JPH0436582B2 - - Google Patents

Info

Publication number
JPH0436582B2
JPH0436582B2 JP60196167A JP19616785A JPH0436582B2 JP H0436582 B2 JPH0436582 B2 JP H0436582B2 JP 60196167 A JP60196167 A JP 60196167A JP 19616785 A JP19616785 A JP 19616785A JP H0436582 B2 JPH0436582 B2 JP H0436582B2
Authority
JP
Japan
Prior art keywords
impurity layer
type impurity
control electrode
potential
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60196167A
Other languages
Japanese (ja)
Other versions
JPS6255960A (en
Inventor
Tetsuo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60196167A priority Critical patent/JPS6255960A/en
Publication of JPS6255960A publication Critical patent/JPS6255960A/en
Publication of JPH0436582B2 publication Critical patent/JPH0436582B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は固体撮像装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a solid-state imaging device.

〔発明の技術的背景〕[Technical background of the invention]

固体撮像装置は入力された光信号を電気信号に
変換する光電変換素子(例えばフオトダイオー
ド)と、信号電荷を転送する電荷転送部とを有し
ている。
A solid-state imaging device includes a photoelectric conversion element (for example, a photodiode) that converts an input optical signal into an electrical signal, and a charge transfer section that transfers signal charges.

第7図は従来装置の一例の要部の断面図であ
る。p型基板1の光電変換領域にはn型不純物層
2が形成され、その位置にp+型不純物層3がよ
り浅く形成されている。このようにして、光信号
を光電変換するためのp+npフオトダイオードが
構成される。また、半導体基板1上には制御電極
4が絶縁層5を介して設けられ、その下には押込
チヤネルをなすn型不純物層6が形成されてい
る。そしてp+npフオトダイオード以外の部分は
光遮へい膜7によつて覆われている。
FIG. 7 is a sectional view of a main part of an example of a conventional device. An n-type impurity layer 2 is formed in the photoelectric conversion region of the p-type substrate 1, and a p + -type impurity layer 3 is formed more shallowly at that position. In this way, a p + np photodiode for photoelectrically converting an optical signal is constructed. Further, a control electrode 4 is provided on the semiconductor substrate 1 via an insulating layer 5, and an n-type impurity layer 6 forming a forced channel is formed below the control electrode 4. The portion other than the p + np photodiode is covered with a light shielding film 7.

第8図は第7図に示す従来例のポテンシヤル図
で、第8図中のV2,V6,V8,V9はそれぞれ第7
図中に符号2,6,8,9で示す位置のポテンシ
ヤルに対応している。また、第8図aは制御電極
4にゼロ電圧を加えた状態を示し、第8図bは制
御電極4に高電圧を印加した状態を示す。第8図
aに示すように、まず信号電荷Q1+Q2はフオト
ダイオードのn型不純物層2に蓄積される。この
状態で制御電極4に高電圧が印加されると、第8
図bの如く電荷Q1が埋込チヤネル層(n型不純
物層6)に流れこみ、フオトダイオードのn型不
純物層2の端部には電荷Q2が残留する。
FIG. 8 is a potential diagram of the conventional example shown in FIG. 7, and V 2 , V 6 , V 8 , and V 9 in FIG.
This corresponds to the potentials at positions 2, 6, 8, and 9 in the figure. Further, FIG. 8a shows a state in which zero voltage is applied to the control electrode 4, and FIG. 8b shows a state in which a high voltage is applied to the control electrode 4. As shown in FIG. 8a, signal charges Q 1 +Q 2 are first accumulated in the n-type impurity layer 2 of the photodiode. When a high voltage is applied to the control electrode 4 in this state, the eighth
As shown in FIG. b, charge Q 1 flows into the buried channel layer (n-type impurity layer 6), and charge Q 2 remains at the end of the n-type impurity layer 2 of the photodiode.

〔背景技術の問題点〕[Problems with background technology]

この残留電荷Q2は第9図に示すように周知の
熱エネルギー分布(ボルツマン分布)をなし、そ
の中で電位V8を越えるのに充分なエネルギーを
有するキヤリアは、拡散過程を経て埋込チヤネル
層6へ長い時間をかけて移動する。この現象は、
埋込チヤネル層6に電荷が存在しないときに顕在
化して偽信号となる。このため、例えば暗い背景
で移動する明るい像を撮像すると、これが残像と
なつて現れる。
This residual charge Q 2 forms a well-known thermal energy distribution (Boltzmann distribution) as shown in Figure 9, in which carriers with sufficient energy to exceed the potential V 8 are channeled through the buried channel through a diffusion process. It takes a long time to move to layer 6. This phenomenon is
This becomes apparent when there is no charge in the buried channel layer 6, resulting in a false signal. For this reason, for example, if a moving bright image is captured against a dark background, this will appear as an afterimage.

このように従来の低残像固体撮像装置では、フ
オトダイオードにp+np構造を採用することでn
型不純物層2の電荷を全て読み出すようにしてい
るが、前述の通り残像現象をなくすことはできな
い。これは、制御電極4の下までフオトダイオー
ドのn型不純物層が伸びていることに起因するも
のであるが、従来技術ではこれを避けることがで
きない。なぜなら、n型不純物層2を厚く形成す
るためには、熱拡散工程等の製造工程上の制約か
ら制御電極4をn型不純物層2形成のマスクとし
て使用することができず、従つて制御電極4とn
型不純物層2のある程度のオーバーラツプが不可
避的に生じてしまうからである。
In this way, in conventional solid-state imaging devices with low image retention, by adopting a p + np structure for the photodiode, n
Although all charges in the type impurity layer 2 are read out, as described above, the afterimage phenomenon cannot be eliminated. This is due to the fact that the n-type impurity layer of the photodiode extends below the control electrode 4, but this cannot be avoided with conventional techniques. This is because, in order to form the n-type impurity layer 2 thickly, the control electrode 4 cannot be used as a mask for forming the n-type impurity layer 2 due to constraints in the manufacturing process such as the thermal diffusion process. 4 and n
This is because the type impurity layer 2 inevitably overlaps to some extent.

〔発明の目的〕[Purpose of the invention]

本発明は上記の従来技術の欠点を克服するため
になされたもので、残留電荷による残像が現れな
いようにした固体撮像装置を提供することを目的
とする。
The present invention was made in order to overcome the above-mentioned drawbacks of the prior art, and it is an object of the present invention to provide a solid-state imaging device that does not cause afterimages due to residual charges.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため本発明は、半導体基
板表面の光電変換領域に形成された第1導電型の
高濃度不純物層と、これと同じ位置により深く形
成された第2導電型の不純物層と、キヤリアを読
出すために絶縁層を介して形成された制御電極
と、高濃度不純物層の端部と制御電極下の基板領
域の端部との間に形成された第2導電型の低濃度
不純物層とを備える固体撮像装置を提供するもの
である。
In order to achieve the above object, the present invention includes a highly concentrated impurity layer of a first conductivity type formed in a photoelectric conversion region on the surface of a semiconductor substrate, and an impurity layer of a second conductivity type formed deeper at the same position. , a control electrode formed via an insulating layer for reading carriers, and a second conductivity type low concentration impurity layer formed between an end of the high concentration impurity layer and an end of the substrate region under the control electrode. An object of the present invention is to provide a solid-state imaging device including an impurity layer.

〔発明の実施例〕[Embodiments of the invention]

以下、添附図面の第1図乃至第6図を参照して
本発明のいくつかの実施例を説明する。
Hereinafter, some embodiments of the present invention will be described with reference to FIGS. 1 to 6 of the accompanying drawings.

第1図は一実施例の要部の断面図である。そし
てこれが第7図の従来例と異なる点は、p+型不
純物層11の下側に広がるn型不純物層12の横
方向の形成範囲がそれぞれ同一であることと、
p+型不純物層11の端部と制御電極4下の基板
領域の端部との間に低濃度のn型不純物層13が
形成されていることである。このように第1図の
ものでは、制御電極4とn型不純物層13は全く
オーバーラツプしていない。
FIG. 1 is a sectional view of essential parts of one embodiment. This is different from the conventional example shown in FIG. 7 in that the lateral formation range of the n-type impurity layer 12 extending below the p + type impurity layer 11 is the same.
A low concentration n-type impurity layer 13 is formed between the end of the p + -type impurity layer 11 and the end of the substrate region under the control electrode 4 . In this manner, in the structure shown in FIG. 1, the control electrode 4 and the n-type impurity layer 13 do not overlap at all.

次に、第2図により製造工程の一例を説明す
る。まず、第2図aのように第1のマスク20を
介してn型不純物(例えばリン)をイオン注入
し、熱拡散によつてn型不純物12を形成する。
次いで、第2図bのように第2のマスク21およ
び制御電極4を半導体基板1上に絶縁層を介して
形成し、これらをマスクにしてn型不純物を低濃
度でイオン注入する。次いで、制御電極4を残し
たままで熱拡散工程を経ないで第3のマスク22
を形成し、これをマスクにしてp型不純物(例え
ばボロン)を高濃度でイオン注入する。このよう
にすれば、制御電極4とn型不純物層13がオー
バーラツプすることはない。
Next, an example of the manufacturing process will be explained with reference to FIG. First, as shown in FIG. 2a, an n-type impurity (for example, phosphorus) is ion-implanted through a first mask 20, and an n-type impurity 12 is formed by thermal diffusion.
Next, as shown in FIG. 2B, a second mask 21 and a control electrode 4 are formed on the semiconductor substrate 1 via an insulating layer, and using these as masks, n-type impurity ions are implanted at a low concentration. Next, a third mask 22 is applied without going through a thermal diffusion process while leaving the control electrode 4 intact.
is formed, and using this as a mask, a p-type impurity (for example, boron) is ion-implanted at a high concentration. In this way, the control electrode 4 and the n-type impurity layer 13 will not overlap.

次に第3図により作用を説明する。第3図の通
り、n型不純物層13の空乏化電位V13はn型不
純物層12のキヤリア空乏電位V12より高い。従
つて、制御電極4がゼロ電位のときに発生した信
号電荷Q3が蓄積され(第3図a図示)、制御電極
4が高電位のときに信号電荷Q3は全て埋込チヤ
ネルに読み出される(第3図b図示)。すなわち、
光電変換部に電荷が残留することはない。
Next, the operation will be explained with reference to FIG. As shown in FIG. 3, the depletion potential V 13 of the n-type impurity layer 13 is higher than the carrier depletion potential V 12 of the n-type impurity layer 12. Therefore, the signal charge Q3 generated when the control electrode 4 is at zero potential is accumulated (as shown in FIG. 3a), and all of the signal charge Q3 is read out to the buried channel when the control electrode 4 is at a high potential. (Illustrated in Figure 3b). That is,
No charge remains in the photoelectric conversion section.

第4図は本発明の第2の実施例を示している。
そしてこれが第1図のものと異なる点は、p+np
フオトダイオードがn型基板30のpウエル31
中に設けられていることと、n型不純物層32′
がp+型不純物層11の一部にのみ重複して形成
されていることである。第4図の制御電極4に高
電圧を印加すると、電位分布は第5図のようにな
つて信号電荷は全て読み出される。すなわち、光
電変換部に電荷が残留することはない。
FIG. 4 shows a second embodiment of the invention.
The difference between this and the one in Figure 1 is that p + np
The photodiode is located in the p-well 31 of the n-type substrate 30.
and the n-type impurity layer 32'
is formed overlapping only a part of the p + type impurity layer 11. When a high voltage is applied to the control electrode 4 shown in FIG. 4, the potential distribution becomes as shown in FIG. 5, and all signal charges are read out. That is, no charge remains in the photoelectric conversion section.

このように第2の実施例では、n型不純物層3
2′がp+型不純物層11の中に延在しているた
め、延在部分のp型不純物層の一部が相殺されて
不純物濃度が実効的に減少する。従つて、p+
接合における接合容量が相殺された分だけわずか
に小さくなり、この部分の空乏化電位がやや高く
なる。そのため、電位分布が第5図のように段階
状になり、電荷転送時間を短くできるという特徴
がある。
In this way, in the second embodiment, the n-type impurity layer 3
2' extends into the p + type impurity layer 11, a portion of the p type impurity layer in the extended portion is canceled out, and the impurity concentration is effectively reduced. Therefore, p + n
The junction capacitance at the junction is canceled out, making it slightly smaller, and the depletion potential at this portion becomes slightly higher. Therefore, the potential distribution becomes stepwise as shown in FIG. 5, and the charge transfer time can be shortened.

第6図は本発明の第3の実施例を示している。
そしてこれが第1図のものと異なる点は、低濃度
のn型不純物層41が埋込チヤネルのn型不純物
層6のところまで延びていることである。但し、
n型不純物層6の不純物濃度はn型不純物層41
のそれより高くなければならない。このようにし
た場合には、埋込チヤネルの電荷容量は減少する
が、残留電荷を存在させることはない。
FIG. 6 shows a third embodiment of the invention.
This differs from the one shown in FIG. 1 in that the low concentration n-type impurity layer 41 extends to the n-type impurity layer 6 of the buried channel. however,
The impurity concentration of the n-type impurity layer 6 is the same as that of the n-type impurity layer 41.
must be higher than that of In this case, the charge capacity of the buried channel is reduced, but no residual charge is present.

本発明は上記の実施例に限定されるものではな
く、種々の変形が可能である。例えば半導体基
板、不純物層の導電型は実施例に限定されない。
The present invention is not limited to the above embodiments, and various modifications are possible. For example, the conductivity types of the semiconductor substrate and the impurity layer are not limited to the embodiments.

〔発明の効果〕 上記の通り本発明では、制御電極と光電変換部
の不純物層がオーバーラツプしないようにし、あ
るいは光電変換部の不純物層が埋込チヤネルにま
で達するようにし、光電変換部と電荷転送部の間
にポテンシヤルの井戸が現れないようにしたの
で、残留電荷による残像が現れることのない固体
撮像装置を得ることができる。
[Effects of the Invention] As described above, in the present invention, the control electrode and the impurity layer of the photoelectric conversion section are prevented from overlapping, or the impurity layer of the photoelectric conversion section is made to reach the buried channel, and charge transfer between the photoelectric conversion section and the impurity layer is prevented. Since no potential well appears between the parts, it is possible to obtain a solid-state imaging device in which no afterimage due to residual charge appears.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の要部断面図、
第2図はその製造工程別断面図、第3図は第1の
実施例のポテンシヤル図、第4図は本発明の第2
の実施例の要部断面図、第5図はそのポテンシヤ
ル図、第6図は本発明の第2の実施例の要部断面
図、第7図は従来装置の一例の要部断面図、第8
図はそのポテンシヤル図、第9図は残留電荷のエ
ネルギー分布図である。 1……p型基板、4……制御電極、5……絶縁
層、6……埋込チヤネルの不純物層、7……光遮
へい膜。
FIG. 1 is a sectional view of a main part of a first embodiment of the present invention,
Figure 2 is a sectional view of the manufacturing process, Figure 3 is a potential diagram of the first embodiment, and Figure 4 is a diagram of the second embodiment of the present invention.
5 is a potential diagram thereof, FIG. 6 is a sectional view of essential parts of the second embodiment of the present invention, and FIG. 7 is a sectional view of essential parts of an example of a conventional device. 8
The figure is a potential diagram, and FIG. 9 is an energy distribution diagram of residual charges. DESCRIPTION OF SYMBOLS 1... P-type substrate, 4... Control electrode, 5... Insulating layer, 6... Impurity layer of buried channel, 7... Light shielding film.

【特許請求の範囲】[Claims]

1 表面濃度が低く、縦方向拡散長の深い第1導
電型の第1のウエル領域と、 前記第1のウエル領域の周縁部にその一部が重
畳するように隣接して延在し、表面濃度が前記第
1のウエル領域の横方向拡散領域の表面濃度より
濃く、かつ縦方向拡散長が前記第1のウエル領域
の縦方向拡散長より浅く形成された第1導電型の
第2のウエル領域と、 これら第1および第2のウエル領域の表面にチ
ヤネルストツプ領域により分離形成され、前記第
1および第2のウエルとの間でpn接合フオトダ
イオードを形成する第2導電型拡散領域と、 前記第2のウエルの外側に、画質に悪影響を与
えない距離だけ離隔して形成されたダイシングラ
イン領域とを備え、 前記チヤネルストツプ領域の一部は前記第2の
ウエルの端部上に形成されたことを特徴とするイ
ンライン型マルチチツプリニアイメージセンサ用
チツプ。
1 a first well region of a first conductivity type with a low surface concentration and a deep vertical diffusion length; a second well of a first conductivity type formed to have a concentration higher than a surface concentration of a lateral diffusion region of the first well region and a vertical diffusion length shallower than a vertical diffusion length of the first well region; a second conductivity type diffusion region formed on the surfaces of the first and second well regions separated by a channel stop region and forming a pn junction photodiode between the first and second well regions; a dicing line region formed outside the second well by a distance that does not adversely affect image quality; and a part of the channel stop region is formed on an end of the second well. An in-line multi-chip linear image sensor chip featuring:

Claims (1)

体基板領域の電位の絶対値より小さくなる特許請
求の範囲第1項もしくは第2項に記載の固体撮像
装置。
The solid-state imaging device according to claim 1 or 2, wherein the absolute value of the potential of the body substrate region is smaller than the absolute value of the potential of the body substrate region.
JP60196167A 1985-09-05 1985-09-05 Solid state image pick-up device Granted JPS6255960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60196167A JPS6255960A (en) 1985-09-05 1985-09-05 Solid state image pick-up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60196167A JPS6255960A (en) 1985-09-05 1985-09-05 Solid state image pick-up device

Publications (2)

Publication Number Publication Date
JPS6255960A JPS6255960A (en) 1987-03-11
JPH0436582B2 true JPH0436582B2 (en) 1992-06-16

Family

ID=16353320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60196167A Granted JPS6255960A (en) 1985-09-05 1985-09-05 Solid state image pick-up device

Country Status (1)

Country Link
JP (1) JPS6255960A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306661A (en) * 1989-05-22 1990-12-20 Nec Corp Solid-state image sensor
US5424574A (en) * 1992-09-23 1995-06-13 Scientific Imaging Technologies, Inc. Light shield for a back-side thinned CCD
US5401153A (en) * 1993-11-23 1995-03-28 Yoshizuka Seiki Co., Ltd. Press for powder metallurgy
JP3576033B2 (en) 1999-03-31 2004-10-13 株式会社東芝 Solid-state imaging device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257566A (en) * 1984-06-04 1985-12-19 Matsushita Electronics Corp Solid-state image pickup device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257566A (en) * 1984-06-04 1985-12-19 Matsushita Electronics Corp Solid-state image pickup device

Also Published As

Publication number Publication date
JPS6255960A (en) 1987-03-11

Similar Documents

Publication Publication Date Title
US5859450A (en) Dark current reducing guard ring
US4672455A (en) Solid-state image-sensor having reverse-biased substrate and transfer registers
JP2781425B2 (en) Method for manufacturing solid-state imaging device
US5243215A (en) Semiconductor photodiode device with reduced junction area
TWI399848B (en) Cmos active pixel sensor shared amplifier pixel
JP3125303B2 (en) Solid-state imaging device
JPS58138187A (en) Solid-state image sensor
JPH1131839A (en) Electromagnetic radiation detector, high sensitivity pixel structure using the detector and manufacture of the detector
JPH0436582B2 (en)
JP3247163B2 (en) Solid-state imaging device and manufacturing method thereof
JP3481654B2 (en) Solid-state imaging device
JPH0135546B2 (en)
JPS5833373A (en) Semiconductor image pickup device
JPS6223156A (en) Semiconductor device and manufacture thereof
JPH04130666A (en) Solid state image sensing element
JPH01211966A (en) Solid-state sensing element and manufacture thereof
JPH10150180A (en) Solid-state image sensing device
JPH0424872B2 (en)
JPS6327057A (en) Solid stage image sensing device
JP2792219B2 (en) Semiconductor device with photodiode and method of manufacturing the same
JP3041362B2 (en) Linear image sensor
KR100258971B1 (en) Semiconductor device
JPH0715984B2 (en) Method of manufacturing solid-state imaging device
JPH0219632B2 (en)
JPH0318058A (en) Manufacture of solid-state image sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term