furthermore, on the buffer layer 12 there is a layer of 3, for example, gold (
Two upper electrodes 13-1 and 13.2 made of
are formed equidistantly from the leading waveguide 11, and on the other hand,
On the back surface (second surface) of the substrate 10, one lower electrode 13-3 is formed, centered on the area closest to the optical waveguide 11. By applying a voltage between each and the lower electrode 13-3 from the power sources 14 and 15, a rotating electric field is generated in a direction perpendicular to the leading waveguide 11. As a result, a rotating electric field is generated perpendicularly to the plane of the paper 3 and entering the leading waveguide 11. The direction of polarization of the light is rotated.

本実施例においては、基板lOの裏面における先導波路
11の近傍には、先導波路11に平行な溝16が設けら
れている。この場合には、下部電極13−3は。
In this embodiment, a groove 16 parallel to the leading waveguide 11 is provided in the vicinity of the leading waveguide 11 on the back surface of the substrate IO. In this case, the lower electrode 13-3 is.

少なくとも溝16の底面16−1に形成されていれば十
分である。なお、溝16は、必ずしもその底面16−1
が基板lOの裏面に平行になるように設けられる必要は
ない。
It is sufficient that it is formed at least on the bottom surface 16-1 of the groove 16. Note that the groove 16 does not necessarily have a bottom surface 16-1.
does not need to be provided parallel to the back surface of the substrate IO.

上記と同様にして、先導波路11の周囲に、さらに別の
一組の上部電極および下部電極を形成する。
Another set of upper and lower electrodes is formed around the guide waveguide 11 in the same manner as described above.

このようにして、構成された光偏波制御素子におけるそ
れぞれの組の上部電極および下部電極間に印加する電圧
を制御することにより、第2図に示した素子と同等の機
能が得られる。
By controlling the voltage applied between each set of upper and lower electrodes in the optical polarization control element constructed in this way, the same function as the element shown in FIG. 2 can be obtained.

5i02から成るバッファ層12は、光に対する電極の
アイソレーシッン(先導波路11の外部への光のしみ出
しと電極による吸収の防止)を十分にするバッファ層本
来の効果とともに、 LiNbO3から成る基板10に
比して、その誘電率が約1/6と小さいので、電気的に
距離を大きくしたと等価とする効果を有する。
The buffer layer 12 made of 5i02 has the inherent effect of a buffer layer of sufficiently isolating the electrode against light (preventing the light from seeping out of the leading waveguide 11 and being absorbed by the electrode), and has an improved property compared to the substrate 10 made of LiNbO3. Since its dielectric constant is as small as about 1/6, it has the effect of making it electrically equivalent to increasing the distance.

第1図の構造において、 5i02から成るバッファ層
12の厚さは1例えば4000人、 LiNbO3から
成る基板lOの溝16の部分における厚さおよび溝16
の幅は。
In the structure shown in FIG. 1, the thickness of the buffer layer 12 made of 5i02 is 1, for example, 4000, and the thickness of the substrate lO made of LiNbO3 at the groove 16 portion and the thickness of the groove 16 are as follows.
The width of

例えば50μ−である、この場合の駆動電圧は、電極長
を3CIとすると、 40ボルトで、第2図の従来の素
子の115ないし1/10に低減される。なお。
The driving voltage in this case, for example 50 μ-, is 40 volts, assuming an electrode length of 3 CI, which is reduced to 115 to 10 times that of the conventional device of FIG. In addition.

上記寸法の溝16の形成は、ダイシングソー等を用いて
、高精度で実施することができる。
The groove 16 having the above dimensions can be formed with high precision using a dicing saw or the like.

第3図は本発明に係る光偏波制御素子の第二の実施例を
示す断面図であって、第1図におけると同一部分は同一
符号で示しである0図示のように。
FIG. 3 is a cross-sectional view showing a second embodiment of the optical polarization control element according to the present invention, in which the same parts as in FIG. 1 are designated by the same symbols as shown in FIG.

本実施例においては、基板10の裏面には、先導波路1
1を挟んで等距離に二つの下部電極31および32が形
成されている。下部電極31および32は、光導波路1
1に平行かつ、先導波路11を挟んで等距離に設けられ
た溝33および34の内部に形成してもよい。
In this embodiment, a guiding waveguide 1 is provided on the back surface of the substrate 10.
Two lower electrodes 31 and 32 are formed equidistantly from each other with 1 in between. The lower electrodes 31 and 32 are connected to the optical waveguide 1
1 and may be formed inside grooves 33 and 34 provided equidistantly from each other with the leading waveguide 11 in between.

この場合、下部電極31および32は、少な(とも。In this case, the lower electrodes 31 and 32 are small.

溝33および34の底面33−1および34−1に形成
されていることが必要である。
It is necessary that the grooves 33 and 34 are formed on the bottom surfaces 33-1 and 34-1.

第3図の光偏波制御素子の場合、上部電極13−1およ
び13−2と下部電極31および32との間には、先導
波路11において電界が交差するように、電源14およ
び15から電圧を印加する。
In the case of the optical polarization control element shown in FIG. Apply.

なお2本実施例におけるバッファ層12の材料および厚
さ、基板10の材料と溝33および34の底面における
厚さ等の条件は、第1図の実施例の説明において述べた
と同じである。
Note that the conditions in this embodiment, such as the material and thickness of the buffer layer 12, the material of the substrate 10, and the thickness at the bottom of the grooves 33 and 34, are the same as described in the explanation of the embodiment of FIG.

第4図は本発明に係る光偏波制御素子の第三の実、施例
を示す断面図である。本実施例の光偏波制御素子では、
上部電極13−1および1:3−2が形成されているバ
ッファN12の上に、基板10の電気光学結晶と熱膨張
特性が似ている材料から成る補強基板17が接着されて
いる。補強基板17により、光偏波制御素子は機械的強
度が増大される。
FIG. 4 is a sectional view showing a third embodiment of the optical polarization control element according to the present invention. In the optical polarization control element of this example,
A reinforcing substrate 17 made of a material having similar thermal expansion characteristics to the electro-optic crystal of the substrate 10 is bonded onto the buffer N12 on which the upper electrodes 13-1 and 1:3-2 are formed. The reinforcement substrate 17 increases the mechanical strength of the optical polarization control element.

第5図は本発明に係る光偏波制御素子に設けられた溝の
形状を示す側面図である。前記実施例の光偏波制御素子
における基板10に設けられた溝16(第1図および第
4図)と溝33および34(第3図)は、基板10の全
体を横断するように形成されていてもよいが、第5図に
示すように、その長手方向の両端が基板10から成る壁
部18−1および18−2によって遮られた構造とする
ことにより、光偏波制御素子の機械的強度を増大できる
FIG. 5 is a side view showing the shape of a groove provided in the optical polarization control element according to the present invention. The groove 16 (FIGS. 1 and 4) and the grooves 33 and 34 (FIG. 3) provided in the substrate 10 in the optical polarization control element of the above embodiment are formed so as to traverse the entire substrate 10. However, as shown in FIG. 5, by having a structure in which both ends in the longitudinal direction are blocked by walls 18-1 and 18-2 made of the substrate 10, the mechanical structure of the optical polarization control element can be improved. can increase the strength of the target.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、コヒーレント光通信に適した。 According to the present invention, it is suitable for coherent optical communication.

低電圧で駆動できる光偏波制御素子を提供可能とする効
果がある。
This has the effect of making it possible to provide an optical polarization control element that can be driven at low voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光偏波制御素子の一実施例を示す
断面図。 第2図は従来の光偏波制御素子の構造を示す模式図。 第3図は本発明に係る光偏波制御素子の第二の実施例を
示す断面図。 第4図は本発明に係る光偏波制御素子の第三の実施例を
示す断面図。 第5図は本発明に係る光偏波制御素子に設けられた溝の
形状を示す側面図である。 図において。 lOは基板、 11は先導波路、12はバッファ層。 13−1および13−2は上部電極。 13−3.3L 32は下部電極。 14および15は電源、 16.33.34は溝。 16−1.33−1.34−1は底面、17は補強基板
。 18−1および18−2は壁部。 である。 」に発明の 稟あ乏イiす ¥1 園 主谷H耳の不一の案鰻イタ′1 享 3 図 イ足3東 Q 素 千 弔2 閃 未発H1卒三の尖范イ列 算4 図 東発1珂の素子1;あ1す3」1の斤〉AK茅5 聞
FIG. 1 is a sectional view showing one embodiment of the optical polarization control element according to the present invention. FIG. 2 is a schematic diagram showing the structure of a conventional optical polarization control element. FIG. 3 is a sectional view showing a second embodiment of the optical polarization control element according to the present invention. FIG. 4 is a sectional view showing a third embodiment of the optical polarization control element according to the present invention. FIG. 5 is a side view showing the shape of a groove provided in the optical polarization control element according to the present invention. In fig. 10 is a substrate, 11 is a leading waveguide, and 12 is a buffer layer. 13-1 and 13-2 are upper electrodes. 13-3.3L 32 is the lower electrode. 14 and 15 are power supplies, 16.33.34 are grooves. 16-1.33-1.34-1 is the bottom surface, 17 is a reinforcing board. 18-1 and 18-2 are wall portions. It is. ``The invention of the invention is ￟¥1, the owner of the garden H, the ear of the fuichi, the eel ita' 1, the 3, the figure, the foot 3, the east, the Q, the 1,000, 2, the senbihatsu, H1, and the 3rd grade of the three points. 4 Fig. 1 element from east 1;

Claims (1)

【特許請求の範囲】 1)互いに平行な平面から成る二つの表面を有する電気
光学結晶基板と、 第一の該表面の近傍の該基板内に、該表面に平行な光軸
を有するようにして形成された光導波路と、 該電気光学結晶基板に比して小さい誘電率を有し、該第
一の表面に形成されたバッファ層と、該光導波路上の異
なる二つの位置における該バッファ層上および第二の該
表面上にそれぞれ一組宛設けられ、各組が該バッファ層
および該第二の表面のそれぞれの上に設けられた少なく
とも1本を含む3本ないしそれ以上の電極から構成され
、対応するそれぞれの位置において該光導波路の光軸に
垂直な回転電界を発生するための二組の電極群 とを備えたことを特徴とする光偏波制御素子。 2)該バッファ層上に形成された電極は、該光導波路か
ら等距離に設けられた2本の電極であることを特徴とす
る特許請求の範囲第1項記載の光偏波制御素子。 3)該電気光学基板の第二の表面に形成された電極は、
該光導波路から等距離に設けられた2本の電極であるこ
とを特徴とする特許請求の範囲第1項記載の光偏波制御
素子。 4)該電気光学基板の第二の表面に、該光導波路の光軸
に平行な底面を有する溝が設けられており、該第二の表
面に形成された該電極は該溝の底面に形成されているこ
とを特徴とする特許請求の範囲第1項記載の光偏波制御
素子。 5)該溝は該基板の中央部のみに形成されていることを
特徴とする特許請求の範囲第4項記載の光偏波制御素子
。 6)該二組の電極が形成された該バッファ層上に、該電
気光学結晶基板と熱膨脹計数がほぼ等しい別の基板が貼
り合わされていることを特徴とする特許請求の範囲第1
項記載の光偏波制御素子。
[Claims] 1) An electro-optic crystal substrate having two surfaces consisting of planes parallel to each other, and having an optical axis parallel to the surfaces in the substrate near the first surface. an optical waveguide formed; a buffer layer having a dielectric constant smaller than that of the electro-optic crystal substrate; and a buffer layer formed on the first surface; and a buffer layer formed on the buffer layer at two different positions on the optical waveguide. and a second surface, each set comprising three or more electrodes, each set comprising at least one electrode provided on each of the buffer layer and the second surface. , two sets of electrode groups for generating rotating electric fields perpendicular to the optical axis of the optical waveguide at corresponding positions. 2) The optical polarization control element according to claim 1, wherein the electrodes formed on the buffer layer are two electrodes provided equidistantly from the optical waveguide. 3) The electrode formed on the second surface of the electro-optic substrate is
The optical polarization control element according to claim 1, characterized in that it is two electrodes provided equidistantly from the optical waveguide. 4) A groove having a bottom parallel to the optical axis of the optical waveguide is provided on a second surface of the electro-optic substrate, and the electrode formed on the second surface is formed on the bottom of the groove. An optical polarization control element according to claim 1, characterized in that: 5) The optical polarization control element according to claim 4, wherein the groove is formed only in the center of the substrate. 6) Claim 1, characterized in that another substrate having approximately the same thermal expansion coefficient as the electro-optic crystal substrate is bonded onto the buffer layer on which the two sets of electrodes are formed.
The optical polarization control element described in .
JP62149412A 1987-06-16 1987-06-16 Optical polarization control element Expired - Fee Related JP2646558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62149412A JP2646558B2 (en) 1987-06-16 1987-06-16 Optical polarization control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62149412A JP2646558B2 (en) 1987-06-16 1987-06-16 Optical polarization control element

Publications (2)

Publication Number Publication Date
JPS63313120A true JPS63313120A (en) 1988-12-21
JP2646558B2 JP2646558B2 (en) 1997-08-27

Family

ID=15474554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62149412A Expired - Fee Related JP2646558B2 (en) 1987-06-16 1987-06-16 Optical polarization control element

Country Status (1)

Country Link
JP (1) JP2646558B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137323U (en) * 1991-06-13 1992-12-21 横河電機株式会社 Waveguide optical modulator
DE4238251A1 (en) * 1991-11-12 1993-05-13 Hitachi Koki Kk Light beam deflection controller for laser printer or optical disc system - has thin base of electro optical material with electrode controlling deflection through pair of prisms
JPH10239648A (en) * 1997-02-22 1998-09-11 Tdk Corp Waveguide type optical element and optical device
JP2002182173A (en) * 2000-12-15 2002-06-26 Sumitomo Osaka Cement Co Ltd Optical waveguide element and method of manufacturing optical waveguide element
US7292739B2 (en) 2002-09-12 2007-11-06 Sumitomo Osaka Cement Co., Ltd. Optical modulator
US7443504B2 (en) 2003-03-18 2008-10-28 Fujitsu Limited Arbitrary and endless polarization controller and polarization-mode dispersion compensator using the same and arbitrary and endless polarization controlling method
JP2010503047A (en) * 2006-09-12 2010-01-28 キネティック リミテッド Electro-optic waveguide polarization modulator.
US9692595B2 (en) 2010-12-02 2017-06-27 Qinetiq Limited Quantum key distribution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150724A (en) * 1980-04-23 1981-11-21 Nippon Telegr & Teleph Corp <Ntt> Optical frequency modulator
JPS61231522A (en) * 1985-04-08 1986-10-15 Agency Of Ind Science & Technol Optical control type optical switch device
JPS63273833A (en) * 1987-05-01 1988-11-10 Nec Corp Polarization controller
JPS63300219A (en) * 1987-05-29 1988-12-07 Nec Corp Polarization control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150724A (en) * 1980-04-23 1981-11-21 Nippon Telegr & Teleph Corp <Ntt> Optical frequency modulator
JPS61231522A (en) * 1985-04-08 1986-10-15 Agency Of Ind Science & Technol Optical control type optical switch device
JPS63273833A (en) * 1987-05-01 1988-11-10 Nec Corp Polarization controller
JPS63300219A (en) * 1987-05-29 1988-12-07 Nec Corp Polarization control device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137323U (en) * 1991-06-13 1992-12-21 横河電機株式会社 Waveguide optical modulator
DE4238251A1 (en) * 1991-11-12 1993-05-13 Hitachi Koki Kk Light beam deflection controller for laser printer or optical disc system - has thin base of electro optical material with electrode controlling deflection through pair of prisms
JPH10239648A (en) * 1997-02-22 1998-09-11 Tdk Corp Waveguide type optical element and optical device
JP2002182173A (en) * 2000-12-15 2002-06-26 Sumitomo Osaka Cement Co Ltd Optical waveguide element and method of manufacturing optical waveguide element
US7292739B2 (en) 2002-09-12 2007-11-06 Sumitomo Osaka Cement Co., Ltd. Optical modulator
US7443504B2 (en) 2003-03-18 2008-10-28 Fujitsu Limited Arbitrary and endless polarization controller and polarization-mode dispersion compensator using the same and arbitrary and endless polarization controlling method
JP2010503047A (en) * 2006-09-12 2010-01-28 キネティック リミテッド Electro-optic waveguide polarization modulator.
US8611534B2 (en) 2006-09-12 2013-12-17 Qinetiq Limited Electro-optic waveguide polarisation modulator
EP2064588B1 (en) * 2006-09-12 2019-07-31 Qubitekk, Inc. Electro-optic waveguide polarisation modulator
US9692595B2 (en) 2010-12-02 2017-06-27 Qinetiq Limited Quantum key distribution

Also Published As

Publication number Publication date
JP2646558B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
US8855449B1 (en) Adiabatic waveguide polarization converter
US5285507A (en) Controllable polarisation transformer
Ohmachi et al. Electro‐optic light modulator with branched ridge waveguide
JPH09105894A (en) Polarization-independent optical device
KR100472056B1 (en) Polarization-independent optical polymeric intensity modulator
US20230007949A1 (en) Optical Device
JPH07318986A (en) Waveguide type optical switch
JPS63313120A (en) Optical polarization control element
JP3250712B2 (en) Polarization independent light control element
JPH1184434A (en) Light control circuit and its operation method
JP2000028979A (en) Optical control element independent of polarization
JPH0375847B2 (en)
JPH0996731A (en) Waveguide type optical device
JPH04172316A (en) Wave guide type light control device
JP2006243327A (en) Optical waveguide and optical switch using the same
Miyazaki et al. LiNbO 3 optical intensity modulator packaged with monitor photodiode
JPH05297332A (en) Optical modulator
JP2007047345A (en) Optical switch
KR100207599B1 (en) Low electric power optical switch and the production method thereof
JPH05297333A (en) Optical modulator
JPH0756199A (en) Polarization-independent waveguide type optical switch
US11852878B2 (en) Optical device and optical communication apparatus
JPS60177318A (en) Modulated light source
WO2023198035A1 (en) Phase shifter, electro-optical device, optical communication system, and method for manufacturing phase shifter
JPH01128037A (en) Optical switching and modulating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees