JPH04373173A - Solid state image sensing device - Google Patents

Solid state image sensing device

Info

Publication number
JPH04373173A
JPH04373173A JP3175852A JP17585291A JPH04373173A JP H04373173 A JPH04373173 A JP H04373173A JP 3175852 A JP3175852 A JP 3175852A JP 17585291 A JP17585291 A JP 17585291A JP H04373173 A JPH04373173 A JP H04373173A
Authority
JP
Japan
Prior art keywords
region
type
charge transfer
state image
transfer gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3175852A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyaki
博 宮木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3175852A priority Critical patent/JPH04373173A/en
Publication of JPH04373173A publication Critical patent/JPH04373173A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To make it unnecessary to increase the substrate voltage to be applied for blooming control, by ensuring potential barrier height at a transfer gate region to be constant, when said region is contracted by increasing the density of a solid-state image sensing element. CONSTITUTION:In a solid-state image sensing element wherein an N-type light receiving element 6, an N-type charge transfer region 3 and a P-type transfer gate region 5 are formed in the surface region of a P-type well, an N<-> type region 4 whose impurity concentration is lower than the N-type charge transfer region 3 is formed in the part adjacent to the transfer gate region 5.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電荷転送装置を用いた
固体撮像素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image sensor using a charge transfer device.

【0002】0002

【従来の技術】図4は、この種従来の固体撮像素子の断
面図である。n型半導体基板1上にp型ウェル2が形成
され、p型ウェル2の表面領域内には、受光部として接
合が深く濃度の低いn型受光領域6とこれよりも接合が
浅く濃度の高いp+ 型領域7が形成され、また信号電
荷を紙面に垂直方向に転送するためのn型電荷転送領域
3と、受光領域6から電荷転送領域3への信号電荷の転
送路となるp型トランスファゲート領域5とが形成され
、これらの各領域はp+型のチャネルストップ領域8に
より分離されている。半導体基板上にはゲート酸化膜9
を介してゲート電極10が形成されており、その上には
受光部上に開口部12を有する遮光膜11が形成されて
いる。
2. Description of the Related Art FIG. 4 is a sectional view of a conventional solid-state image sensor of this type. A p-type well 2 is formed on an n-type semiconductor substrate 1, and in the surface region of the p-type well 2, an n-type light-receiving region 6 as a light-receiving portion has a deep junction and a low concentration, and an n-type light-receiving region 6 has a shallower junction and a higher concentration. A p+ type region 7 is formed, an n-type charge transfer region 3 for transferring signal charges in a direction perpendicular to the plane of the paper, and a p-type transfer gate serving as a transfer path for signal charges from the light receiving region 6 to the charge transfer region 3. A region 5 is formed, and each region is separated by a p+ type channel stop region 8. A gate oxide film 9 is formed on the semiconductor substrate.
A gate electrode 10 is formed through the gate electrode 10, and a light shielding film 11 having an opening 12 above the light receiving portion is formed thereon.

【0003】開口部12から入射した光により生成せし
められた信号電荷は、n型受光領域6内に蓄積される。 蓄積された信号電荷は、ゲート電極10に読み出しパル
スを印加することにより、比較的低濃度のp型トランス
ファゲート領域5を介して、n型電荷転送領域3に読み
出される。
Signal charges generated by light incident through the aperture 12 are accumulated in the n-type light receiving region 6. The accumulated signal charges are read out to the n-type charge transfer region 3 via the relatively lightly doped p-type transfer gate region 5 by applying a read pulse to the gate electrode 10 .

【0004】次に、従来の固体撮像素子の障壁構造につ
いて、図5の電位障壁図を用いて説明する。従来の固体
撮像素子では、受光領域6内に蓄積された信号電荷が、
トランスファゲート領域5の電位障壁PB1 を超えて
電荷転送部3に流れ出すことにより偽信号を発生させる
ブルーミング現象を防ぐために、n型半導体基板1に適
正な正電荷を印加し、受光領域6直下のp型ウェル2の
電位障壁PB2 を押し下げて、n型半導体基板へ過剰
な信号電荷を引き抜いてブルーミング制御を行っている
Next, the barrier structure of a conventional solid-state image sensor will be explained using the potential barrier diagram shown in FIG. In the conventional solid-state image sensor, the signal charges accumulated in the light-receiving region 6 are
In order to prevent the blooming phenomenon that generates false signals by exceeding the potential barrier PB1 of the transfer gate region 5 and flowing into the charge transfer section 3, an appropriate positive charge is applied to the n-type semiconductor substrate 1, and the p Blooming control is performed by pushing down the potential barrier PB2 of the type well 2 and extracting excess signal charges to the n-type semiconductor substrate.

【0005】[0005]

【発明が解決しようとする課題】固体撮像素子は、小型
化、高画素化を要請されているが、その場合でも必要な
信号電荷量を確保するには、受光領域面積と電荷転送領
域の減少を避けなければならない。そのため、高密度化
を達成するには、チャネルストップ領域とトランスファ
ゲート領域を縮小させる必要が生じる。
[Problems to be Solved by the Invention] Solid-state image sensors are required to be smaller and have more pixels, but even in this case, in order to secure the necessary amount of signal charge, the area of the light receiving area and the charge transfer area must be reduced. must be avoided. Therefore, in order to achieve higher density, it is necessary to reduce the channel stop region and transfer gate region.

【0006】ところが、従来の固体撮像素子のトランス
ファゲート構造では、濃度1016cm−3程度のp型
トランスファゲート領域と濃度1017cm−3程度の
n型電荷転送領域が直接接しているため、特にトランス
ファゲート領域のチャネル長を1μm以下に縮小させた
場合には短チャネル効果が現われ、受光時に電位障壁が
低下して受光部から電荷転送部への信号の流出が生じや
すくなる。
However, in the transfer gate structure of a conventional solid-state image sensor, the p-type transfer gate region with a concentration of about 1016 cm-3 and the n-type charge transfer region with a concentration of about 1017 cm-3 are in direct contact with each other. When the channel length is reduced to 1 μm or less, a short channel effect appears, and the potential barrier lowers during light reception, making it easier for signals to flow from the light receiving section to the charge transfer section.

【0007】そこで、ブルーミングを抑制するために半
導体基板1に印加する電圧を上げなければならなくなる
が、トランスファゲートの電位障壁が素子によりばらつ
くため、安定したブルーミング抑制効果を得るためには
、半導体基板に印加する電圧を十分上げなければならな
いことになる。しかし、その場合には、蓄積電荷容量の
減少、即ち出力信号の低下という問題が起る。
Therefore, in order to suppress blooming, it is necessary to increase the voltage applied to the semiconductor substrate 1, but since the potential barrier of the transfer gate varies depending on the device, in order to obtain a stable blooming suppressing effect, it is necessary to increase the voltage applied to the semiconductor substrate 1. This means that the voltage applied to the circuit must be sufficiently increased. However, in that case, a problem arises in that the storage charge capacity decreases, ie, the output signal decreases.

【0008】[0008]

【課題を解決するための手段】本発明の固体撮像素子は
、半導体基板の表面領域内に、光電変換を行い信号電荷
を蓄積する複数の受光領域と、信号電荷の転送路となる
電荷転送領域と、前記受光領域から前記電荷転送領域へ
信号電荷を読み出すためのトランスファゲート領域と、
が形成されているものであり、そして前記電荷転送領域
の前記トランスファゲート領域寄りの領域は、電荷転送
領域の他の部分と同一導電型で他の部分よりも不純物濃
度が低くなされていることを特徴としている。
[Means for Solving the Problems] The solid-state image sensor of the present invention has a plurality of light receiving regions that perform photoelectric conversion and accumulate signal charges, and a charge transfer region that serves as a transfer path for signal charges, in a surface region of a semiconductor substrate. and a transfer gate region for reading signal charges from the light receiving region to the charge transfer region;
is formed, and a region of the charge transfer region closer to the transfer gate region has the same conductivity type as the other portions of the charge transfer region and has a lower impurity concentration than the other portions. It is a feature.

【0009】[0009]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は、本発明の一実施例を示す断面図で
ある。同図において、図4の従来例の部分と共通する部
分には同一の参照番号が付されているので重複した説明
は省略する。
Embodiments Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing one embodiment of the present invention. In this figure, the same reference numerals are given to the parts common to the parts of the conventional example shown in FIG. 4, and therefore redundant explanation will be omitted.

【0010】本実施例の図4の従来例と相違する点は、
本実施例において電荷転送領域3のトランスファゲート
領域5寄りの領域が低不純物濃度のn−型領域4となさ
れている点である。
The difference between this embodiment and the conventional example shown in FIG. 4 is as follows.
In this embodiment, the region of the charge transfer region 3 closer to the transfer gate region 5 is an n-type region 4 with a low impurity concentration.

【0011】次に、n− 型領域4を設けたことによる
効果を図2の電位障壁図を参照して説明する。本実施例
の構造においては、トランスファゲート領域に隣接して
低不純物濃度の領域(n− 型領域4)を設けたことに
より、トランスファゲート領域の短チャネル効果が緩和
され、そこでの電位障壁PB1 の高さが一定化される
。そのため、受光領域6の過剰信号電荷をn型半導体基
板1へ引き抜く際のp型ウェル2の電位障壁PB2 を
設定するための半導体基板への印加電圧を一定化するこ
とができ、感度を低下させることなく適切なブルーミン
グ制御を行うことができる。
Next, the effect of providing the n- type region 4 will be explained with reference to the potential barrier diagram of FIG. In the structure of this example, by providing a low impurity concentration region (n- type region 4) adjacent to the transfer gate region, the short channel effect of the transfer gate region is alleviated, and the potential barrier PB1 there is reduced. The height is made constant. Therefore, the voltage applied to the semiconductor substrate for setting the potential barrier PB2 of the p-type well 2 when extracting excess signal charges in the light-receiving region 6 to the n-type semiconductor substrate 1 can be made constant, reducing sensitivity. Appropriate blooming control can be performed without

【0012】次に、図3を参照して本実施例の製造方法
の主要部について説明する。p型ウェル2が形成された
半導体基板上に、酸化珪素膜13、窒化硅素膜14を成
長させ、窒化硅素膜14に受光領域、電荷転送領域形成
箇所に窓明けを行った後、電荷転送領域形成領域をマス
クで覆ってイオン注入と熱拡散を行い、n型受光領域6
を形成する。次に、受光領域6上をフォトレジスト15
で覆い、比較的低濃度(1016cm−3)にリンをイ
オン注入してn− 型領域4を形成する〔図3の(a)
〕。
Next, the main parts of the manufacturing method of this embodiment will be explained with reference to FIG. A silicon oxide film 13 and a silicon nitride film 14 are grown on the semiconductor substrate on which the p-type well 2 is formed, and after opening a window in the silicon nitride film 14 at a location where a light receiving region and a charge transfer region are to be formed, a charge transfer region is formed. Ion implantation and thermal diffusion are performed while covering the formation region with a mask to form an n-type light receiving region 6.
form. Next, a photoresist 15 is applied over the light receiving area 6.
Then, ion implantation of phosphorus is performed at a relatively low concentration (1016 cm-3) to form an n- type region 4 [FIG. 3(a)
].

【0013】次に、図3の(b)に示すように、受光領
域と電荷転送領域の一部をフォトレジスト16で覆い、
比較的高濃度(1017cm−3程度)にリンをイオン
注入してn型電荷転送領域3を形成する。これ以降の工
程は、従来例の場合と同じである。
Next, as shown in FIG. 3(b), part of the light receiving area and the charge transfer area is covered with a photoresist 16.
The n-type charge transfer region 3 is formed by ion-implanting phosphorus at a relatively high concentration (approximately 10<17 >cm<-3>). The subsequent steps are the same as in the conventional example.

【0014】[0014]

【発明の効果】以上説明したように、本発明は、電荷転
送領域のトランスファゲート領域に隣接した部分の不純
物濃度を低くしたものであるので、本発明によれば、ト
ランスファゲート領域のチャネル長が短縮されてもそこ
での受光時の障壁電位の高さを一定化させることができ
る。したがって、ブルーミング制御のための基板印加電
圧を上げなくてもよくなるので、信号電荷量を減少させ
ることなく安定してブルーミング制御を行うことが可能
となる。
As explained above, the present invention reduces the impurity concentration in the portion of the charge transfer region adjacent to the transfer gate region. According to the present invention, the channel length of the transfer gate region can be reduced. Even if the length is shortened, the height of the barrier potential at the time of light reception can be made constant. Therefore, there is no need to increase the voltage applied to the substrate for blooming control, so it is possible to stably perform blooming control without reducing the amount of signal charge.

【0015】よって、本発明により、受光領域および電
荷転送領域の面積を縮小することなくトランスファゲー
ト領域を縮小化することが可能となり、感度低下を招く
ことなく固体撮像素子の高画素化、高密度化を達成する
ことができる。
Therefore, according to the present invention, it is possible to reduce the size of the transfer gate area without reducing the area of the light receiving area and the charge transfer area, and it is possible to increase the number of pixels and density of the solid-state image sensor without reducing the sensitivity. can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す断面図。FIG. 1 is a sectional view showing one embodiment of the present invention.

【図2】図1の実施例の電位障壁図。FIG. 2 is a potential barrier diagram of the embodiment of FIG. 1;

【図3】図1の実施例の製造方法を説明するための断面
図。
FIG. 3 is a cross-sectional view for explaining the manufacturing method of the embodiment shown in FIG.

【図4】従来例の断面図。FIG. 4 is a sectional view of a conventional example.

【図5】従来例の電位障壁図。FIG. 5 is a potential barrier diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1…n型半導体基板 2…p型ウェル 3…n型電荷転送領域 4…n− 型領域 5…p型トランスファゲート領域 6…n型受光領域 8…チャネルストップ領域 10…ゲート電極 11…遮光膜 1...n-type semiconductor substrate 2...p-type well 3...n-type charge transfer region 4...n-type region 5...p-type transfer gate region 6...n-type light receiving area 8...Channel stop area 10...Gate electrode 11... Light shielding film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板の表面領域内に、光電変換
を行い信号電荷を蓄積する複数の受光領域と、信号電荷
の転送路となる電荷転送領域と、前記受光領域から前記
電荷転送領域へ信号電荷を読み出すためのトランスファ
ゲート領域と、が形成されている固体撮像素子において
、前記電荷転送領域の前記トランスファゲート領域寄り
の領域は、電荷転送領域の他の部分と同一導電型で他の
部分よりも不純物濃度が低くなされていることを特徴と
する固体撮像素子。
1. A surface region of a semiconductor substrate includes a plurality of light receiving regions that perform photoelectric conversion and accumulate signal charges, a charge transfer region that serves as a signal charge transfer path, and a signal transfer region from the light receiving region to the charge transfer region. In a solid-state imaging device in which a transfer gate region for reading out charges is formed, a region of the charge transfer region closer to the transfer gate region has the same conductivity type as the other part of the charge transfer region and has a higher conductivity than the other part. A solid-state imaging device characterized by having a low impurity concentration.
JP3175852A 1991-06-21 1991-06-21 Solid state image sensing device Pending JPH04373173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3175852A JPH04373173A (en) 1991-06-21 1991-06-21 Solid state image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3175852A JPH04373173A (en) 1991-06-21 1991-06-21 Solid state image sensing device

Publications (1)

Publication Number Publication Date
JPH04373173A true JPH04373173A (en) 1992-12-25

Family

ID=16003331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3175852A Pending JPH04373173A (en) 1991-06-21 1991-06-21 Solid state image sensing device

Country Status (1)

Country Link
JP (1) JPH04373173A (en)

Similar Documents

Publication Publication Date Title
JP3177514B2 (en) Solid-state image sensor
EP0173542B1 (en) A solid-state image sensor
US7253019B2 (en) Buried, fully depletable, high fill factor photodiodes
JPS5819080A (en) Solid-state image sensor
JP3125303B2 (en) Solid-state imaging device
JPS58138187A (en) Solid-state image sensor
EP0544260A1 (en) Antiblooming structure for CCD image sensor
EP1478028B1 (en) Solid-state image sensor, production method for solid-state image sensor, and camera using solid-state image sensor
JPH02168670A (en) Solid-state image sensing device and manufacture thereof
US5477070A (en) Drive transistor for CCD-type image sensor
US5233429A (en) CCD image sensor having improved structure of VCCD region thereof
EP0453530B1 (en) Solid-state image sensor
JPH0642540B2 (en) Charge transfer device with anti-blooming barrier
JP2723520B2 (en) Solid-state imaging device
JPH01135184A (en) Solid-state image pickup element
JPH04373173A (en) Solid state image sensing device
JPH02278874A (en) Solid state image sensor and manufacture thereof
JPH0230183A (en) Solid-state image sensing element
JP3247163B2 (en) Solid-state imaging device and manufacturing method thereof
CN114078895B (en) Image sensor with through silicon fin transfer gate
JPS6351545B2 (en)
US11658199B2 (en) Image sensor with through silicon fin transfer gate
JPH0436582B2 (en)
KR100204914B1 (en) Signal pick-up device for solid-state image sensor
JPH0318058A (en) Manufacture of solid-state image sensor