JPH10239648A - Waveguide type optical element and optical device - Google Patents

Waveguide type optical element and optical device

Info

Publication number
JPH10239648A
JPH10239648A JP9054079A JP5407997A JPH10239648A JP H10239648 A JPH10239648 A JP H10239648A JP 9054079 A JP9054079 A JP 9054079A JP 5407997 A JP5407997 A JP 5407997A JP H10239648 A JPH10239648 A JP H10239648A
Authority
JP
Japan
Prior art keywords
substrate
waveguide
type optical
optical element
waveguide type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9054079A
Other languages
Japanese (ja)
Other versions
JP3738107B2 (en
Inventor
Naoki Hanajima
直樹 花島
Tooru Kineri
透 木練
Eiki Komuro
栄樹 小室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP05407997A priority Critical patent/JP3738107B2/en
Publication of JPH10239648A publication Critical patent/JPH10239648A/en
Application granted granted Critical
Publication of JP3738107B2 publication Critical patent/JP3738107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the wettability to solder to realize stable grounding and to eliminate the occurrence of higher modes by coating proper areas on side faces and the rear face of an electrooptic crystal substrate, whose principal face an optical waveguide is formed, with a metallic film. SOLUTION: With respect to a waveguide-type optical element provided with an optical waveguide 2 formed on a principal face 1a of a substrate 1 consisting of electro-optic crystal and an exciting electrode 33 and an grounding electrode 34 which are provided in the vicinity of this optical waveguide 2, the substrate surface 1a except light input/output end faces of the substrate 1, a part corresponding to a tapered part 33a of the exciting electrode 33 on the opposite face of the principal face 1a, and a part in the vicinity of a feeder part 33b at the edge of this taper part on side faces of the substrate is coated with a metallic film which is to be an extension part 34a of the grounding electrode 34.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信における光
変調器等に用いられる導波路型光素子及び光デバイスに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type optical element and an optical device used for an optical modulator in optical communication.

【0002】[0002]

【従来の技術】従来、この種の導波路型光デバイスとし
て、例えばニオブ酸リチウム(LiNbO3)結晶基板を
用いたマッハツェンダ型光変調器が知られている。
2. Description of the Related Art A Mach-Zehnder type optical modulator using a lithium niobate (LiNbO 3 ) crystal substrate, for example, is known as this type of waveguide type optical device.

【0003】ニオブ酸リチウム結晶基板上に形成された
光導波路と制御用電極とからなるこのデバイスは、近
年、その広帯域性、チャーピングが小さい(パルス波形
が歪み難い)等の優れた変調特性が得られることから、
光通信システムにおいて幅広く使用されている。
[0003] In recent years, this device comprising an optical waveguide and a control electrode formed on a lithium niobate crystal substrate has excellent modulation characteristics such as broadband characteristics and small chirping (pulse waveform is hardly distorted). From what you get,
It is widely used in optical communication systems.

【0004】図6は従来のマッハツェンダ型光変調器と
して用いられる導波路型光素子、図7は該導波路型光素
子を金属筺体に装着した導波路型光デバイスを示す。こ
れらの図において、1は焦電性を有する電気光学結晶基
板としてのニオブ酸リチウム結晶基板、2はその基板の
主面に形成された光導波路であり、該光導波路近傍の主
面上に複数の制御用電極を構成する励起電極3及び接地
電極4が平面電極として設けられている。ここで、一方
の制御用電極である励起電極3の両端寄り部分はテーパ
ー部3aとなっており、該テーパー部3aの端縁が高周
波信号を印加するフィーダー部3bとなっている。
FIG. 6 shows a waveguide type optical element used as a conventional Mach-Zehnder type optical modulator, and FIG. 7 shows a waveguide type optical device in which the waveguide type optical element is mounted on a metal housing. In these figures, 1 is a lithium niobate crystal substrate as an electro-optic crystal substrate having pyroelectricity, 2 is an optical waveguide formed on the main surface of the substrate, and a plurality of optical waveguides are formed on the main surface near the optical waveguide. The excitation electrode 3 and the ground electrode 4 which constitute the control electrodes are provided as planar electrodes. Here, a portion near both ends of the excitation electrode 3, which is one control electrode, is a tapered portion 3a, and an edge of the tapered portion 3a is a feeder portion 3b for applying a high-frequency signal.

【0005】図6のような導波路型光素子10を、図7
に示す如く金属筺体20に装着することで導波路型光デ
バイスが構成される。光素子10の金属筺体20への装
着は、他方の制御用電極としての平面電極の接地電極4
を側縁部分にてはんだ付けで金属筺体20に固定するこ
とで行われる。また、励起電極3はRFコネクタ21の
センターピン21aとはんだ付けで接続される。
[0005] A waveguide type optical device 10 as shown in FIG.
A waveguide type optical device is constructed by mounting the device on the metal housing 20 as shown in FIG. The mounting of the optical element 10 on the metal housing 20 is performed by connecting the ground electrode 4 of the flat electrode as the other control electrode.
Is fixed to the metal housing 20 by soldering at the side edge portions. The excitation electrode 3 is connected to the center pin 21a of the RF connector 21 by soldering.

【0006】[0006]

【発明が解決しようとする課題】ところで、1GHz以
上の高周波での光変調は良好な電気的周波数特性が得ら
れていることがその前提条件となるため、インピーダン
スマッチング、接地の安定性といった純電気的な特性を
考慮した光素子構成、及びその実装方法をとる必要があ
る。
The optical modulation at a high frequency of 1 GHz or higher is based on the premise that good electrical frequency characteristics are obtained. Therefore, pure electric modulation such as impedance matching and grounding stability is required. It is necessary to take an optical element configuration and a mounting method thereof in consideration of specific characteristics.

【0007】接地の安定化のためには、導波路型光素子
の基板上に形成された平面電極の接地電極と金属筺体と
をできるだけ広い面積で接続することが好ましいが、導
波路型光素子を細形化した場合、ワイヤボンディングで
はサイズ的に難しく、導電性樹脂ではその抵抗によって
高周波で損失が増大したり、信頼性の問題が生じる。
In order to stabilize the ground, it is preferable to connect the ground electrode of the planar electrode formed on the substrate of the waveguide type optical element and the metal housing with as large an area as possible. In the case where the size is reduced, wire bonding is difficult in terms of size, and the resistance of the conductive resin increases at a high frequency due to its resistance, and there is a problem of reliability.

【0008】また、図6及び図7に示した従来例の如く
はんだによる接続では、光素子10の電極3,4以外の
部分(結晶表面)ははんだの濡れ性が極めて小さくその
作業性が悪く、図7の円P内の拡大断面図からわかるよ
うに、平面電極の接地電極4と金属筺体20とを接続す
るはんだ溶融部22は基板側面に回り込むことはでき
ず、接地電極4と金属筺体20との接地の接続の再現性
が得られないという問題がある。さらに、この接地の不
安定性に起因して図8の高周波電気特性(透過パワー
(S21)の周波数特性)の如く、伝送特性にディップが
生じてしまう問題があった。
In connection with solder as in the conventional example shown in FIGS. 6 and 7, the portions (crystal surfaces) of the optical element 10 other than the electrodes 3 and 4 have extremely low solder wettability and poor workability. As can be seen from the enlarged sectional view in the circle P of FIG. 7, the solder fusion portion 22 connecting the ground electrode 4 of the flat electrode and the metal housing 20 cannot go around the side surface of the substrate, and the ground electrode 4 and the metal housing There is a problem that reproducibility of the connection of the ground to the ground 20 cannot be obtained. Further, there is a problem that a dip occurs in the transmission characteristic as shown in the high-frequency electric characteristic (frequency characteristic of the transmission power (S 21 )) in FIG. 8 due to the instability of the ground.

【0009】また、特開平5−158002号では、接
地(アース)強化の為に導電性材料で光素子のほぼ全体
をコートする構造が提案されているが、この場合には、
光素子と金属筺体との接続作業性の問題は改善される
が、制御用電極のフィーダー部でマイクロ波の高次モー
ドが発生し高周波特性を著しく損なってしまうという問
題があった。
Japanese Patent Application Laid-Open No. 5-158002 proposes a structure in which almost the entire optical element is coated with a conductive material to enhance grounding (earth).
Although the problem of the connection workability between the optical element and the metal housing is improved, there is a problem that a high-order mode of microwaves is generated in the feeder portion of the control electrode, and the high-frequency characteristics are significantly deteriorated.

【0010】本発明の目的は、上記の点に鑑み、主面に
光導波路を形成した電気光学結晶基板の側面、裏面の適
切な領域を金属膜で被覆することで、はんだに対する濡
れ性を大きくし、安定した接地を可能とするとともに高
次モードの発生のない導波路型光素子及び光デバイスを
提供することにある。
In view of the foregoing, an object of the present invention is to increase the wettability to solder by coating an appropriate region on the side surface and the back surface of an electro-optic crystal substrate having an optical waveguide on the main surface with a metal film. It is another object of the present invention to provide a waveguide-type optical element and an optical device that enable stable grounding and do not generate higher-order modes.

【0011】本発明のその他の目的や新規な特徴は後述
の実施の形態において明らかにする。
Other objects and novel features of the present invention will be clarified in embodiments described later.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の導波路型光素子は、電気光学結晶よりなる
基板の主面に形成された光導波路と、該光導波路近傍に
設けられた複数の制御用電極とを有していて、前記基板
の光入出力端面と、前記基板における前記主面の反対面
のうち前記制御用電極のテーパー部に対応した部分と、
前記基板側面のうち前記テーパー部端縁のフィーダー部
の近傍部分とを除き、前記基板表面を金属膜で被覆した
構成としている。
In order to achieve the above object, a waveguide type optical device according to the present invention comprises an optical waveguide formed on a main surface of a substrate made of an electro-optic crystal, and an optical waveguide provided near the optical waveguide. Having a plurality of control electrodes, the light input / output end surface of the substrate, and a portion corresponding to the tapered portion of the control electrode on the opposite surface of the main surface of the substrate,
Except for a portion of the side surface of the substrate near the feeder portion at the edge of the tapered portion, the surface of the substrate is covered with a metal film.

【0013】また、本発明の導波路型光デバイスは、電
気光学結晶よりなる基板の主面に形成された光導波路
と、該光導波路近傍に設けられた複数の制御用電極とを
有する導波路型光素子を、金属筺体に装着した構成にお
いて、前記導波路型光素子は、前記基板の光入出力端面
と、前記基板における前記主面の反対面のうち前記制御
用電極のテーパー部に対応した部分と、前記基板側面の
うち前記テーパー部端縁のフィーダー部の近傍部分とを
除き、前記基板表面を金属膜で被覆してなり、該金属膜
を前記金属筺体にはんだ付けすることで前記導波路型光
素子を前記金属筺体に固定したことを特徴としている。
Further, a waveguide type optical device according to the present invention is a waveguide having an optical waveguide formed on a main surface of a substrate made of an electro-optic crystal, and a plurality of control electrodes provided near the optical waveguide. In a configuration in which the optical element is mounted on a metal housing, the waveguide-type optical element corresponds to a light input / output end surface of the substrate and a tapered portion of the control electrode on a surface opposite to the main surface of the substrate. Except for the portion and the side surface of the substrate, except for a portion near the feeder portion at the edge of the tapered portion, the substrate surface is coated with a metal film, and the metal film is soldered to the metal housing. A waveguide-type optical element is fixed to the metal housing.

【0014】[0014]

【発明の実施の形態】以下、本発明に係る導波路型光素
子及び光デバイスの実施の形態を図面に従って説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the waveguide type optical device and optical device according to the present invention will be described below with reference to the drawings.

【0015】図1は本発明に係る導波路型光素子の実施
の形態であって基板の主面(上面)及び右側面を見た斜
視図、図2は基板の裏面(主面の反対面)を見た斜視
図、図3は基板の主面及び左側面を見た斜視図である。
これらの図に示される導波路型光素子30は、マッハツ
ェンダ型光変調器としての構造を持ち、1は焦電性を有
する電気光学結晶基板としてのニオブ酸リチウム結晶基
板、2はその基板の主面1aに形成された光導波路であ
り、該光導波路近傍の主面上に複数の制御用電極を構成
する励起電極33及び接地電極34が設けられている。
ここで、一方の制御用電極である励起電極33の両端寄
り部分はテーパー部33aとなっており、該テーパー部
33aの端縁が高周波信号を印加するフィーダー部33
bとなっている。
FIG. 1 is a perspective view of an embodiment of a waveguide type optical device according to the present invention, in which a main surface (upper surface) and a right side surface of a substrate are viewed, and FIG. 3) is a perspective view of the main surface and the left side of the substrate.
The waveguide type optical element 30 shown in these figures has a structure as a Mach-Zehnder type optical modulator, 1 is a lithium niobate crystal substrate as an electro-optic crystal substrate having pyroelectricity, and 2 is a main component of the substrate. An excitation electrode 33 and a ground electrode 34 that constitute a plurality of control electrodes are provided on a main surface near the optical waveguide, which is an optical waveguide formed on the surface 1a.
Here, a portion near both ends of the excitation electrode 33 which is one control electrode is a tapered portion 33a, and an edge of the tapered portion 33a is a feeder portion 33 for applying a high frequency signal.
b.

【0016】前記接地電極34の延長部34aは基板1
の左側面1b、右側面1c、裏面1dに金属膜として延
在し、基板表面を被覆している。但し、基板1の両端面
である光入出力端面1e,1fには延長部34aは設け
られていない。また、光入出力端面1e,1fに近い基
板各面の領域Aにも延長部34aは設けられていない。
この金属膜の無い領域Aは、図2の基板裏面を示す斜視
図のように、裏面1dにおいてはテーパー部33aに対
応する部分にも広がっている。つまり、基板1を挟んで
テーパー部33aに対向する基板裏面部分には金属膜が
存在しないようにしている。さらに、図3の如く左側面
1bのうち前記テーパー部端縁のフィーダー部33bの
近傍部分となる領域Bにも延長部34aは設けられてい
ない。
The extension 34a of the ground electrode 34 is
Extend as a metal film on the left side surface 1b, the right side surface 1c, and the back surface 1d, and cover the substrate surface. However, the optical input / output end faces 1e and 1f, which are both end faces of the substrate 1, are not provided with the extension 34a. Further, the extension 34a is not provided in the region A on each surface of the substrate near the light input / output end surfaces 1e and 1f.
The region A without the metal film also extends to a portion corresponding to the tapered portion 33a on the back surface 1d as shown in the perspective view showing the back surface of the substrate in FIG. That is, no metal film is present on the back surface of the substrate facing the tapered portion 33a with the substrate 1 interposed therebetween. Further, as shown in FIG. 3, the extension portion 34a is not provided in a region B of the left side surface 1b which is a portion near the feeder portion 33b at the edge of the tapered portion.

【0017】なお、基板1の主面1aにおいて、励起電
極33と接地電極34との間は電極間ギャップGであ
り、当然金属膜は無い部分である。
In the main surface 1a of the substrate 1, a gap G between the excitation electrode 33 and the ground electrode 34 is an inter-electrode gap G, which is a portion having no metal film.

【0018】前記光導波路2、励起電極33、接地電極
34及びその延長部34aの作製方法は、例えば以下の
工程で行われる。
The method of manufacturing the optical waveguide 2, the excitation electrode 33, the ground electrode 34 and the extension 34a thereof is carried out, for example, by the following steps.

【0019】まず、z-cutLiNbO3基板(例えば直径
3インチ、厚み0.5mm)の主面上に膜厚800オング
ストロームで幅6μmのTiを真空蒸着とリフトオフに
よって成膜し、7.5時間1050℃の乾燥-O2中にて
熱拡散させ光導波路2を形成する。
First, a Ti film having a thickness of 800 angstroms and a width of 6 μm is formed on a main surface of a z-cut LiNbO 3 substrate (for example, a diameter of 3 inches and a thickness of 0.5 mm) by vacuum evaporation and lift-off for 7.5 hours 1050. The optical waveguide 2 is formed by thermal diffusion in dry -O 2 at ° C.

【0020】次に、基板主面にSiO2を1μm蒸着した
後、Crを50nm、Auを50nm順に下地膜の成膜を行
い、ガイドレジスト(電解メッキ不要部分に塗布)の形
成を経て電解メッキで厚さ15μmのAu電極を前記ガ
イドレジストの無い部分に形成する。
Next, after depositing SiO 2 on the main surface of the substrate at a thickness of 1 μm, an undercoat film is formed in the order of 50 nm for Cr and 50 nm for Au, and then a guide resist (coated on a portion not requiring electrolytic plating) is formed. Then, an Au electrode having a thickness of 15 μm is formed in a portion where the guide resist is not provided.

【0021】ガイドレジスト及びその下層の下地膜をエ
ッチングで除去してから、所定の基板1の形状に切断、
端面研磨を行う。
After removing the guide resist and the underlying film underlying the guide resist by etching, the guide resist is cut into a predetermined substrate 1 shape.
Polish the end face.

【0022】そして、基板1の光入出力端面1e,1f
となる研磨端面と、電極が形成された主面1aと、前記
領域A(テーパー部に対応した裏面部分等)と、領域B
(左側面1bのうちテーパー部端縁のフィーダー部の近
傍部分)とにフォトレジスト(無電解メッキ不要部分に
塗布)を筆で塗布した後、電解液に浸漬し無電解Niメ
ッキを行いレジストを剥離して図1乃至図3の導波路型
光素子を作製することができる。
Then, the light input / output end faces 1e, 1f of the substrate 1
Polished end surface, the main surface 1a on which the electrodes are formed, the region A (the back surface portion corresponding to the tapered portion, etc.), and the region B
After applying a photoresist (applied to the unnecessary portion of the electroless plating) with a brush (a portion near the feeder portion at the tapered edge of the left side surface 1b), the resist is immersed in an electrolytic solution to perform electroless Ni plating. By peeling off, the waveguide type optical device of FIGS. 1 to 3 can be manufactured.

【0023】この導波路型光素子によれば、基板1に形
成された接地電極34の延長部34aは基板1の左側面
1b、右側面1c、裏面1dに金属膜として延在して基
板表面を被覆しており、左右側面の金属膜部分を利用し
て安定した接地を広い面積で実行できるとともに、無用
な結合を避けることができる。
According to this waveguide type optical device, the extension 34a of the ground electrode 34 formed on the substrate 1 extends as a metal film on the left side 1b, the right side 1c, and the back 1d of the substrate 1 so as to extend to the surface of the substrate. And stable grounding can be performed in a wide area using the metal film portions on the left and right side surfaces, and unnecessary coupling can be avoided.

【0024】また、基板裏面1d(主面の反対面)のう
ち励起電極33のテーパー部33aに対応した部分(つ
まり領域A)と、基板側面のうちテーパー部端縁のフィ
ーダー部33bの近傍部分(つまり領域B)には金属膜
は形成されていないため、マイクロ波の高次モードの発
生を無くし、高周波特性を良好に維持することができ
る。
Further, a portion (that is, region A) of the back surface 1d of the substrate (opposite main surface) corresponding to the tapered portion 33a of the excitation electrode 33, and a portion of the side surface of the substrate near the feeder portion 33b at the edge of the tapered portion. Since the metal film is not formed in (that is, in the region B), generation of a high-order mode of microwaves can be eliminated, and high-frequency characteristics can be maintained well.

【0025】図4は図1乃至図3の導波路型光素子を金
属筺体に装着してなる導波路型光デバイスの実施の形態
を示す。前記導波路型光素子30の金属筺体20への装
着は、接地電極34及びその延長部34aの両側面部分
をはんだ付けで金属筺体20に固定することで行われ
る。また、励起電極33はRFコネクタ21のセンター
ピン21aとはんだ付けで直接的に接続される。
FIG. 4 shows an embodiment of a waveguide type optical device in which the waveguide type optical element shown in FIGS. 1 to 3 is mounted on a metal housing. The mounting of the waveguide type optical element 30 on the metal housing 20 is performed by fixing the ground electrode 34 and both side portions of the extension 34a to the metal housing 20 by soldering. The excitation electrode 33 is directly connected to the center pin 21a of the RF connector 21 by soldering.

【0026】前記導波路型光素子30のはんだ付けは、
例えば、金属筺体20を真鍮とし、該筺体20の素子固
定部分にペーストはんだを塗布してから素子30を置き
加熱することで行うことができる。
The soldering of the waveguide type optical element 30 is as follows.
For example, the metal housing 20 may be made of brass, paste solder may be applied to an element fixing portion of the housing 20, and then the element 30 may be placed and heated.

【0027】この構造によれば、図1乃至図3の光素子
30の両側面の大部分が金属膜としての延長部34aで
覆われており、光素子30の表面と金属筺体20の固定
面とは、はんだに対して良好な濡れ性を持つことになる
ため、図4の円Q内の拡大断面図からわかるように、溶
融に伴い接続固定部に入り込んだはんだ溶融部32は自
然に均一になり、簡単に安定した接地性を得ることがで
きる。つまり、はんだ付けの作業性は良好となり、接地
電極34及び延長部34aと金属筺体20とを接続する
はんだ付け面積は十分広く、両者の接続面積を十分大き
くして、接地の不安定性に起因する不都合を除去でき
る。
According to this structure, most of both side surfaces of the optical element 30 shown in FIGS. 1 to 3 are covered with the extension portions 34a as the metal film, and the surface of the optical element 30 and the fixing surface of the metal housing 20 are fixed. 4 means that the solder has good wettability. As can be seen from the enlarged sectional view in the circle Q in FIG. And stable grounding properties can be easily obtained. In other words, the workability of the soldering is improved, and the soldering area for connecting the ground electrode 34 and the extension 34a to the metal housing 20 is sufficiently large, and the connection area between the two is sufficiently large, resulting in grounding instability. Inconvenience can be eliminated.

【0028】また、前記導波路型光素子30の金属筺体
20への実装固定後、光変調器としての高周波特性を測
定したところ、図5の高周波電気特性(透過パワー(S
21)の周波数特性)の如く伝送特性のばらつき(ディッ
プ)の殆どない良好な特性が得られた。
After mounting and fixing the waveguide type optical element 30 to the metal housing 20, high-frequency characteristics as an optical modulator were measured.
Good characteristics with almost no variation (dip) in the transmission characteristics as in ( 21 ) frequency characteristics) were obtained.

【0029】以上本発明の実施の形態について説明して
きたが、本発明はこれに限定されることなく請求項の記
載の範囲内において各種の変形、変更が可能なことは当
業者には自明であろう。
Although the embodiments of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited to the embodiments and various modifications and changes can be made within the scope of the claims. There will be.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
その実装の作業性にすぐれ高周波特性も良好な導波路型
光素子及び光デバイスを得ることができる。
As described above, according to the present invention,
It is possible to obtain a waveguide type optical element and an optical device which are excellent in the workability of the mounting and have good high frequency characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る導波路型光素子の実施の形態であ
って基板の主面及び右側面を見た斜視図である。
FIG. 1 is a perspective view of an embodiment of a waveguide type optical element according to the present invention, showing a main surface and a right side surface of a substrate.

【図2】同じく基板の裏面(主面の反対面)を見た斜視
図である。
FIG. 2 is a perspective view of the back surface of the substrate (an opposite surface of the main surface).

【図3】同じく基板の主面及び左側面を見た斜視図であ
る。
FIG. 3 is a perspective view of a main surface and a left side surface of the substrate.

【図4】本発明に係る導波路型光デバイスの実施の形態
を示す横断面図である。
FIG. 4 is a cross-sectional view showing an embodiment of a waveguide optical device according to the present invention.

【図5】本発明に係る導波路型光デバイスの実施の形態
の場合の高周波電気特性図である。
FIG. 5 is a high-frequency electrical characteristic diagram in the case of an embodiment of a waveguide optical device according to the present invention.

【図6】従来の導波路型光素子を示す斜視図である。FIG. 6 is a perspective view showing a conventional waveguide type optical element.

【図7】従来の導波路型光デバイスを示す横断面図であ
る。
FIG. 7 is a cross-sectional view showing a conventional waveguide type optical device.

【図8】従来の場合の高周波電気特性図である。FIG. 8 is a graph showing high-frequency electric characteristics in a conventional case.

【符号の説明】[Explanation of symbols]

1 基板 2 光導波路 3,33 励起電極 3a,33a テーパー部 3b,33b フィーダー部 4,34 接地電極 10,30 導波路型光素子 20 金属筺体 21 RFコネクタ 22,32 はんだ溶融部 34a 延長部 DESCRIPTION OF SYMBOLS 1 Substrate 2 Optical waveguide 3, 33 Excitation electrode 3a, 33a Taper part 3b, 33b Feeder part 4, 34 Ground electrode 10, 30 Waveguide type optical element 20 Metal housing 21 RF connector 22, 32 Solder fusion part 34a Extension part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気光学結晶よりなる基板の主面に形成
された光導波路と、該光導波路近傍に設けられた複数の
制御用電極とを有する導波路型光素子において、 前記基板の光入出力端面と、前記基板における前記主面
の反対面のうち前記制御用電極のテーパー部に対応した
部分と、前記基板側面のうち前記テーパー部端縁のフィ
ーダー部の近傍部分とを除き、前記基板表面を金属膜で
被覆したことを特徴とする導波路型光素子。
1. A waveguide type optical device comprising: an optical waveguide formed on a main surface of a substrate made of an electro-optic crystal; and a plurality of control electrodes provided in the vicinity of the optical waveguide. An output end surface, a portion of the substrate opposite to the main surface corresponding to a tapered portion of the control electrode, and a portion of the substrate side surface except for a portion near a feeder portion at an edge of the tapered portion. A waveguide-type optical element having a surface coated with a metal film.
【請求項2】 電気光学結晶よりなる基板の主面に形成
された光導波路と、該光導波路近傍に設けられた複数の
制御用電極とを有する導波路型光素子を、金属筺体に装
着してなる導波路型光デバイスにおいて、 前記導波路型光素子は、前記基板の光入出力端面と、前
記基板における前記主面の反対面のうち前記制御用電極
のテーパー部に対応した部分と、前記基板側面のうち前
記テーパー部端縁のフィーダー部の近傍部分とを除き、
前記基板表面を金属膜で被覆してなり、該金属膜を前記
金属筺体にはんだ付けすることで前記導波路型光素子を
前記金属筺体に固定したことを特徴とする導波路型光デ
バイス。
2. A waveguide type optical element having an optical waveguide formed on a main surface of a substrate made of an electro-optic crystal and a plurality of control electrodes provided near the optical waveguide is mounted on a metal housing. In the waveguide type optical device, the waveguide type optical element includes an optical input / output end face of the substrate and a portion corresponding to a tapered portion of the control electrode on a surface of the substrate opposite to the main surface, Except for a portion near the feeder portion of the tapered portion edge of the substrate side surface,
A waveguide-type optical device, wherein the surface of the substrate is covered with a metal film, and the metal film is soldered to the metal housing to fix the waveguide-type optical element to the metal housing.
JP05407997A 1997-02-22 1997-02-22 Waveguide type optical element and optical device Expired - Fee Related JP3738107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05407997A JP3738107B2 (en) 1997-02-22 1997-02-22 Waveguide type optical element and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05407997A JP3738107B2 (en) 1997-02-22 1997-02-22 Waveguide type optical element and optical device

Publications (2)

Publication Number Publication Date
JPH10239648A true JPH10239648A (en) 1998-09-11
JP3738107B2 JP3738107B2 (en) 2006-01-25

Family

ID=12960617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05407997A Expired - Fee Related JP3738107B2 (en) 1997-02-22 1997-02-22 Waveguide type optical element and optical device

Country Status (1)

Country Link
JP (1) JP3738107B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001283A1 (en) * 2001-06-21 2003-01-03 Codeon Corporation Low-loss electrode structures using extended electrical connections for optical modulation applications
EP1341027A2 (en) * 2002-02-07 2003-09-03 Fujitsu Limited Optical modulator module and optical modulator
US6950218B2 (en) 2003-12-17 2005-09-27 Fujitsu Limited Optical modulator
JP2012078407A (en) * 2010-09-30 2012-04-19 Sumitomo Osaka Cement Co Ltd Optical waveguide element and method for manufacturing optical waveguide element
JP2016012037A (en) * 2014-06-30 2016-01-21 住友大阪セメント株式会社 Light modulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313120A (en) * 1987-06-16 1988-12-21 Fujitsu Ltd Optical polarization control element
JPH01149016A (en) * 1987-12-07 1989-06-12 Matsushita Electric Ind Co Ltd Acoustooptic element
JPH05158002A (en) * 1991-12-09 1993-06-25 Sumitomo Cement Co Ltd Optical waveguide element
JPH05173099A (en) * 1991-12-17 1993-07-13 Hikari Keisoku Gijutsu Kaihatsu Kk Optical control element
JPH07181437A (en) * 1993-12-24 1995-07-21 Nippon Telegr & Teleph Corp <Ntt> Optical control element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313120A (en) * 1987-06-16 1988-12-21 Fujitsu Ltd Optical polarization control element
JPH01149016A (en) * 1987-12-07 1989-06-12 Matsushita Electric Ind Co Ltd Acoustooptic element
JPH05158002A (en) * 1991-12-09 1993-06-25 Sumitomo Cement Co Ltd Optical waveguide element
JPH05173099A (en) * 1991-12-17 1993-07-13 Hikari Keisoku Gijutsu Kaihatsu Kk Optical control element
JPH07181437A (en) * 1993-12-24 1995-07-21 Nippon Telegr & Teleph Corp <Ntt> Optical control element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6643048B2 (en) 2000-11-03 2003-11-04 Codeon Corporation Low-loss electrode structures using resistive connections for optical modulation applications
WO2003001283A1 (en) * 2001-06-21 2003-01-03 Codeon Corporation Low-loss electrode structures using extended electrical connections for optical modulation applications
EP1341027A2 (en) * 2002-02-07 2003-09-03 Fujitsu Limited Optical modulator module and optical modulator
EP1341027A3 (en) * 2002-02-07 2003-09-17 Fujitsu Limited Optical modulator module and optical modulator
US6873748B2 (en) 2002-02-07 2005-03-29 Fujitsu Limited Optical modulator module and optical modulator
US6950218B2 (en) 2003-12-17 2005-09-27 Fujitsu Limited Optical modulator
JP2012078407A (en) * 2010-09-30 2012-04-19 Sumitomo Osaka Cement Co Ltd Optical waveguide element and method for manufacturing optical waveguide element
JP2016012037A (en) * 2014-06-30 2016-01-21 住友大阪セメント株式会社 Light modulator

Also Published As

Publication number Publication date
JP3738107B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
JP3963313B2 (en) Optical waveguide device, optical modulator and optical modulator mounting structure
US6522793B1 (en) Low voltage electro-optic modulator with integrated driver
US6741378B2 (en) Optical modulator having element for varying optical phase by electrooptic effect
US5005932A (en) Electro-optic modulator
EP0813092B1 (en) Optical waveguide modulator with travelling-wave type electrodes
US6304685B1 (en) Low drive voltage LiNbO3 intensity modulator with reduced electrode loss
WO2005111703A1 (en) Optical waveguide device
JP3088988B2 (en) Traveling wave optical modulator and optical modulation method
JP2758538B2 (en) Light modulation element, light modulation device, and driving method thereof
JP6540744B2 (en) Optical device
US8774564B2 (en) Optical waveguide element module
JP3738107B2 (en) Waveguide type optical element and optical device
JP3559170B2 (en) Waveguide type optical device
JP2004294918A (en) Optical device
JP2919132B2 (en) Light modulator
US20040001672A1 (en) Optical waveguide device
JP2885218B2 (en) Light control device
JP2963989B1 (en) Light modulator
US6950218B2 (en) Optical modulator
JP2000131658A (en) Optical waveguide device
JP2871645B2 (en) Waveguide type optical device
JP2004245991A (en) Optical waveguide device and structure combining the same and optical transmission member
JP2000241780A (en) Waveguide optical modulator
WO2004086126A1 (en) Waveguide optical modulator
JPH0798442A (en) Waveguide type optical device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees