JPH04369460A - Density measuring apparatus - Google Patents

Density measuring apparatus

Info

Publication number
JPH04369460A
JPH04369460A JP17045891A JP17045891A JPH04369460A JP H04369460 A JPH04369460 A JP H04369460A JP 17045891 A JP17045891 A JP 17045891A JP 17045891 A JP17045891 A JP 17045891A JP H04369460 A JPH04369460 A JP H04369460A
Authority
JP
Japan
Prior art keywords
rays
inspected
types
ray
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17045891A
Other languages
Japanese (ja)
Inventor
Hironao Yamaji
宏尚 山地
Kazuo Hayashi
林 一雄
Yasuaki Nagata
泰昭 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17045891A priority Critical patent/JPH04369460A/en
Publication of JPH04369460A publication Critical patent/JPH04369460A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure density distribution of an object to be inspected by means of calculation based on X-ray intensity by applying X-rays to the object which is baked to be a product such as soft ferrite or ceramic and measuring X-ray intensities before and after the rays transmit through the object. CONSTITUTION:In measuring density of an object A to be inspected wherein (n) components are mixed, a target 2 for generating fluorescent X-rays containing (m) kinds of Kalpha rays is provided. Every time the fluorescent X-rays are transmitted through the object A, an X-ray detector 3 is used to detect and count with respective energy of the (m) kinds of Kalpha rays, and the following m-order relational expression for X-ray absorption is solved for each measurement region: (In(N<0>m/Nm))/t=SIGMAmumn (rhoWn). A ratio in components of materials of the object A is obtained and whether or not the materials have been uniformly mixed is measured to obtain correct density.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は密度の測定装置に関し、
特にソフトフェライトあるいはセラミックスなど焼成し
て製品となる被検査物に対しX線を照射して該被検査物
透過の前後におけるX線強度を所望微小領域で測定し、
該X線強度に基づきX線透過の際のX線吸収の関係式を
利用して演算により被検査物の密度分布を得る装置に関
する。
[Field of Industrial Application] The present invention relates to a density measuring device.
In particular, by irradiating X-rays onto an inspected object such as soft ferrite or ceramics, which becomes a product by firing, the X-ray intensity before and after passing through the inspected object is measured in a desired minute area,
The present invention relates to an apparatus that obtains a density distribution of an object to be inspected by calculation using a relational expression of X-ray absorption during X-ray transmission based on the X-ray intensity.

【0002】0002

【従来の技術】ソフトフェライトあるいはセラミックス
など焼成して製品とされる材料は、焼成後の寸法は焼成
前の寸法の約20%も収縮する。このような収縮量に対
し製品寸法の要求精度は±0.5%以内と厳しい。とこ
ろが、材料が均一に混合された材料では収縮量と焼成前
後の密度変化率とは相関があることから、製品寸法を高
精度で得るためには、焼成前の成形体材料の密度分布を
高精度で測定しておく必要がある。
2. Description of the Related Art Materials such as soft ferrite or ceramics that are made into products by firing shrink in size by about 20% of the size before firing after firing. For this amount of shrinkage, the required accuracy of product dimensions is strict, within ±0.5%. However, for materials that are uniformly mixed, there is a correlation between the amount of shrinkage and the rate of change in density before and after firing, so in order to obtain highly accurate product dimensions, it is necessary to increase the density distribution of the molded body material before firing. It is necessary to measure accurately.

【0003】従来、非破壊で部分密度を測定する方法で
は単一エネルギーの放射線の減衰吸収法により密度ρ×
厚さtを求め、別途測定した厚みtで除算して密度ρを
算出する方法が行われている。また、構成物質の重量成
分比を測定する方法としては、特開昭57−11624
0号公報に示されているように、成分数n(n≧3)の
パイプライン内部のn成分の構成物質に、m(m≧n−
1)種類のエネルギーのγ線を照射し、m種類のγ線の
透過強度を測定し、重量成分比を決定する方法も行われ
ている。
Conventionally, in a non-destructive method of measuring partial density, density ρ×
A method is used in which the density ρ is calculated by determining the thickness t and dividing it by a separately measured thickness t. In addition, as a method for measuring the weight component ratio of constituent substances, Japanese Patent Application Laid-Open No. 57-11624
As shown in Publication No. 0, m (m≧n−
1) A method is also used in which the weight component ratio is determined by irradiating gamma rays with different energies and measuring the transmitted intensities of m types of gamma rays.

【0004】0004

【発明が解決しようとする課題】ところで、単色X線、
およびγ線など単一エネルギーの放射線の透過に際して
のX線強度の減衰状況についての原理式は      
      N=Noexp(−ρμt)      
                    (1)ただ
し、  N:透過放射線検出計数(個)t:被検査物の
厚さ(cm) μ:放射線に対する被検査物の質量吸収係数(cm2 
/g) No:t=0における透過X線検出計数(個)ρ:被検
査物の密度(g/cm3 ) として示され、No 、μ、tがそれぞれ既知のときN
を測定することによって密度ρが計算され得る。
[Problem to be solved by the invention] By the way, monochromatic X-rays,
The principle formula for the attenuation of X-ray intensity when transmitting single-energy radiation such as γ-rays is
N=Noexp(-ρμt)
(1) However, N: Number of transmitted radiation detection (numbers) t: Thickness of the object to be inspected (cm) μ: Mass absorption coefficient of the object to be inspected for radiation (cm2
/g) No: Number of transmitted X-rays detected at t=0 (number) ρ: Density of the object to be inspected (g/cm3) When No., μ, and t are each known, N
The density ρ can be calculated by measuring ρ.

【0005】しかし、従来のように単一エネルギーのγ
線を用いる方法では、被検査物の材料の混合が均一でな
い場合には被検査物の質量吸収係数μが測定点ごとに異
なるため、X線検出計数Nの値が変化するので、実際に
は密度分布は変化していないにもかかわらず、(1)式
より測定上はあたかも密度分布が変化しているかのよう
に測定される問題があった。また複数のエネルギーのγ
線を利用して被検査物の混合物の重量成分比を求める方
法では、例えば、3種類のエネルギーを必要とするγ線
源としてはインジウム−114が、n種類のエネルギー
を必要とするγ線源としてはラジウム−226が適用さ
れるが、放出されるγ線のエネルギーが数MeVと非常
に高いために、ソフトフェライトあるいはセラミックス
等を被検査物とした場合において、放射線がほとんど減
衰吸収されず放射線検出計数の変化が得られない。即ち
、密度分布あるいは重量成分比変化率の測定が行えるエ
ネルギー領域の放射線源を得るのが容易でないという問
題があった。また、γ線の強度が十分なγ線源において
は取扱が容易でない等の問題もあった。
However, as in the past, single energy γ
In the method using radiation, if the mixture of the materials of the object to be inspected is not uniform, the mass absorption coefficient μ of the object to be inspected will differ from measurement point to measurement point, and the value of the X-ray detection coefficient N will change. There is a problem in that even though the density distribution has not changed, it is measured as if the density distribution has changed according to equation (1). Also, γ of multiple energies
In the method of determining the weight component ratio of a mixture of an object to be inspected using radiation, for example, indium-114 is used as a gamma ray source that requires three types of energy, while indium-114 is used as a gamma ray source that requires n types of energy. Radium-226 is used for this purpose, but since the energy of the emitted gamma rays is very high, several MeV, when the object to be inspected is soft ferrite or ceramics, the radiation is hardly attenuated or absorbed, and the radiation is not absorbed. No change in detection count can be obtained. That is, there has been a problem in that it is not easy to obtain a radiation source in the energy range from which density distribution or weight component ratio change rate can be measured. Furthermore, there are also problems in that a gamma ray source with sufficient gamma ray intensity is not easy to handle.

【0006】本装置は上記事情に基づいてなされたもの
であり、簡便な手段でソフトフェライト及びセラミック
スなどの材料の混合物が均一であるか、否かおよび密度
分布を測定する密度測定装置を提供することを目的とす
るものである。
[0006] The present device has been developed based on the above circumstances, and provides a density measuring device that measures whether a mixture of materials such as soft ferrite and ceramics is homogeneous or not and determines the density distribution using a simple means. The purpose is to

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明に係る密度測定装置は、X線管から放出し
たX線をターゲットに照射させ、蛍光X線を放出させ、
放出した蛍光X線をコリメートした後に、n種類の成分
の材料がそれぞれ所定の重量成分比Wonで混合された
被検査物に透過させてエネルギー分析が可能なX線検出
器で蛍光X線を検出する密度測定装置において、m種類
のKα線を発生するm種類の元素で構成されたターゲッ
トを設ける手段と、発生された前記m種類のKα線を含
む蛍光X線をコリメートし、前記被検査物の各測定領域
を透過させる度に前記X線検出器によってエネルギー分
析し前記m種類のKα線のエネルギー各々で検出計数し
、各測定領域ごとに次のm次の連立方程式
[Means for Solving the Problems] In order to achieve the above object, a density measuring device according to the present invention irradiates a target with X-rays emitted from an X-ray tube, emits fluorescent X-rays,
After collimating the emitted fluorescent X-rays, the fluorescent X-rays are detected by an X-ray detector capable of energy analysis by transmitting them through an object to be inspected, which is a mixture of n types of component materials at a predetermined weight component ratio Won. In the density measuring apparatus, a means for providing a target composed of m types of elements that generate m types of Kα rays, and a means for collimating the generated fluorescent X-rays containing the m types of Kα rays, Each time the X-ray passes through each measurement area, the energy is analyzed by the X-ray detector, and the energies of the m types of Kα rays are detected and counted, and the following m-order simultaneous equations are calculated for each measurement area.

【0008】[0008]

【数1】 ただし、Wn :被検査物の測定領域中の第n成分の重
量成分比(%) No m:被検査物が無い状態に、ターゲットから放射
され、検出されるm種類のKα線の検出計数Nm :タ
ーゲットから放射され被検査物を透過した後に検出され
るm種のKα線の検出計数 ρ  :被検査物の測定領域中の密度(g/cm3 )
μmn:被検査物の第n成分のm種類のKα線に対する
質量吸収係数(cm2 /g) t  :被検査物の厚さ(cm) を解き、前記被検査物の各測定領域における第n成分各
々のρWn を求め、各測定点ごとにW1 を基準にし
たn個の同一測定領域中のWn の相対重量成分比Wn
/W1 を求め、前記被検査物の所定の重量成分比Wo
nから予め求めた相対重量成分比Won/Wo1と比較
し、同等であるならば被検査物は均一に材料が混合され
ていると判断し、求められたρWn から密度を演算す
る手段を設けたものである。
[Equation 1] Where, Wn: Weight component ratio (%) of the nth component in the measurement area of the object to be inspected No m: m types of Kα rays emitted from the target and detected in the absence of the object to be inspected Detection count Nm: Detection count of m types of Kα rays emitted from the target and detected after passing through the inspection object ρ: Density in the measurement area of the inspection object (g/cm3)
μmn: Mass absorption coefficient of the n-th component of the object to be inspected for m types of Kα rays (cm2/g) t: Thickness of the object to be inspected (cm), and the n-th component in each measurement region of the object to be inspected Find each ρWn and calculate the relative weight component ratio Wn of Wn in n same measurement areas based on W1 for each measurement point.
/W1 is determined, and the predetermined weight component ratio Wo of the object to be inspected is determined.
A means was provided to compare the relative weight component ratio Won/Wo1 determined in advance from n, and if they were equal, it was determined that the material to be inspected was uniformly mixed, and to calculate the density from the determined ρWn. It is something.

【0009】[0009]

【作用】本発明に係る密度測定装置は前記の構成によっ
て、m種類の元素で構成したターゲットを設ける手段に
より、発生させたm種のKα線は、被検査物を透過した
後、X線検出器で検出する際に変化量が顕著になるよう
なエネルギー領域を任意に選択できる。
[Operation] The density measuring device according to the present invention has the above-mentioned structure, and by means of providing a target composed of m types of elements, the generated m types of Kα rays are detected by X-ray detection after passing through the object to be inspected. It is possible to arbitrarily select an energy region in which the amount of change becomes significant when detected by the instrument.

【0010】そして、ターゲットより放出されたm種類
のKα線は、コリメートされn種類の成分の混合物が所
定の重量成分比で構成している被検査物の所望な微小範
囲を透過した後にX線検出器でエネルギー分析されて各
々m種類のKα線のエネルギーで検出計数される。この
とき、被検査物の混合物の種類、被検査物の第n成分の
m種類のKα線に対する質量吸収数μmn、及び被検査
物が無い場合にターゲットから放射されるm種類のKα
線の検出計数No mは予め評価してあり既知であるこ
とから、前述の(2)のm次の連立方程式を解くことが
可能となり、被検査物の各測定点におけるn種類のρW
n が得られる。この動作を予め設定した測定点の個数
だけ行う。
[0010] The m types of Kα rays emitted from the target are collimated and transmitted through a desired minute range of the object to be inspected, which is composed of a mixture of n types of components at a predetermined weight component ratio, and then become X-rays. The energy of each of the m types of Kα rays is detected and counted by the detector. At this time, the type of mixture of the object to be inspected, the mass absorption number μmn of the nth component of the object to m types of Kα rays, and the m types of Kα emitted from the target when there is no object to be inspected.
Since the line detection count No m has been evaluated in advance and is known, it becomes possible to solve the m-th order simultaneous equations in (2) above, and calculate n types of ρW at each measurement point of the object to be inspected.
n is obtained. This operation is performed for the number of measurement points set in advance.

【0011】次に同一測定領域における成分1を基準に
した第n成分のWn の相対値を求める。ここで、同一
測定領域中のn種類のρWn の相対値はρW1 を基
準にすると次式が得られ、       ρWn /ρW1 =Wn /W1   
                         
     (3)が得られ、結局第n成分のWn の相
対重量成分比Wn/W1 が得られる。
Next, the relative value of Wn of the n-th component with respect to component 1 in the same measurement area is determined. Here, the relative value of n types of ρWn in the same measurement area is based on ρW1, and the following formula is obtained, ρWn /ρW1 = Wn /W1

(3) is obtained, and as a result, the relative weight component ratio Wn/W1 of Wn of the n-th component is obtained.

【0012】一方、被検査物の所定の重量成分比Won
から予め求めた相対重量成分比Won/Wo1は被検査
物の材料が均一に混合されていれば測定された測定領域
全ての箇所においても同等である。即ち、測定から求め
られた相対重量成分比Wn /W1 と被検査物を構成
する相対重量成分比Won/Wo1を比較して同等であ
る場合には被検査物は均一に材料が混合されていると判
断し、得られたρWn の値は       ρWn =ρWon          
                         
         (4)となり、ここでWonは予め
求められているので密度ρは直ちに算出される。
On the other hand, the predetermined weight component ratio Won of the object to be inspected
The relative weight component ratio Won/Wo1 determined in advance from Won/Wo1 is the same in all measured measurement areas if the materials of the object to be inspected are uniformly mixed. That is, when the relative weight component ratio Wn/W1 obtained from the measurement and the relative weight component ratio Won/Wo1 constituting the object to be inspected are equal, the materials to be inspected are uniformly mixed. The value of ρWn obtained is ρWn = ρWon

(4), and since Won has been determined in advance, the density ρ can be calculated immediately.

【0013】[0013]

【実施例】以下に、本発明の一実施例について図面を参
照して、詳細な説明を行う。図1は本発明の一実施例で
ある密度測定装置の主要構成部分の配置を示す図である
。図中、被検査物Aはm成分の材料が所定の重量成分比
で混合され、その密度はρ、厚さはtである。1と10
はX線発生装置とそのコリメータ(例えば鉛)であり、
X線発生装置1から発生されるX線ビーム20がターゲ
ット2に照射するように設置されている。X線発生装置
1から発生されたX線ビーム20がターゲット2に照射
されるとターゲット2からは蛍光X線30が放出される
。本発明によれば、ターゲットはm種類のKα線を発生
するようm種類の元素で構成されていることが望ましく
、例えば、m=3の場合、W(タングステン)、Pt(
白金)、Bi(ビスマス)の合金で構成すると良い。こ
のとき、発生されるKα線エネルギーはそれぞれ58.
8keV、66.3keV、76.5keVである。こ
こでKα線をWKα線、PtKα線とする。11と12
はコリメータ(例えば鉛)であり、被検査物Aの所望の
測定領域40(例えばΦ1mmで長さがtの円柱形)に
、散乱X線を除去するために設けられたフィルター13
(例えば厚さ2mmのアルミニウム)を透過した蛍光X
線30が照射されるように予め設置されている。 15は被検体Aを固定し、図中、x方向及びy方向に移
動することで蛍光X線30がコリメータ11とコリメー
タ12により規定される被検査物の測定領域40を走査
する被検査物ステージであり、この被検査物ステージ1
5の移動は駆動機構6によって行われ、この駆動機構6
の制御はコンピュータ7によって行われる。3と4と5
はエネルギー分析が可能なX線検出器(例えばGe半導
体検出器と図示されていない増幅器より成る)とエネル
ギー分析装置とX線計数装置であり、コリメータ11と
コリメータ12とで規定される被検査物Aの所望微小領
域40を透過した蛍光X線30を検出するようにX線検
出器3は設置されている。8は結果を出力する出力装置
であり、例えば、CRTあるいは印字装置である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram showing the arrangement of the main components of a density measuring device according to an embodiment of the present invention. In the figure, the inspected object A is a mixture of m-component materials at a predetermined weight component ratio, and has a density of ρ and a thickness of t. 1 and 10
is an X-ray generator and its collimator (e.g. lead),
It is installed so that an X-ray beam 20 generated from an X-ray generator 1 irradiates a target 2 . When the target 2 is irradiated with the X-ray beam 20 generated by the X-ray generator 1, the target 2 emits fluorescent X-rays 30. According to the present invention, the target is desirably composed of m types of elements so as to generate m types of Kα rays. For example, when m=3, W (tungsten), Pt (
It is preferable to use an alloy of (platinum) and Bi (bismuth). At this time, the Kα ray energy generated is 58.
They are 8keV, 66.3keV, and 76.5keV. Here, the Kα rays are referred to as WKα rays and PtKα rays. 11 and 12
is a collimator (for example, made of lead), and a filter 13 is provided in a desired measurement area 40 (for example, a cylindrical shape with a diameter of 1 mm and a length of t) of the object A to remove scattered X-rays.
Fluorescent X transmitted through (for example, 2 mm thick aluminum)
It is installed in advance so that the line 30 is irradiated. Reference numeral 15 denotes a test object stage on which the test object A is fixed and moves in the x and y directions in the figure to scan the measurement area 40 of the test object defined by the collimators 11 and 12 with the fluorescent X-rays 30. , and this test object stage 1
5 is moved by a drive mechanism 6, and this drive mechanism 6
The control is performed by the computer 7. 3 and 4 and 5
is an X-ray detector capable of energy analysis (for example, consisting of a Ge semiconductor detector and an amplifier (not shown)), an energy analyzer, and an X-ray counter; The X-ray detector 3 is installed so as to detect the fluorescent X-rays 30 that have passed through the desired microregion 40 of A. 8 is an output device for outputting the results, such as a CRT or a printing device.

【0014】X線検出器3の出力は、被検査物ステージ
15の移動によって確定される測定領域40について毎
回、エネルギー分析装置4とX線計数装置5とで各々m
種のKα線のエネルギー毎に一定時間計数され、これを
m種類のKα線の検出計数透過X線検出計数((2)式
に示すNm)として、コンピュータ7に転送される。こ
の動作を被検査物ステージ15の走査に同期させて、予
めコンピュータ7に設定した測定回数と測定位置にした
がって行う。一方、(2)式における被検査物のn種類
の混合物のm種類のKα線に対する質量吸収係数μmn
、及び被検査物を併せない場合にターゲットから放射さ
れるm種類のKα線の検出計数No mは予め評価され
コンピュータに組み込まれている。したがって(2)式
から検査領域におけるn種類のρWnが求められる。例
えば、被検査物をソフトフェライトとし、Fe2O3 
、Zn0、Mnの3成分の材料で混合され、所定の重量
成分比をそれぞれ80%、10%、10%とし、W(タ
ングステン)、Pt(白金)、Bi(ビスマス)の合金
ターゲットとした場合、一測定点ごとにWKα線の検出
計数透過X線検出計数N1 、PtKα線の検出計数透
過X線検出計数N2 、BiKα線の検出計数透過X線
検出計数N3 が測定され(2)式は次式になる、(l
n(No 1/N1 ))/t                         =
μ11(ρW1 )+μ12(ρW2 )+μ13(ρ
W3 )(ln(No 2/N2 ))/t                         =
μ21(ρW1 )+μ22(ρW2 )+μ23(ρ
W3 )(ln(No 3/N3 ))/t                         =
μ31(ρW1 )+μ32(ρW2 )+μ33(ρ
W3 )したがって一測定点ごとにρW1 、ρW2 
、ρW3 を未知数とする3元一次方程式が得られ、コ
ンピュータ7により一測定点ごとにρW1 、ρW2 
、ρW3 は算出され記憶される。次に、被検査物Aの
材料が均一に混合されているか否かを判断するために、
求められたρW1 、ρW2 、ρW3 は(3)式に
より、測定領域中の成分Fe2O3 のρW1 を基準
として3種類の相対重量成分比、W1 /W1、W2 
/W1 、W3 /W1 に演算される。
The output of the X-ray detector 3 is calculated by the energy analyzer 4 and the X-ray counter 5 each time for the measurement area 40 determined by the movement of the inspection object stage 15.
The energy of each type of Kα ray is counted for a certain period of time, and this is transferred to the computer 7 as a detection count and transmitted X-ray detection count (Nm shown in equation (2)) of m types of Kα rays. This operation is performed in synchronization with the scanning of the inspection object stage 15 according to the number of measurements and the measurement position set in the computer 7 in advance. On the other hand, the mass absorption coefficient μmn for m types of Kα rays of a mixture of n types of the test object in equation (2)
, and the detection count No m of m types of Kα rays emitted from the target when the object to be inspected is not combined, are evaluated in advance and incorporated into the computer. Therefore, n types of ρWn in the inspection area can be obtained from equation (2). For example, if the object to be inspected is soft ferrite, Fe2O3
, Zn0, and Mn, with predetermined weight component ratios of 80%, 10%, and 10%, respectively, and an alloy target of W (tungsten), Pt (platinum), and Bi (bismuth). , for each measurement point, WKα ray detection count transmitted X-ray detection count N1, PtKα ray detection count transmitted X-ray detection count N2, BiKα ray detection count transmitted X-ray detection count N3 are measured, and equation (2) is as follows. becomes the formula, (l
n(No 1/N1))/t=
μ11(ρW1)+μ12(ρW2)+μ13(ρ
W3 )(ln(No 2/N2 ))/t =
μ21(ρW1)+μ22(ρW2)+μ23(ρ
W3)(ln(No3/N3))/t=
μ31(ρW1)+μ32(ρW2)+μ33(ρ
W3) Therefore, ρW1, ρW2 for each measurement point
, ρW3 are obtained as unknowns, and the computer 7 calculates ρW1 , ρW2 for each measurement point.
, ρW3 are calculated and stored. Next, in order to determine whether the materials of inspection object A are mixed uniformly,
The obtained ρW1, ρW2, and ρW3 are calculated from three types of relative weight component ratios, W1/W1, W2, based on the ρW1 of the component Fe2O3 in the measurement area, using equation (3).
/W1 and W3 /W1 are calculated.

【0015】一方、被検査物Aの所定重量成分比はFe
2O3 、Zn0、Mnの3成分について各々80%、
10%、10%と値が予め求められているので、成分F
e2O3を基準にした相対重量成分比はそれぞれ、1.
000、0.125、0.125と算出された値がコン
ピュータ7に記憶されている。したがって本装置により
測定された測定領域40において、すべてのW1 /W
1 、W2 /W1 、W3 /W1 が各々1.00
0、0.125、0.125と比較され、等しくない場
合には被検査物Aは均一に材料が混合されていない不良
材料であると判断され、出力装置8に示される。等しい
場合には、被検査物Aは均一に材料が混合されていると
判断され(4)式により測定領域40の密度ρが算出さ
れる。この一連の動作を予めコンピュータ7に設定した
測定回数と測定位置にしたがって行うことで密度分布が
測定され、結果が出力装置8に示される。
On the other hand, the predetermined weight component ratio of the test object A is Fe.
80% each for the three components of 2O3, Zn0, and Mn,
Since the values 10% and 10% are determined in advance, the component F
The relative weight component ratios based on e2O3 are respectively 1.
The calculated values 000, 0.125, and 0.125 are stored in the computer 7. Therefore, in the measurement area 40 measured by this device, all W1 /W
1, W2 /W1 and W3 /W1 are each 1.00
0, 0.125, and 0.125, and if they are not equal, it is determined that the inspected object A is a defective material in which the materials are not evenly mixed, and this is displayed on the output device 8. If they are equal, it is determined that the materials to be inspected A are uniformly mixed, and the density ρ of the measurement area 40 is calculated using equation (4). The density distribution is measured by performing this series of operations according to the number of measurements and the measurement position set in advance in the computer 7, and the results are displayed on the output device 8.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、ソ
フトフェライトあるいはセラミックスなど焼成されて製
品とされる材料の密度を測定するにあたり、非破壊で材
料が均一に混合されているか否かを判断でき、材料が均
一である場合には部分的な密度を測定することで密度分
布が測定できる密度測定装置を提供できるので、前記材
料の開発、生産に大きく寄与する。
[Effects of the Invention] As explained above, according to the present invention, when measuring the density of materials such as soft ferrite or ceramics that are fired into products, it is possible to non-destructively check whether the materials are mixed uniformly or not. If the material is uniform, it is possible to provide a density measuring device that can measure the density distribution by measuring the partial density, which greatly contributes to the development and production of the material.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例である密度測定装置の主要構
成部分の配置を示す図である。
FIG. 1 is a diagram showing the arrangement of main components of a density measuring device that is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  X線発生装置 2  ターゲット 3  X線検出器 4  エネルギー分析装置 5  X線計数装置 6  駆動機構 7  コンピュータ 8  出力装置 10、11、12、  コリメータ 13  フィルター 15  被検査物ステージ 20  X線発生装置から放射されるX線30  ター
ゲットから放出される蛍光X線40  測定領域 A  被検査物
1 X-ray generator 2 Target 3 X-ray detector 4 Energy analyzer 5 X-ray counter 6 Drive mechanism 7 Computer 8 Output devices 10, 11, 12, collimator 13 Filter 15 Inspection object stage 20 Radiation from the X-ray generator X-rays emitted 30 Fluorescent X-rays 40 emitted from the target Measurement area A Object to be inspected

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  X線発生装置から放出したX線をター
ゲットに照射させ、蛍光X線を放出させ、放出した蛍光
X線をコリメートした後に、n種類の成分の材料がそれ
ぞれ所定の重量成分比Wonで混合された被検査物に透
過させてエネルギー分析が可能なX線検出器で蛍光X線
を検出する密度測定装置において、m種類(m≧n)の
Kα線を発生するm種類の元素で構成されたターゲット
を設け、発生された前記m種類のKα線を含む蛍光X線
をコリメートし、前記被検査物の各測定領域を透過させ
る度に前記X線検出器によってエネルギー分析し前記m
種類のKα線のエネルギー各々で検出計数し、各測定領
域ごとに数1のm次の連立方程式 【数1】 ただし、Wn :被検査物の測定領域中の第n成分の重
量成分比(%) No m:被検査物が無い状態に、ターゲットから放射
され、検出されるm種類のKα線の検出計数Nm :タ
ーゲットから放射され被検査物を透過した後に検出され
るm種のKα線の検出計数 ρ  :被検査物の測定領域中の密度(g/cm3 )
μmn:被検査物の第n成分のm種類のKα線に対する
質量吸収係数(cm2 /g) t  :被検査物の厚さ(cm) を解き、前記被検査物の各測定領域における第n成分各
々のρWn を求め、前記被検査物の測定領域中の第1
成分の重量成分比W1 を基準としたn個の同一測定領
域中の第n成分の重量成分比Wn の相対重量成分比W
n /W1 を求め、前記被検査物の所定の重量成分比
Wonから予め求めた相対重量成分比Won/Wo1と
比較し、同等であるならば被検査物は均一に材料が混合
されていると判断し、前記ρWn の値から密度を演算
することを特徴とする密度測定装置。
Claim 1: After irradiating a target with X-rays emitted from an X-ray generator to emit fluorescent X-rays and collimating the emitted fluorescent In a density measurement device that detects fluorescent X-rays with an X-ray detector that can transmit energy through an object mixed with Won and perform energy analysis, m types of elements that generate m types of Kα rays (m≧n) are used. The fluorescent X-rays containing the m types of Kα rays generated are collimated, and each time the fluorescent X-rays pass through each measurement area of the object to be inspected, the energy is analyzed by the X-ray detector.
The energy of each type of Kα ray is detected and counted, and for each measurement area, the m-th order simultaneous equation of the formula 1 is given.where Wn: weight component ratio of the n-th component in the measurement area of the object to be inspected (% ) No m: Detection count of m types of Kα rays emitted from the target and detected when there is no object to be inspected Nm: Detection count of m types of Kα rays emitted from the target and detected after passing through the object to be inspected Detection count ρ: Density in the measurement area of the object to be inspected (g/cm3)
μmn: Mass absorption coefficient of the n-th component of the object to be inspected for m types of Kα rays (cm2/g) t: Thickness of the object to be inspected (cm), and the n-th component in each measurement region of the object to be inspected Determine each ρWn, and calculate the first
Relative weight component ratio W of the weight component ratio Wn of the n-th component in n same measurement areas based on the weight component ratio W1 of the component
n/W1 is determined and compared with the relative weight component ratio Won/Wo1 determined in advance from the predetermined weight component ratio Won of the object to be inspected. If they are equal, it is determined that the materials to be inspected are uniformly mixed. A density measuring device characterized in that the density is calculated from the value of ρWn.
JP17045891A 1991-06-17 1991-06-17 Density measuring apparatus Withdrawn JPH04369460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17045891A JPH04369460A (en) 1991-06-17 1991-06-17 Density measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17045891A JPH04369460A (en) 1991-06-17 1991-06-17 Density measuring apparatus

Publications (1)

Publication Number Publication Date
JPH04369460A true JPH04369460A (en) 1992-12-22

Family

ID=15905314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17045891A Withdrawn JPH04369460A (en) 1991-06-17 1991-06-17 Density measuring apparatus

Country Status (1)

Country Link
JP (1) JPH04369460A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218845A (en) * 2006-02-20 2007-08-30 Shimadzu Corp Transmission x-ray measuring method
JP2007531890A (en) * 2004-04-06 2007-11-08 コミツサリア タ レネルジー アトミーク Method and system for measuring the density and dimensional properties of objects and applications for inspecting nuclear fuel pellets during production
JP2011519031A (en) * 2008-04-24 2011-06-30 クロメック リミテッド Method and apparatus for inspecting substances

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531890A (en) * 2004-04-06 2007-11-08 コミツサリア タ レネルジー アトミーク Method and system for measuring the density and dimensional properties of objects and applications for inspecting nuclear fuel pellets during production
JP2007218845A (en) * 2006-02-20 2007-08-30 Shimadzu Corp Transmission x-ray measuring method
JP4725350B2 (en) * 2006-02-20 2011-07-13 株式会社島津製作所 Transmission X-ray measurement method
JP2011519031A (en) * 2008-04-24 2011-06-30 クロメック リミテッド Method and apparatus for inspecting substances

Similar Documents

Publication Publication Date Title
US5040199A (en) Apparatus and method for analysis using x-rays
US4168431A (en) Multiple-level X-ray analysis for determining fat percentage
RU2499252C2 (en) Apparatus and method for x-ray fluorescence analysis of mineral sample
JP3908788B2 (en) Object detection device using single energy neutrons
JPH02228515A (en) Measurement of thickness of coating
JPH06121791A (en) X-ray determination device and x-ray determination method
Zhu et al. X-ray Compton backscattering techniques for process tomography: imaging and characterization of materials
GB2030815A (en) Determination of internal body structures by measuring scattered radiation
JPH04369460A (en) Density measuring apparatus
GB2083908A (en) Device for determining the proportions by volume of a multiple- component mixture
EP2920582B1 (en) Identification of materials
JPH01227050A (en) Method and apparatus for measuring density and others of object
US3626183A (en) Radioisotope analytical instrument for cement analysis of concrete
US4982417A (en) Method and apparatus for texture analysis
Ahmed et al. Material identification approach based on the counting technique and beam hardening correction under industrial X-ray computed tomography: a simulation study
CN114641687A (en) Fluorescent X-ray analyzer
JP2002162371A (en) Nondestructive inspection method and its device utilizing inverse compton scattered light
Zambra et al. Experimental results on hard x-ray energy emitted by a low-energy plasma focus device: a radiographic image analysis
JP2022013497A (en) X-ray analysis device
JPS61193057A (en) Radiation analyzing instrument
Mayer et al. A scintillation counter technique for the X-ray determination of bone mineral content
JPH05215661A (en) Density measuring instrument
Ilakovac Application of the Integrated Voigt Function in Analysis of Experimental Line Spectra
Serna Calibration Lines Data and Detection Limits of Lead L-Shell X-Ray Fluorescence Measurements Using Bone and Soft Tissue Phantoms
SU935756A1 (en) Device for determination of flaw size

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903