JPH0230183A - Solid-state image sensing element - Google Patents

Solid-state image sensing element

Info

Publication number
JPH0230183A
JPH0230183A JP63181017A JP18101788A JPH0230183A JP H0230183 A JPH0230183 A JP H0230183A JP 63181017 A JP63181017 A JP 63181017A JP 18101788 A JP18101788 A JP 18101788A JP H0230183 A JPH0230183 A JP H0230183A
Authority
JP
Japan
Prior art keywords
region
readout
semiconductor substrate
photodiode
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63181017A
Other languages
Japanese (ja)
Inventor
Keiji Toriyama
鳥山 景示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63181017A priority Critical patent/JPH0230183A/en
Publication of JPH0230183A publication Critical patent/JPH0230183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To prevent an increase in a residual image caused by an imperfect readout operation of a signal charge by a method wherein the surface of a semiconductor substrate in a readout region under a readout electrode is made deeper than the surface of the semiconductor substrate in a region of a photodetector in order to prevent that a potential barrier is caused at an end on the side of a readout part of a photodiode. CONSTITUTION:A solid-state image sensing element is constituted in the following way: a buried photodiode which is composed of a region 13, of the other conductivity type, formed inside a semiconductor layer 12, of one conductivity type, on the surface of a semiconductor substrate 11 and composed of a shallow semiconductor layer 16, of one conductivity type, on the surface of the region 13 of the other conductivity type is used as a photodetector; a readout electrode 18 used to read out a signal charge from the photodetector to a signal- charge transfer means 14 is formed on the semiconductor substrate via an insulating film 17. In this solid-state image sensing element, the surface of the semiconductor substrate in a readout region under the readout electrode 18 is made deeper than the surface of the semiconductor substrate in a region of the photodetector. For example, the surface of a semiconductor substrate in a readout region of a signal charge between an N-type region 13 constituting a photodiode and an N-type region 14 constituting a charge transfer means is made deeper than the surface of the semiconductor substrate in the photodiode part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は受光素子として埋込みフォトダイオードを使用
した固体撮像素子に関し、特に信号電荷の読み出し部分
の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state image sensor using a buried photodiode as a light receiving element, and particularly to the structure of a signal charge readout portion.

〔従来の技術〕[Conventional technology]

一般に固体撮像素子の受光素子としてはPN接合フォト
ダイオードが使用されている。PN接合フォトダイオー
ドでは、残像を低減するために、信号読み出し電極に読
み出し用のパルス電圧を印加して信号電荷を読み出した
時に、フォトダイオードのN型領域が完全に空乏化する
ようにN型領域の不純物濃度を低くしている。しかし、
N型領域の表面が空乏化することにより、基板表面に存
在する対生成中心によって電荷が発生し、これが暗電流
と呼ばれる光電変換によらない雑音成分を増加させ、固
体撮像素子のS/N比が低下するという欠点がある。
Generally, a PN junction photodiode is used as a light receiving element of a solid-state image sensor. In a PN junction photodiode, in order to reduce afterimages, the N-type region of the photodiode is depleted so that the N-type region of the photodiode is completely depleted when the signal charge is read out by applying a readout pulse voltage to the signal readout electrode. The impurity concentration is low. but,
When the surface of the N-type region is depleted, charges are generated by the pairing centers existing on the substrate surface, which increases a noise component called dark current that is not caused by photoelectric conversion, and reduces the S/N ratio of the solid-state image sensor. It has the disadvantage that it decreases.

この暗電流を低減する方法として、フォトダイオードの
N型領域の表面に浅い高濃度のP型層を形成し、この電
位を基準電位に固定して、フォトダイオードのN型領域
を完全に空乏化させた場合にも、基板表面すなわち表面
のP型層を空乏化しないようにした、埋込みフォトダイ
オードを受光素子に用いる方法が非常に有効である。第
5図は従来の埋込みフォトダイオードを受光素子とする
固体撮像素子の一例を示した単位セルの断面図である。
As a method to reduce this dark current, a shallow, highly concentrated P-type layer is formed on the surface of the N-type region of the photodiode, and this potential is fixed to a reference potential to completely deplete the N-type region of the photodiode. Even in this case, it is very effective to use a buried photodiode as a light receiving element, which prevents depletion of the P-type layer on the surface of the substrate. FIG. 5 is a cross-sectional view of a unit cell showing an example of a solid-state imaging device using a conventional buried photodiode as a light receiving element.

N型半導体基板41上のP型ウェル42内に、フォトダ
イオードをなすN型領域43、電荷転送手段をなすN型
領域44およびチャネルストップ領域42がそれぞれ形
成されている。そして、信号電荷の読み出しおよび転送
を行なうためのポリシリコン電極48が絶縁膜47を介
して形成されている。また、フォトダイオード表面に浅
いP型層46が形成されている。更に、フォトダイオー
ド以外の表面にアルミ遮光膜49が形成されている。
In a P-type well 42 on an N-type semiconductor substrate 41, an N-type region 43 forming a photodiode, an N-type region 44 forming a charge transfer means, and a channel stop region 42 are formed. A polysilicon electrode 48 for reading and transferring signal charges is formed with an insulating film 47 interposed therebetween. Furthermore, a shallow P-type layer 46 is formed on the surface of the photodiode. Further, an aluminum light shielding film 49 is formed on the surface other than the photodiode.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の埋込みフォトダイオードを受光素子とす
る固体撮像素子では、読み出し電極であルポリシリコン
電極48に読み出し用のパルス電圧を印加した時、フォ
トダイオードのチャネルと信号電荷の読み出し電極下の
チャネルの間に電位の低い部分が生じる。したがって、
フォトダイオードから信号電荷を読み出す際に電位障壁
となって信号電荷の読み出しが妨げられ、残像が増大し
てしまう問題点がある。
In the above-mentioned solid-state imaging device using the conventional buried photodiode as a light receiving element, when a readout pulse voltage is applied to the polysilicon electrode 48 at the readout electrode, the channel of the photodiode and the channel under the readout electrode of the signal charge are A low potential area occurs between the two. therefore,
There is a problem in that when reading signal charges from the photodiode, it becomes a potential barrier and prevents reading of the signal charges, resulting in an increase in afterimages.

すなわち、第6図(a)は第5図の電荷読み出し部付近
の拡大図であり、同図中の破線は、ポリシリコン電極5
4に信号電荷読み出し用のパルス電圧を印加した際のチ
ャネルの最も電位の高い部分を結んだものである。また
、第6図(b)はこの第6図(a)の破線に沿った電位
を図示したものである。第6図に示されるように、フォ
トダイオードをなすN型領域52が、読み出し部側の端
でフォトダイオード表面の浅いP型層55のために狭く
なってしまっており、ポリシリコン電極54の電圧の影
響の及びにくいバルク部で電位障壁57が生じ、信号電
荷56の読み出しを妨げてしまう。
That is, FIG. 6(a) is an enlarged view of the vicinity of the charge readout section in FIG. 5, and the broken line in the figure indicates the polysilicon electrode 5.
4 is connected to the part of the channel where the potential is highest when a pulse voltage for reading signal charges is applied. Further, FIG. 6(b) illustrates the potential along the broken line in FIG. 6(a). As shown in FIG. 6, the N-type region 52 forming the photodiode is narrowed at the end on the readout side side due to the shallow P-type layer 55 on the photodiode surface, and the voltage of the polysilicon electrode 54 is reduced. A potential barrier 57 is generated in the bulk portion where it is difficult to be influenced by the signal charges 56, which prevents the signal charges 56 from being read.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の埋込みフォトダイオードを受光素子とする固体
撮像素子は、読み出し電極下の読み出し領域の半導体基
板の表面を、受光素子の領域の半導体基板表面よりも深
くするものであり、特に読み出し電極下の読み出し領域
の半導体表面をフォトダイオードをなす不純物領域の接
合深さの半分程度の深さにすることを特徴としている。
In the solid-state imaging device of the present invention, which uses an embedded photodiode as a light receiving element, the surface of the semiconductor substrate in the readout region under the readout electrode is deeper than the surface of the semiconductor substrate in the region of the light receiving element. The semiconductor surface of the readout region is characterized by having a depth that is approximately half the junction depth of the impurity region forming the photodiode.

従来の埋込みフォトダイオードでは、信号電荷を読み出
しフォトダイオードを空乏化した時、フォトダイオード
内で最も電位が高くなるのは、フォトダイオードをなす
不純物領域の中間付近の深さになるのに対し、読み出し
電極に読み出しパルス電圧を印加した時の信号読み出し
領域では半導体基板表面にチャネルが生じる。しかし本
発明によれば、信号読み出し領域の半導体基板表面の深
さを空乏化させたフォトダイオードの最も電位が高くな
る領域とほぼ同じ深さにすることができる。したがって
、従来の埋込フォトダイオードを受光素子とした固体撮
像素子で問題となっていた信号電荷の不完全読み出しに
よる存像の原因となる、信号読み出し時に受光素子の読
み出し部側の端にできる電位障壁を、生じないようにす
ることが可能となる。
In a conventional buried photodiode, when the signal charge is read out and the photodiode is depleted, the highest potential within the photodiode is at a depth near the middle of the impurity region that makes up the photodiode. A channel is generated on the surface of the semiconductor substrate in the signal readout region when a readout pulse voltage is applied to the electrode. However, according to the present invention, the depth of the semiconductor substrate surface in the signal readout region can be made approximately the same depth as the region where the potential of the depleted photodiode is highest. Therefore, the potential that is generated at the end of the photodetector on the readout side during signal readout, which causes image formation due to incomplete readout of signal charges, which has been a problem with conventional solid-state image sensors using embedded photodiodes as photodetectors. It becomes possible to prevent barriers from occurring.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の単位セルの断面図であ
り、従来例を示した第4図に対応するものである。N型
半導体基板11上のP型ウェル12内にフォトダイオー
ドをなすN型領域13、電荷転送手段をなすN型領域1
4、チャネルストップ領域15がそれぞれ形成されてい
る。そして、フォトダイオードをなすN型領域13と電
荷転送手段をなすN型領域140間の信号電荷の読み出
し領域の半導体基板の表面は、フォトダイオード部の半
導体基板の表面よりも深くなるように形成されている。
FIG. 1 is a sectional view of a unit cell according to a first embodiment of the present invention, and corresponds to FIG. 4 showing a conventional example. In the P-type well 12 on the N-type semiconductor substrate 11, an N-type region 13 forming a photodiode and an N-type region 1 forming a charge transfer means.
4. Channel stop regions 15 are formed respectively. The surface of the semiconductor substrate in the signal charge readout region between the N-type region 13 forming the photodiode and the N-type region 140 forming the charge transfer means is formed to be deeper than the surface of the semiconductor substrate in the photodiode section. ing.

フォトダイオードには、信号電荷の読み出しおよび転送
を行なうためのポリシリコン電極18をマスクにしたイ
オン注入により、フォトダイオード表面の浅いP型層1
6を形成している。木実流側は信号電荷の転送手段とし
てBCCD (埋込チャンネル型のC0D)を使用した
場合の固体撮像素子である。
A shallow P-type layer 1 on the surface of the photodiode is formed by ion implantation using a polysilicon electrode 18 as a mask for reading and transferring signal charges.
6 is formed. The wood-flow side is a solid-state image sensor that uses a BCCD (buried channel type C0D) as a signal charge transfer means.

第2図(a)は第1図の電荷読み出し部付近の拡大図で
あり、同図中の破線は、ポリシリコン電極24に信号電
荷読み出し用のパルス電圧を印加した際のチャネルの最
も電位の高い部分を結んだものであり、第2図(b)は
この第2図(a)の破線に沿った電位を図示したもので
ある。第2図に示されるように、信号電荷読み出し部の
半導体基板の表面をフォトダイオード部の半導体基板表
面よりも深くし、信号電荷読み出し部のチャネルがフォ
トダイオード部の最も電位の高い部分とほぼ同じ深さと
なるようにする。これによって、最も電位の高い部分を
結んだ破線は、第6図の場合と異なり、フォトダイオー
ドの読み出し部分側の端でフォトダイオードをなすN型
領域が狭くなっている部分を通ることがなくなる。従っ
て、第6図(b)でできていたような電位障壁は生じず
、第2図(b)に示されるように、信号電荷26は完全
に電荷転送手段をなすN型領域23に読み出されるため
、従来問題となっていた信号電荷の不完全読み出しによ
る存像は発生しない。
FIG. 2(a) is an enlarged view of the vicinity of the charge readout section in FIG. The high points are connected, and FIG. 2(b) illustrates the potential along the broken line in FIG. 2(a). As shown in Figure 2, the surface of the semiconductor substrate in the signal charge readout section is made deeper than the surface of the semiconductor substrate in the photodiode section, and the channel of the signal charge readout section is approximately the same as the highest potential part of the photodiode section. Make it deep. As a result, unlike the case in FIG. 6, the dashed line connecting the parts with the highest potential does not pass through the part where the N-type region forming the photodiode is narrowed at the end of the photodiode on the readout part side. Therefore, the potential barrier as shown in FIG. 6(b) is not generated, and as shown in FIG. 2(b), the signal charge 26 is completely read out to the N-type region 23 which forms the charge transfer means. Therefore, image retention due to incomplete reading of signal charges, which has been a problem in the past, does not occur.

なお、読み出し部の半導体基板表面を少しでも深くすれ
ば、それ相当の効果が得られるが、通常はフォトダイオ
ード部を形成するN型領域の接合の深さの1/3から2
/3の深さにすることにより好ましい効果が得られる。
It should be noted that if the surface of the semiconductor substrate in the readout section is made even slightly deeper, a corresponding effect can be obtained, but normally the depth is 1/3 to 2 of the junction depth of the N-type region forming the photodiode section.
A preferable effect can be obtained by setting the depth to /3.

次に前述の第1の実施例の固体撮像素子の製造方法の一
例を第3図(a)〜(i)に示す。なお本例では半導体
基板としてシリコン基板を使用した例を示している。
Next, an example of a method for manufacturing the solid-state image sensor of the first embodiment described above is shown in FIGS. 3(a) to 3(i). Note that this example shows an example in which a silicon substrate is used as the semiconductor substrate.

まずはじめに、第3図(a)に示すように、N型シリコ
ン基板61上にP型ウェル62を形成する。
First, as shown in FIG. 3(a), a P-type well 62 is formed on an N-type silicon substrate 61.

次に、第3図(b)に示すように、シリコン酸化膜63
およびシリコン窒化膜64を順に成長した後、フォトレ
ジスト65を、マスクとして、信号電荷の読み出し領域
となる部分のシリコン窒化膜をエツチングし除去する。
Next, as shown in FIG. 3(b), the silicon oxide film 63
After growing a silicon nitride film 64 in this order, using the photoresist 65 as a mask, a portion of the silicon nitride film that will become a signal charge readout region is etched and removed.

つづいて、第3図(C)に示すように、シリコン窒化膜
64を酸化のマスクとして熱酸化を行なうことによって
、信号電荷の読み出し領域を選択的に酸化し、信号電荷
の読み出し領域のシリコン基板表面を他の部分よりも深
くする。
Subsequently, as shown in FIG. 3C, by performing thermal oxidation using the silicon nitride film 64 as an oxidation mask, the signal charge readout region is selectively oxidized, and the silicon substrate in the signal charge readout region is Make the surface deeper than other parts.

次に、第3図(d)に示すように、フォトレジストパタ
ーン66をマスクにしてシリコン窒化膜をエツチングし
た後、ホウ素をイオン注入する。つづいて、熱酸化を行
なうことによって、第3図(e)に示すように、チャネ
ルストップ領域67を形成する。そしてシリコン窒化膜
をすべて除去した後、選択的酸化により形成されている
厚いシリコン酸化膜をマスクとしたそれぞれのN型不純
物のイオン注入および不純物の熱拡散により第3図(f
)に示すように、フォトダイオードをなすN型領域68
および電荷転送手段をなすN型領域69を形成する。
Next, as shown in FIG. 3(d), the silicon nitride film is etched using the photoresist pattern 66 as a mask, and then boron ions are implanted. Subsequently, thermal oxidation is performed to form a channel stop region 67 as shown in FIG. 3(e). After removing all the silicon nitride film, each N-type impurity is ion-implanted and impurities are thermally diffused using the thick silicon oxide film formed by selective oxidation as a mask, as shown in Figure 3 (f).
), an N-type region 68 forming a photodiode
Then, an N-type region 69 serving as a charge transfer means is formed.

次に、第3図(g)に示すように、フォトレジストパタ
ーン70をマスクにして、信号電荷の読み出し領域のみ
シリコン酸化膜を除去する。つづいて第3図(h)に示
すように、シリコン酸化膜のリフレッシュと酸化を行な
って、ゲート酸化膜71を形成した上に、信号電荷の読
み出しおよび転送を行なうポリシリコン電極72を形成
する。その後、このポリシリコン電極をマスクにP型不
純物のイオン注入を行なって、フォトダイオード表面の
浅いP型層73を形成する。そして、第3図(i)に示
すように、アルミニウム遮光膜75を形成して埋込フォ
トダイオードを受光素子とする固体撮像素子を形成する
Next, as shown in FIG. 3(g), using the photoresist pattern 70 as a mask, the silicon oxide film is removed only from the signal charge readout region. Subsequently, as shown in FIG. 3(h), the silicon oxide film is refreshed and oxidized to form a gate oxide film 71, and then a polysilicon electrode 72 for reading and transferring signal charges is formed. Thereafter, using this polysilicon electrode as a mask, ions of P type impurity are implanted to form a shallow P type layer 73 on the surface of the photodiode. Then, as shown in FIG. 3(i), an aluminum light-shielding film 75 is formed to form a solid-state image sensor using the embedded photodiode as a light-receiving element.

第4図は本発明の第2の実施例の単位セルの断面図であ
る。本実施例はMO3型固体撮像素子のものであり、N
型半導体基板31上のP型ウェル32内に、フォトダイ
オードをなすN型領域33、ドレインをなすN型領域3
4、チャネルストップ領域35がそれぞれ形成されてい
る。そして、フォトダイオードをなすN型領域33とド
レインをなすN型領域340間の信号電荷の読み出し領
域の半導体表2面は、フォトダイオード部の半導体基板
表面よりも深くなるように形成されている。
FIG. 4 is a sectional view of a unit cell according to a second embodiment of the present invention. This example is for an MO3 type solid-state image sensor, and N
In a P-type well 32 on a type semiconductor substrate 31, an N-type region 33 forming a photodiode and an N-type region 3 forming a drain are formed.
4. Channel stop regions 35 are formed respectively. The semiconductor surface 2 of the signal charge readout region between the N-type region 33 forming the photodiode and the N-type region 340 forming the drain is formed to be deeper than the semiconductor substrate surface of the photodiode portion.

フォトダイオードには信号電荷の読み出しを行なうため
のポリシリコン電極38をマスクにしたイオン注入によ
り、フォトダイオード表面の浅いP型層36を形成して
いる。本実施例においても、第1の実施例の場合とまっ
たく同様に、読み出しノ々ルス電圧を読み出し用のポリ
シリ電極に印加した時に電位障壁は生じず、不完全転送
による残像は発生しない。
A shallow P-type layer 36 is formed on the surface of the photodiode by ion implantation using a polysilicon electrode 38 as a mask for reading signal charges. In this embodiment, as in the first embodiment, no potential barrier is generated when the readout voltage is applied to the readout polysilicon electrode, and no afterimage is generated due to incomplete transfer.

なお第2の実施例の固体撮像素子の製造方法としては、
第1の実施例の電荷転送手段をなすN型領域を形成する
かわりに、ドレインをなすN型領域を形成するとともに
、信号電荷の読み出しを行なうポリシリコン電極を形成
した後、ドレインをなすN型領域上にコンタクト孔をあ
ける工程と信号線をなす電極を形成する工程を追加する
ほかは、第1の実施例と同様に製造できる。
Note that the method for manufacturing the solid-state image sensor of the second example is as follows:
Instead of forming an N-type region that serves as a charge transfer means in the first embodiment, an N-type region that serves as a drain is formed, and after forming a polysilicon electrode that reads signal charges, an N-type region that serves as a drain is formed. The device can be manufactured in the same manner as the first embodiment except for adding the step of forming a contact hole on the region and the step of forming an electrode forming a signal line.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は読み出し電極下の読み出
し領域の半導体基板表面を受光素子領域の半導体基板の
表面よりも深くし、信号電荷の読み出しを行なう際、読
み出し領域にできる表面チャネルの位置を、埋込みフォ
トダイオードな空乏化した時のフォトダイオード内の最
も電位の高い部分と同程度の深さにすることによって、
フォトダイオードの読み出し部側の端に電位障壁が生じ
ないようにすることにより、信号電荷の不完全読み出し
による残像の増大を防ぐことができる効果がある。
As explained above, the present invention makes the surface of the semiconductor substrate in the readout region under the readout electrode deeper than the surface of the semiconductor substrate in the light receiving element region, and when reading signal charges, the position of the surface channel formed in the readout region is adjusted. By making the buried photodiode as deep as the highest potential part of the photodiode when it is depleted,
Preventing a potential barrier from occurring at the end of the photodiode on the readout side has the effect of preventing an increase in afterimages due to incomplete readout of signal charges.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の固体撮像素子の第1の実施例の単位セ
ルの断面図、第2図(a)は第1図の信号電荷読み出し
部付近の拡大図、第2図(b)は第2図(a)中の破線
に沿った部分のチャネル電位図、第3図(a)〜(1)
は第1の実施例の製造方法を示す断面図、第4図は本発
明の固体撮像素子の第2の実施例の単位セルの断面図、
第5図は従来の固体撮像素子の一例の単位セルの断面図
、第6図(a)は第4図の信号電荷読み出し部付近の拡
大図、第6図(b)は第6図(a)の破線に沿った部分
のチャネル電位図である。 11.31,41・・・・・・N型半導体基板、12゜
21.32,42,51・・・・・・P型ウェル、13
゜22.33,43,52・・・・・・フォトダイオー
ドをなすN型領域、14,23,44.53・・・・・
・電荷転送手段をなすN型領域、15,35.45・・
・・・・チャネルストップ領域、16,25,36,4
6゜55・・・・・・フォトダイオード表面の浅いP型
層、17.37.47・・・・・・絶縁膜、18,24
゜3g、48.54・・・・・・ポリシリコン電極、1
9゜40.49・・・・・・アルミ遮光膜、26,58
・・・・・・信号電荷、57・・・・・・電位障壁、3
4・・・・・・ドレインをなすN型領域、39・・・・
・・信号線をなす電極。 代理人 弁理士  内 原   音 生1 面 第2121 第 図 第 図 第 図
FIG. 1 is a cross-sectional view of a unit cell of the first embodiment of the solid-state image sensing device of the present invention, FIG. 2(a) is an enlarged view of the vicinity of the signal charge readout section of FIG. 1, and FIG. Channel potential diagram of the part along the broken line in Fig. 2(a), Fig. 3(a) to (1)
is a sectional view showing the manufacturing method of the first embodiment, FIG. 4 is a sectional view of a unit cell of the second embodiment of the solid-state image sensor of the present invention,
FIG. 5 is a cross-sectional view of a unit cell of an example of a conventional solid-state image sensor, FIG. 6(a) is an enlarged view of the vicinity of the signal charge readout section in FIG. ) is a channel potential diagram of a portion along the broken line. 11.31, 41...N-type semiconductor substrate, 12°21.32,42,51...P-type well, 13
゜22.33,43,52...N-type region forming a photodiode, 14,23,44.53...
・N-type region forming charge transfer means, 15, 35.45...
...Channel stop area, 16, 25, 36, 4
6゜55...Shallow P-type layer on photodiode surface, 17.37.47...Insulating film, 18,24
゜3g, 48.54...Polysilicon electrode, 1
9゜40.49・・・Aluminum light shielding film, 26,58
...Signal charge, 57...Potential barrier, 3
4... N-type region forming the drain, 39...
...Electrodes forming signal lines. Agent Patent Attorney Otosuke Uchihara Page 1 No. 2121 Figure Figure Figure Figure

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面の一導電型半導体層内に形成した他導電
型領域と該他導電型領域の表面の一導電型の浅い半導体
層とからなる埋込みフォトダイオードを受光素子とし、
該受光素子から信号電荷転送手段へ信号電荷を読み出す
ための読み出し電極が半導体基板上に絶縁膜を介して設
けられている固体撮像素子において、該読み出し電極下
の読み出し領域の半導体基板の表面が、該受光素子の領
域の半導体基板表面よりも深いことを特徴とする固体撮
像素子。
A buried photodiode comprising a region of another conductivity type formed in a semiconductor layer of one conductivity type on the surface of a semiconductor substrate and a shallow semiconductor layer of one conductivity type on the surface of the region of other conductivity type is used as a light receiving element,
In a solid-state image sensor in which a readout electrode for reading signal charges from the light receiving element to the signal charge transfer means is provided on a semiconductor substrate with an insulating film interposed therebetween, the surface of the semiconductor substrate in the readout area under the readout electrode is A solid-state imaging device characterized in that the area of the light receiving element is deeper than the surface of the semiconductor substrate.
JP63181017A 1988-07-19 1988-07-19 Solid-state image sensing element Pending JPH0230183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63181017A JPH0230183A (en) 1988-07-19 1988-07-19 Solid-state image sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63181017A JPH0230183A (en) 1988-07-19 1988-07-19 Solid-state image sensing element

Publications (1)

Publication Number Publication Date
JPH0230183A true JPH0230183A (en) 1990-01-31

Family

ID=16093298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63181017A Pending JPH0230183A (en) 1988-07-19 1988-07-19 Solid-state image sensing element

Country Status (1)

Country Link
JP (1) JPH0230183A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168670A (en) * 1988-09-22 1990-06-28 Matsushita Electron Corp Solid-state image sensing device and manufacture thereof
JPH04214670A (en) * 1990-06-14 1992-08-05 Mitsubishi Electric Corp Solid-state image sensing device and manufacture thereof
JPH11274462A (en) * 1998-03-23 1999-10-08 Sony Corp Solid image pickup device
JP2005039219A (en) * 2004-06-04 2005-02-10 Canon Inc Solid-state imaging device
JP2011142344A (en) * 2011-04-04 2011-07-21 Sony Corp Solid-state imaging device
JP2014135515A (en) * 2014-04-08 2014-07-24 Sony Corp Solid state image pickup device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168670A (en) * 1988-09-22 1990-06-28 Matsushita Electron Corp Solid-state image sensing device and manufacture thereof
JPH04214670A (en) * 1990-06-14 1992-08-05 Mitsubishi Electric Corp Solid-state image sensing device and manufacture thereof
JPH11274462A (en) * 1998-03-23 1999-10-08 Sony Corp Solid image pickup device
JP2005039219A (en) * 2004-06-04 2005-02-10 Canon Inc Solid-state imaging device
JP2011142344A (en) * 2011-04-04 2011-07-21 Sony Corp Solid-state imaging device
JP2014135515A (en) * 2014-04-08 2014-07-24 Sony Corp Solid state image pickup device

Similar Documents

Publication Publication Date Title
US5880495A (en) Active pixel with a pinned photodiode
KR100436067B1 (en) Image sensor and method of fabricating the same
JPH1070263A (en) Solid state image sensor
JP3125303B2 (en) Solid-state imaging device
JPS58138187A (en) Solid-state image sensor
JPH05267695A (en) Infrared image sensing device
JPH0230183A (en) Solid-state image sensing element
JP2723520B2 (en) Solid-state imaging device
KR100748318B1 (en) Image sensor and method for fabricating the same
KR100595876B1 (en) Method for fabricating photodiode of image sensor
JPH02278874A (en) Solid state image sensor and manufacture thereof
JPH0438872A (en) Solid camera device
JPH03261172A (en) Solid state image sensor
JPS639968A (en) Element isolation of electrostatic induction transistor image sensor
JPH07142696A (en) Solid-state image sensing device
KR100204914B1 (en) Signal pick-up device for solid-state image sensor
JPH02304974A (en) Manufacture of solid image-pickup element
JPS6018957A (en) Solid-state image pickup element
KR0140634B1 (en) The fabrication method of solid state image sensing device
JPH07120774B2 (en) Solid-state imaging device
JP2555888B2 (en) Method of manufacturing solid-state image sensor
JP2792219B2 (en) Semiconductor device with photodiode and method of manufacturing the same
JPS6365668A (en) Solid-state image sensor
JPH02306661A (en) Solid-state image sensor
JP4008113B2 (en) Solid-state imaging device and manufacturing method thereof