JPH04370937A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04370937A
JPH04370937A JP14853591A JP14853591A JPH04370937A JP H04370937 A JPH04370937 A JP H04370937A JP 14853591 A JP14853591 A JP 14853591A JP 14853591 A JP14853591 A JP 14853591A JP H04370937 A JPH04370937 A JP H04370937A
Authority
JP
Japan
Prior art keywords
semiconductor device
substrate
manufacturing
source
implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14853591A
Other languages
Japanese (ja)
Other versions
JP3515132B2 (en
Inventor
Minoru Matsuo
稔 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP14853591A priority Critical patent/JP3515132B2/en
Publication of JPH04370937A publication Critical patent/JPH04370937A/en
Application granted granted Critical
Publication of JP3515132B2 publication Critical patent/JP3515132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To allow a source-drain region to have a sufficiently low resistance and to make it possible to use an inexpensive glass substrate by conducting an activation annealing at 600 deg.C or lower for a few hours. CONSTITUTION:As to a self-alignedly fabricated thin-film transistor, the thickness of polycrystalline into which ions are to be implanted is 300Angstrom or less and an impurity is doped into a substrate with the substrate being kept at 300 deg.C or above in the ion implantation process.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、薄膜トランジスタの製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor.

【0002】0002

【従来の技術】薄膜トランジスタの特性向上の方法のひ
とつに寄生容量の低減を目的としたイオン注入法を用い
た自己整合なソース・ドレイン領域の形成がある。一方
で薄膜トランジスタの特性向上には多結晶シリコン膜を
薄膜化することが有利であることがわかっている。しか
しながら、多結晶シリコン膜の膜厚が300Å以下にな
った場合に通常のイオン注入法を用いると特定の条件以
外では、ソ−ス・ドレイン領域の形成には600℃以上
で数十時間の熱アニ−ル、またはレ−ザ−アニ−ルが必
要であった。このような熱アニ−ルでは低価格のガラス
基板を使用することができず、生産性も劣る。
2. Description of the Related Art One method for improving the characteristics of thin film transistors is to form self-aligned source/drain regions using ion implantation for the purpose of reducing parasitic capacitance. On the other hand, it has been found that it is advantageous to make the polycrystalline silicon film thinner in order to improve the characteristics of thin film transistors. However, if the normal ion implantation method is used when the thickness of the polycrystalline silicon film is 300 Å or less, it will take several tens of hours of heat at 600°C or more to form the source/drain regions, except under certain conditions. Annealing or laser annealing was required. Such thermal annealing does not allow the use of low-cost glass substrates and has poor productivity.

【0003】0003

【発明が解決しようとする課題】イオン注入技術を用い
て製造される薄膜トランジスタにおいて、600℃以下
の数時間の熱アニ−ルによっても十分低抵抗であるソ−
ス・ドレイン領域が形成できるイオン注入方法を考案し
、安価なガラス基板の使用を可能とする。
[Problems to be Solved by the Invention] In thin film transistors manufactured using ion implantation technology, it is desirable to provide a thin film transistor that has sufficiently low resistance even after thermal annealing at temperatures below 600°C for several hours.
We devised an ion implantation method that can form the drain and drain regions, making it possible to use inexpensive glass substrates.

【0004】0004

【課題を解決するための手段】本発明の半導体装置の製
造方法は、前記問題点を解決するためのものであり、絶
縁基板上に形成される自己整合的な薄膜トランジスタに
おいて、イオン注入装置を用いて不純物イオンを打ち込
むことによりソ−ス・ドレイン領域を形成する工程を含
み、前記の打ち込み工程において絶縁基板の温度を30
0℃以上に保持しながら不純物を打ち込むことを特徴と
する。
[Means for Solving the Problems] The method of manufacturing a semiconductor device of the present invention is intended to solve the above-mentioned problems, and uses an ion implantation device in a self-aligned thin film transistor formed on an insulating substrate. In the implantation step, the temperature of the insulating substrate is lowered to 30°C.
It is characterized by implanting impurities while maintaining the temperature at 0°C or higher.

【0005】[0005]

【実施例】図1(a)は、不純物打ち込み直後の250
Åの膜厚を有するソ−ス・ドレイン領域の結晶化率と打
ち込み時の基板温度の関係を示した図である。基板温度
が300℃未満では、打ち込まれたソ−ス・ドレイン領
域は非晶質化している。図1(b)は、250Åの膜厚
を有するソ−ス・ドレイン領域のシ−ト抵抗と活性化熱
処理温度の関係を表わした図である。線101は従来の
半導体装置の製造方法を用いた場合のシ−ト抵抗曲線で
ある。線102は、本発明による半導体装置の製造方法
においてイオン注入装置を用いた場合で、基板温度を3
00℃以上に保持しながら打ち込みを行なった場合のシ
−ト抵抗曲線、線103は、質量分析を用いないイオン
注入装置を用いて、ホスフィンを5%含み、残部が水素
ガスから成るガスより生成する全てのイオンを、基板温
度を300℃以上に保持しながら打ち込んだ場合のシ−
ト抵抗曲線を示す。活性化熱処理時間は数時間である。 図2は、本発明による半導体装置の製造方法をもちいて
製造された薄膜トランジスタの一実施例の断面図である
。ガラス基板や石英基板などの基板201、シリコン酸
化膜202、ノンド−プの多結晶シリコン203、シリ
コン酸化膜204、不純物をド−プした多結晶シリコン
膜をパタンニングして作られたゲ−ト電極205、不純
物打ち込みによって形成されたソ−ス・ドレイン領域2
06、シリコン酸化膜207、電極配線208を示す。 以下に本発明の半導体装置の製造方法を図3の工程図を
用いて説明する。先ず図3(a)に示すようにガラス基
板や石英基板などの基板301上に絶縁膜としてシリコ
ン酸化膜302を2000Åの厚さで堆積する。前記絶
縁膜は基板に含まれている重金属などが、熱処理時に素
子部に拡散するのを防ぐのが目的であり、基板の純度が
十分高ければなくてもよい。次に不純物を含まない多結
晶シリコン303を250Åの厚さで堆積し、パタンニ
ングする。前記多結晶シリコンの結晶化率は75%以上
、好ましくは90%以上の膜を用いる。次にシリコン酸
化膜を1500Åの厚さで堆積しゲート絶縁膜304を
形成する。次にリンを含む多結晶シリコンを3000Å
の厚さで堆積しパタンニングしてゲート電極305を形
成する。次に図3(b)に示すように、ゲート電極をマ
スクとしてリンのイオンビーム306を110keVで
1×1015個/cm2から1×1016個/cm2の
範囲で任意の濃度で打ち込み、ソース・ドレイン領域3
07を形成する。前記打ち込みにおいて基板温度を30
0℃以上、好ましくは400℃以上500℃以下に保持
できるように基板裏面側より加熱する。打ち込みエネル
ギ−は、不純物イオンの種類とゲ−ト絶縁膜の膜厚によ
って調整すればよく、本実施例に限定されないことは明
かである。例えば、ボロンイオンの場合には40keV
にすればよい。次に600℃で1時間の熱処理により不
純物を活性化させる。前記不純物打ち込み工程において
、質量分析を用いないイオン注入装置をもちいて、ホス
フィンを5%含み、残部が水素ガスから成るガスより生
成するイオンのすべてを打ち込みソ−ス・ドレイン領域
を形成すると、水素が不整結合を埋めるために、更に低
温でのソ−ス・ドレイン領域の形成が可能である。次に
図3(c)に示すように、シリコン酸化膜を5000Å
の厚さで堆積し、層間絶縁膜308を形成し、ソ−ス・
ドレイン領域にコンタクトホ−ルを開口したのちにAl
やITOにて電極配線309を行なう。図4は従来の半
導体装置の製造方法を用いた場合の不純物打ち込み直後
の250Åの膜厚を有するソ−ス・ドレイン領域を拡大
した断面図である。打ち込みにより、多結晶シリコン膜
は非晶質化している。図5は本発明の半導体装置の製造
方法を用いた場合の不純物打ち込み直後の250Åの膜
厚を有するソ−ス・ドレイン領域を拡大した断面図であ
る。 打ち込みにおいても膜中に結晶が残っている。このよう
にして残った結晶を種とするために、低温かつ短時間で
再結晶化し低抵抗化することが可能となる。
[Example] Figure 1(a) shows 250 yen immediately after impurity implantation.
FIG. 3 is a diagram showing the relationship between the crystallization rate of a source/drain region having a film thickness of Å and the substrate temperature at the time of implantation. When the substrate temperature is below 300 DEG C., the implanted source/drain regions become amorphous. FIG. 1(b) is a diagram showing the relationship between the sheet resistance of a source/drain region having a film thickness of 250 Å and the activation heat treatment temperature. A line 101 is a sheet resistance curve when a conventional semiconductor device manufacturing method is used. Line 102 shows the case where an ion implantation device is used in the method of manufacturing a semiconductor device according to the present invention, and the substrate temperature is increased by 3.
Line 103, the sheet resistance curve when implanting is performed while maintaining the temperature at 00°C or above, is generated from a gas containing 5% phosphine and the balance consisting of hydrogen gas using an ion implanter that does not use mass spectrometry. This is the case when all ions are implanted while maintaining the substrate temperature at 300°C or higher.
shows the resistance curve. The activation heat treatment time is several hours. FIG. 2 is a cross-sectional view of one embodiment of a thin film transistor manufactured using the method of manufacturing a semiconductor device according to the present invention. A gate made by patterning a substrate 201 such as a glass substrate or a quartz substrate, a silicon oxide film 202, a non-doped polycrystalline silicon 203, a silicon oxide film 204, and an impurity-doped polycrystalline silicon film. Electrode 205, source/drain region 2 formed by impurity implantation
06 shows a silicon oxide film 207 and an electrode wiring 208. The method for manufacturing a semiconductor device of the present invention will be explained below using the process diagram of FIG. First, as shown in FIG. 3A, a silicon oxide film 302 is deposited as an insulating film to a thickness of 2000 Å on a substrate 301 such as a glass substrate or a quartz substrate. The purpose of the insulating film is to prevent heavy metals contained in the substrate from diffusing into the element portion during heat treatment, and it is not necessary as long as the purity of the substrate is sufficiently high. Next, polycrystalline silicon 303 containing no impurities is deposited to a thickness of 250 Å and patterned. A film having a crystallization rate of the polycrystalline silicon of 75% or more, preferably 90% or more is used. Next, a silicon oxide film is deposited to a thickness of 1500 Å to form a gate insulating film 304. Next, polycrystalline silicon containing phosphorus was deposited to a thickness of 3000 Å.
A gate electrode 305 is formed by depositing and patterning to a thickness of . Next, as shown in FIG. 3(b), using the gate electrode as a mask, a phosphorus ion beam 306 is implanted at 110 keV with an arbitrary concentration in the range of 1 x 1015 ions/cm2 to 1 x 1016 ions/cm2. Area 3
07 is formed. During the implantation, the substrate temperature was set at 30°C.
The substrate is heated from the back side so as to be maintained at 0° C. or higher, preferably 400° C. or higher and 500° C. or lower. It is clear that the implantation energy may be adjusted depending on the type of impurity ions and the thickness of the gate insulating film, and is not limited to this embodiment. For example, in the case of boron ions, 40 keV
Just do it. Next, impurities are activated by heat treatment at 600° C. for 1 hour. In the impurity implantation process, all ions generated from a gas containing 5% phosphine and the remainder hydrogen gas are implanted using an ion implantation device that does not use mass spectrometry to form the source/drain region. In order to fill in the asymmetric bonding, it is possible to form source/drain regions at even lower temperatures. Next, as shown in FIG. 3(c), a silicon oxide film with a thickness of 5,000 Å is
The interlayer insulating film 308 is deposited to a thickness of
After opening a contact hole in the drain region, Al
Electrode wiring 309 is performed using ITO or ITO. FIG. 4 is an enlarged cross-sectional view of a source/drain region having a film thickness of 250 Å immediately after impurity implantation using a conventional semiconductor device manufacturing method. Due to the implantation, the polycrystalline silicon film has become amorphous. FIG. 5 is an enlarged cross-sectional view of a source/drain region having a film thickness of 250 Å immediately after impurity implantation using the method of manufacturing a semiconductor device of the present invention. Crystals remain in the film even after implantation. In this way, since the remaining crystals are used as seeds, it is possible to recrystallize at a low temperature and in a short time to lower the resistance.

【0006】[0006]

【発明の効果】本発明により、以下の効果がある。[Effects of the Invention] The present invention has the following effects.

【0007】(1).250Å以下の薄膜の低抵抗化が
600℃以下で、かつ短時間のアニ−ルで達成できるこ
とにより、生産性が向上する。
(1). Productivity is improved by achieving low resistance of a thin film of 250 Å or less at a temperature of 600° C. or less and by short-time annealing.

【0008】(2).安価なガラス基板の使用が可能と
なる。
(2). It becomes possible to use an inexpensive glass substrate.

【0009】また、質量分析を用いないイオン注入装置
を用いて、0%以上で10%未満の不純物となるガスと
、残部が水素ガスで構成されるガスから生成されるすべ
てのイオンを打ち込むと、水素イオンが効果的に不整結
合を埋めるために、より低温での活性化が可能となると
同時に、薄膜トランジスタのチャネル部を水素化するこ
とが可能であり、薄膜トランジスタの特性が向上する。
[0009] Furthermore, if an ion implantation device that does not use mass spectrometry is used to implant all ions generated from a gas that is 0% or more and less than 10% impurity, and the remainder is hydrogen gas, Since the hydrogen ions effectively fill the asymmetric bonds, it becomes possible to activate at a lower temperature, and at the same time, it is possible to hydrogenate the channel portion of the thin film transistor, improving the characteristics of the thin film transistor.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】(a)は、不純物打ち込み直後の薄膜トランジ
スタのソ−ス・ドレイン領域の結晶化率と打ち込み時の
基板加熱温度の関係を示した図である。(b)は、ソ−
ス・ドレイン領域のシ−ト抵抗と活性化熱処理温度の関
係を示した図である。
FIG. 1(a) is a diagram showing the relationship between the crystallization rate of the source/drain region of a thin film transistor immediately after impurity implantation and the substrate heating temperature during implantation. (b) is
FIG. 3 is a diagram showing the relationship between the sheet resistance of the source/drain region and the activation heat treatment temperature.

【図2】本発明の半導体装置の製造方法の一実施例の断
面図である。
FIG. 2 is a cross-sectional view of an embodiment of the method for manufacturing a semiconductor device of the present invention.

【図3】本発明の半導体装置の製造方法を一実施例の工
程図である。
FIG. 3 is a process diagram of one embodiment of the method for manufacturing a semiconductor device of the present invention.

【図4】従来の半導体装置の製造方法を用いた場合の不
純物打ち込み直後のソ−ス・ドレイン領域を拡大した断
面図である。
FIG. 4 is an enlarged cross-sectional view of a source/drain region immediately after impurity implantation using a conventional semiconductor device manufacturing method.

【図5】本発明のの半導体装置の製造方法を用いた場合
の不純物打ち込み直後のソ−ス・ドレイン領域を拡大し
た断面図である。
FIG. 5 is an enlarged cross-sectional view of the source/drain region immediately after impurity implantation when using the method of manufacturing a semiconductor device of the present invention.

【符号の説明】[Explanation of symbols]

101  従来の半導体装置の製造方法を用いた場合の
ソ−ス・ドレイン領域のシ−ト抵抗曲線 102  本発明の半導体装置の製造方法において、イ
オン注入装置を用いた場合のソ−ス・ドレイン領域のシ
−ト抵抗曲線 103  本発明の半導体装置の製造方法において、質
量分析を用いないイオン注入装置を用いた場合のソ−ス
・ドレイン領域のシ−ト抵抗曲線 201  基板 202  シリコン酸化膜 203  ノンド−プの多結晶シリコン204  シリ
コン酸化膜 205  ゲ−ト電極 206  ソ−ス・ドレイン領域 207  シリコン酸化膜 208  電極配線 301  基板 302  シリコン酸化膜 303  不純物を含まない多結晶シリコン304  
ゲ−ト絶縁膜 305  ゲ−ト電極 306  リンのイオンビ−ム 307  ソ−ス・ドレイン領域 308  層間絶縁膜 309  電極配線
101 Sheet resistance curve of the source/drain region when a conventional semiconductor device manufacturing method is used 102 Source/drain region when an ion implantation device is used in the semiconductor device manufacturing method of the present invention Sheet resistance curve 103 of the source/drain region when an ion implantation device that does not use mass spectrometry is used in the semiconductor device manufacturing method of the present invention 201 Substrate 202 Silicon oxide film 203 Non-doped - polycrystalline silicon 204 silicon oxide film 205 gate electrode 206 source/drain region 207 silicon oxide film 208 electrode wiring 301 substrate 302 silicon oxide film 303 impurity-free polycrystalline silicon 304
Gate insulating film 305 Gate electrode 306 Phosphorous ion beam 307 Source/drain region 308 Interlayer insulating film 309 Electrode wiring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  絶縁基板上に形成される自己整合的な
薄膜トランジスタにおいて、イオン注入装置を用いて不
純物イオンを打ち込むことによりソ−ス・ドレイン領域
を形成する工程を含み、前記の打ち込み工程において、
絶縁基板の温度を300℃以上に保持しながら不純物を
打ち込むことを特徴とする半導体装置の製造方法。
1. A self-aligned thin film transistor formed on an insulating substrate, comprising a step of forming source/drain regions by implanting impurity ions using an ion implantation device, the implanting step comprising:
A method for manufacturing a semiconductor device, comprising implanting impurities while maintaining the temperature of an insulating substrate at 300° C. or higher.
【請求項2】  請求項1に記載の半導体装置の製造方
法において、0%以上で10%未満の不純物となるガス
と、残部が水素ガスで構成されるガスから生成されるす
べてのイオンを、質量分析を用いないイオン注入装置を
用いて打ち込むことを特徴とする半導体装置の製造方法
2. In the method for manufacturing a semiconductor device according to claim 1, all ions generated from a gas consisting of 0% or more and less than 10% impurity gas and the remainder hydrogen gas, A method for manufacturing a semiconductor device, characterized in that implantation is performed using an ion implanter that does not use mass spectrometry.
JP14853591A 1991-06-20 1991-06-20 Method for manufacturing thin film transistor Expired - Lifetime JP3515132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14853591A JP3515132B2 (en) 1991-06-20 1991-06-20 Method for manufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14853591A JP3515132B2 (en) 1991-06-20 1991-06-20 Method for manufacturing thin film transistor

Publications (2)

Publication Number Publication Date
JPH04370937A true JPH04370937A (en) 1992-12-24
JP3515132B2 JP3515132B2 (en) 2004-04-05

Family

ID=15454954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14853591A Expired - Lifetime JP3515132B2 (en) 1991-06-20 1991-06-20 Method for manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JP3515132B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151524A (en) * 2000-08-14 2002-05-24 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
US6709906B2 (en) 1994-02-28 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
JP2009535850A (en) * 2006-05-04 2009-10-01 インターナショナル・ビジネス・マシーンズ・コーポレーション Ion implantation for improved field effect transistors combined with in situ or ex situ heat treatment (method of manufacturing FET devices and FET devices)
JP2012089859A (en) * 2000-08-14 2012-05-10 Semiconductor Energy Lab Co Ltd El display device and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709906B2 (en) 1994-02-28 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
JP2002151524A (en) * 2000-08-14 2002-05-24 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
JP2012089859A (en) * 2000-08-14 2012-05-10 Semiconductor Energy Lab Co Ltd El display device and its manufacturing method
JP2009535850A (en) * 2006-05-04 2009-10-01 インターナショナル・ビジネス・マシーンズ・コーポレーション Ion implantation for improved field effect transistors combined with in situ or ex situ heat treatment (method of manufacturing FET devices and FET devices)

Also Published As

Publication number Publication date
JP3515132B2 (en) 2004-04-05

Similar Documents

Publication Publication Date Title
US6060725A (en) Thin film transistor using a semiconductor film
US6346486B2 (en) Transistor device and method of forming the same
US6541313B2 (en) Transistor and process for fabricating the same
US6531348B2 (en) Method for crystallizing amorphous silicon and fabricating thin film transistor using crystallized silicon
JP3137797B2 (en) Thin film transistor and manufacturing method thereof
JPS6276772A (en) Manufacture of field effect transistor
JPH04370937A (en) Manufacture of semiconductor device
JP3110792B2 (en) Method for manufacturing polycrystalline semiconductor thin film transistor and active matrix substrate
KR100317639B1 (en) Thin film transistor, liquid crystal display device and the method of fabricating the same
JPS61119079A (en) Manufacture of thin film transistor
JPH0613402A (en) Manufacture of semiconductor device
JP3173126B2 (en) Method for manufacturing thin film transistor
JPH05206464A (en) Thin film semiconductor device and its manufacture
JP3535465B2 (en) Method for manufacturing semiconductor device
JPH04307741A (en) Manufacture of semiconductor device
JP2987987B2 (en) Method of forming crystalline semiconductor thin film and method of manufacturing thin film transistor
JP2554055B2 (en) Method for forming low resistance polycrystalline silicon thin film
JP3333489B2 (en) Method for manufacturing thin film transistor
JPH0786604A (en) Thin-film transistor and manufacture thereof
JP3186056B2 (en) Method for manufacturing semiconductor device
JPS63283068A (en) Manufacture of thin-film transistor
JPH03200319A (en) Formation of poly-crystalline silicon
JP3137943B2 (en) Thin film transistor
JPH07321336A (en) Manufacture of thin film transistor
JPH0536911A (en) Three-dimensional circuit element and manufacture thereof

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8