JPH04369203A - Rare-earthe permanent magnet and manufacture thereof - Google Patents

Rare-earthe permanent magnet and manufacture thereof

Info

Publication number
JPH04369203A
JPH04369203A JP3171698A JP17169891A JPH04369203A JP H04369203 A JPH04369203 A JP H04369203A JP 3171698 A JP3171698 A JP 3171698A JP 17169891 A JP17169891 A JP 17169891A JP H04369203 A JPH04369203 A JP H04369203A
Authority
JP
Japan
Prior art keywords
gas
sintered
magnet
r2fe17
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3171698A
Other languages
Japanese (ja)
Inventor
Takeshi Ohashi
健 大橋
Sukehito Yoneda
米田 祐仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3171698A priority Critical patent/JPH04369203A/en
Publication of JPH04369203A publication Critical patent/JPH04369203A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a magnet wherein N atoms or C atoms have been introduced and its magnetic characteristic is high by a method wherein an R2Fe17 type magnet alloy powder-molded body is sintered and heat-treated in the atmosphere of a mixed gas by N2 gas, NH3 gas and CH4 gas and by exerting a specific gas pressure. CONSTITUTION:A magnet alloy ingot which has been formed by melting, at a high frequency, and casting the composition raw material of an R2Fe17 type magnet is crushed fine and made uniaxially anisotropic. Then, fine powders are oriented in a magneto-static field, pressed, molded and sintered temporarily. After that, this temporarily sintered body is sintered formally and heat-treated in a mixed gas formed of one or two or more kinds out of N2 gas, NH3 gas and CH4 gas at a gas pressure of 10 Pa or higher. At this time, R represents one or two or more kinds of rare-earth elements such as La, Ce, Pr, Nd and the like including Y. Thereby, it is possible to obtain an R2Fe17 type anisotropic bulklike sintered magnet whose cost is low and which is provided with a high magnetic characteristic.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】高い磁気特性を有する侵入型原子
を導入したR2Fe17型バルク状焼結磁石及びその製
造方法に関するものである。
TECHNICAL FIELD This invention relates to an R2Fe17 type bulk sintered magnet into which interstitial atoms having high magnetic properties are introduced, and a method for manufacturing the same.

【0002】0002

【従来技術】従来R2Fe17化合物は、磁石の3条件
を満足しないため、磁石材料としては不適当であった。 磁石の3条件とは飽和磁化(Ms)、結晶磁気異方性定
数(Ku)、キュリー温度(Tc)のいずれも高い値を
示すことを指す。この3条件は必要条件であり十分条件
ではないが、これらが満たされたとき、磁石化できる可
能性が生じる。R2Fe17化合物の中でとりわけ S
m2Fe17にCやN原子を格子間に導入したとき、K
uが大幅に上昇することが知られている(X.P.ZH
ONG,et al., J.Magn.Magn.M
ater.86,333(1990)., J.M.D
.Coey and Hong SUN, J.Mag
n.Magn.Mater.87,L251(1990
).,永田浩  藤井博信、第14回日本応用磁気学会
学術講演概要集,491(1990).,特開平3−1
6102号公報参照)。これら化合物の中で、 Sm2
Fe17NxはNd2Fe14BとKuが殆ど同等かそ
れ以上の値を示し、上記の3条件を完全に満たすため、
新しい磁石材料としてたいへん注目されている。このよ
うに、希土類−鉄化合物において、侵入型原子を導入し
 Fe−Fe間の距離を広げることは、磁気特性を改善
するのに非常に有効である。
BACKGROUND OF THE INVENTION Conventional R2Fe17 compounds were unsuitable as magnet materials because they did not satisfy three conditions for magnets. The three conditions for the magnet are that saturation magnetization (Ms), magnetocrystalline anisotropy constant (Ku), and Curie temperature (Tc) all exhibit high values. Although these three conditions are necessary conditions and not sufficient conditions, when they are satisfied, there is a possibility that magnetization can be achieved. Among R2Fe17 compounds, especially S
When C or N atoms are introduced into m2Fe17 between the lattices, K
It is known that u increases significantly (X.P.ZH
ONG, et al. , J. Magn. Magn. M
ater. 86, 333 (1990). , J. M. D
.. Coey and Hong SUN, J. Mag
n. Magn. Mater. 87, L251 (1990
). , Hiroshi Nagata, Hironobu Fujii, Abstracts of the 14th Annual Meeting of the Japanese Society of Applied Magnetics, 491 (1990). , Japanese Patent Publication No. 3-1
(See Publication No. 6102). Among these compounds, Sm2
Since Fe17Nx has a Ku value that is almost equal to or higher than that of Nd2Fe14B, and completely satisfies the above three conditions,
It is attracting a lot of attention as a new magnetic material. In this way, in rare earth-iron compounds, introducing interstitial atoms to widen the distance between Fe and Fe is very effective in improving magnetic properties.

【0003】0003

【発明が解決しようとする課題】しかし、問題は侵入型
原子の高温での安定性にある。例えば、 Sm2Fe1
7Nxの合金または粉末を大気圧のガス圧中で昇温した
とき、 650℃以上で合金中に固溶していたN原子は
脱離してしまう。従って、粉末焼結法を用いて異方性焼
結磁石を作製しようとしても、1000℃以上の温度で
焼結することが必要なため、焼結体にN原子を導入する
ことができず、焼結体をN2ガス中で熱処理しても表面
が窒化するのみで、内部までN原子を導入することは困
難であった。このため、液体超急冷法やメカニカルアロ
イング法により単磁区粒子径以下の微細組織を実現し、
これを窒化処理した粉末を用いて等方性ボンド磁石とし
て使用することが限界で、バルク状異方性焼結磁石の製
造方法は未だ見出されていない。本発明は、Nおよび/
またはC原子を導入した磁気特性の高いR2Fe17型
異方性バルク状焼結磁石およびその製造方法を提供しよ
うとするものである。
However, the problem lies in the stability of interstitial atoms at high temperatures. For example, Sm2Fe1
When a 7Nx alloy or powder is heated under atmospheric gas pressure, the N atoms dissolved in the alloy will be eliminated at temperatures above 650°C. Therefore, even if an anisotropic sintered magnet is produced using the powder sintering method, it is necessary to sinter at a temperature of 1000°C or higher, making it impossible to introduce N atoms into the sintered body. Even if the sintered body is heat-treated in N2 gas, only the surface is nitrided, and it is difficult to introduce N atoms into the interior. For this reason, we have achieved a microstructure with a single magnetic domain particle size or smaller using liquid ultra-quenching method and mechanical alloying method.
The limit is to use the nitrided powder as an isotropic bonded magnet, and a method for producing bulk anisotropic sintered magnets has not yet been found. The present invention provides N and/or
Another object of the present invention is to provide an R2Fe17 type anisotropic bulk sintered magnet with high magnetic properties into which C atoms are introduced, and a method for manufacturing the same.

【0004】0004

【課題を解決するための手段】本発明者等は、かかる課
題を解決するために、製造条件を詳細に検討して本発明
を完成したもので、その要旨は、R2Fe17型磁石合
金粉末成形体(ここにR は希土類元素を表す)をN2
、NH3、CH4ガスの1種または2種以上の混合ガス
雰囲気中、ガス圧107Pa 以上で焼結、熱処理する
ことを特徴とする希土類永久磁石の製造方法、およびこ
の製造方法により作製して成る希土類永久磁石にある。
[Means for Solving the Problems] In order to solve the problems, the present inventors have completed the present invention by studying the manufacturing conditions in detail. (here R represents a rare earth element) is N2
, NH3, CH4 gas, sintering and heat treatment at a gas pressure of 107 Pa or more in an atmosphere of one or more mixed gases, and a rare earth magnet produced by this manufacturing method. Located in a permanent magnet.

【0005】以下、本発明を詳細に説明する。金属水素
化物では、多くの金属や金属間化合物について平衡分解
圧−温度線図が知られている。例えば「大阪科学学術セ
ンター:水素吸蔵合金の材料に関する調査研究報告書,
p.6(1984) 」には各種合金とH2に対する平
衡分解圧−温度線図が記載されており、平衡分解圧を上
げることにより分解温度が上昇することがわかる。金属
水素化物の場合、水素の吸蔵・解離を容易にするため、
解離温度を下げることが課題であるが、磁石材料の場合
には、焼結時の高温下でもN2を解離させないため、解
離温度を上げることが重要である。
[0005] The present invention will be explained in detail below. Equilibrium decomposition pressure-temperature diagrams are known for many metal hydrides and intermetallic compounds. For example, “Osaka Science Center: Research report on hydrogen storage alloy materials,
p. 6 (1984)'' describes equilibrium decomposition pressure-temperature diagrams for various alloys and H2, and it can be seen that the decomposition temperature increases by increasing the equilibrium decomposition pressure. In the case of metal hydrides, to facilitate hydrogen absorption and dissociation,
The challenge is to lower the dissociation temperature, but in the case of magnetic materials, it is important to raise the dissociation temperature so that N2 does not dissociate even at high temperatures during sintering.

【0006】Sm2Fe17NX化合物等も、水素化物
と同様な挙動を示すことが期待できるので、1000℃
以上の高温におけるN2と希土類・金属間化合物の平衡
解離圧について研究した結果、 107Pa以上、好ま
しくは 106Pa以上のN2ガス圧で焼結を行なえば
、N2の解離が生じないことが判明した。このような高
温・高圧環境は通常の焼結炉では実現できないため、ホ
ットアイソスタティックプレス(HIP)装置を使用す
ることによって解決することができた。
[0006] Sm2Fe17NX compounds etc. can also be expected to exhibit the same behavior as hydrides, so at 1000°C
As a result of research on the equilibrium dissociation pressure of N2 and rare earth/intermetallic compounds at the above-mentioned high temperatures, it was found that if sintering is performed at an N2 gas pressure of 107 Pa or higher, preferably 106 Pa or higher, dissociation of N2 does not occur. Since such a high temperature and high pressure environment cannot be achieved with a normal sintering furnace, we were able to solve this problem by using a hot isostatic press (HIP) device.

【0007】製造方法としては、磁石組成原料を高周波
溶解し、鋳造した磁石合金インゴットを湿式または乾式
法により粒径3〜5μmに微粉砕した後、まず一軸異方
性化を行なう。これは、大気圧下N2ガスまたは N2
+NH3、N2+CH4の混合ガス雰囲気中で300〜
 600℃の温度範囲で8〜24時間熱処理を行ない、
微粉を窒化または窒炭化させた後急冷する。混合ガスの
混合比は、容量%で N2/NH3、N2/CH4共に
90/10〜50/50 の範囲が好ましい。次いで該
微粉を10〜15KOe の静磁場中で配向させ、1T
on/cm2 以上の圧力でプレス成形を行なった後、
該成形体を通常の希土類磁石製造用焼結炉またはホット
プレスで、N2解離温度以下の500 〜600 ℃で
1〜2時間仮焼結を行なう。
[0007] As for the manufacturing method, magnet composition raw materials are high-frequency melted, a cast magnet alloy ingot is pulverized to a particle size of 3 to 5 μm by a wet or dry method, and then uniaxial anisotropy is first performed. This is N2 gas under atmospheric pressure or N2
300~ in a mixed gas atmosphere of +NH3, N2+CH4
Heat treatment is performed at a temperature range of 600°C for 8 to 24 hours,
After nitriding or nitriding the fine powder, it is rapidly cooled. The mixing ratio of the mixed gas is preferably in the range of 90/10 to 50/50 for both N2/NH3 and N2/CH4 in volume %. Next, the fine powder was oriented in a static magnetic field of 10 to 15 KOe, and
After press forming at a pressure of on/cm2 or more,
The compact is pre-sintered for 1 to 2 hours at 500 to 600 DEG C. below the N2 dissociation temperature in a common sintering furnace for producing rare earth magnets or a hot press.

【0008】その後、仮焼結体を HIP装置で 10
7Pa以上のN2ガス圧中950 〜1150℃の温度
範囲で1〜2時間本焼結・熱処理を行なう。また、場合
によっては通常焼結炉またはホットプレスで800 〜
1,150 ℃、1〜2時間本焼結を行い高密度化した
焼結体を HIP中で熱処理(条件は上記に同じ)する
ことにより再度窒化させてもよい。HIP装置における
本焼結時のN2ガス圧が 107Pa未満では、N2解
離温度が1,000 ℃に達しないため焼結できず、好
ましくは 107Pa以上がよい。ガス圧の上限は特に
ないが、 HIP装置の機械上の制約から 109Pa
以下が実用上の限界となる。一度N2が解離し高密度化
した焼結体は、低いN2ガス圧で熱処理しても表面が窒
化するのみで、焼結体内部までN原子を導入することは
困難である。しかし、高温・高圧雰囲気中で窒化するこ
とにより焼結体内部まで窒化させることが可能である。
[0008] After that, the temporary sintered body is heated in a HIP machine for 10 minutes.
Main sintering and heat treatment are performed at a temperature range of 950 to 1150° C. for 1 to 2 hours under N2 gas pressure of 7 Pa or higher. In addition, in some cases, 800 ~
The sintered body, which has been densified by main sintering at 1,150° C. for 1 to 2 hours, may be heat-treated in HIP (under the same conditions as above) to be nitrided again. If the N2 gas pressure during main sintering in the HIP apparatus is less than 107 Pa, the N2 dissociation temperature will not reach 1,000° C. and sintering will not be possible, and the pressure is preferably 107 Pa or more. There is no particular upper limit for the gas pressure, but due to mechanical limitations of the HIP device, it is 109 Pa.
The following are practical limits. Once N2 has dissociated and the sintered body has become highly dense, even if it is heat-treated at a low N2 gas pressure, only the surface will be nitrided, and it is difficult to introduce N atoms into the interior of the sintered body. However, by nitriding in a high temperature and high pressure atmosphere, it is possible to nitride the inside of the sintered body.

【0009】本製造方法の適用範囲は、R2Fe17型
合金に対して有効である。ここでRはYを含む La,
Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,D
y,Ho,Er,Tm,YbおよびLu等の内から選ば
れる希土類元素の1種もしくは2種以上、好ましくはS
mまたはSmを主体とする2種以上の元素である。
The scope of application of this manufacturing method is effective for R2Fe17 type alloys. Here R includes Y La,
Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D
One or more rare earth elements selected from y, Ho, Er, Tm, Yb, Lu, etc., preferably S
Two or more elements mainly consisting of m or Sm.

【0010】0010

【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例)純度99重量%Smメタルと純度99.9重
量%のFeを主とし、Sm2Fe17 の基本組成を有
する合金を不活性ガス中での高周波溶解し鋳造した。該
インゴットを粗粉砕後、N2ガス中ジェトミルで粒径3
〜5μmに微粉砕した。該微粉を大気圧のN2ガスまた
はN2ガスに NH3ガスまたは CH4ガスを混合し
た雰囲気中、 300〜 600℃の温度範囲で1時間
以上熱処理を行なった後急冷した。次いで該微粉を 1
5KOeの静磁場中で配向させた状態で、1Ton/c
m2 の圧力でプレス成形を行なった後、 500〜6
00℃で仮焼結を行い、該焼結体を HIP装置を用い
て 950〜1150℃の温度範囲でN2雰囲気中大気
圧(105Pa) から108Pa の圧力下で焼結、
熱処理を行なった。これらの条件及び得られた焼結磁石
の磁気特性について表1に示す。表1に示したように、
107Pa 未満の圧力下で熱処理したものは、107
Pa 以上の圧力下に熱処理したものに較べて磁気特性
が劣る。
[Examples] Hereinafter, the embodiments of the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. (Example) An alloy mainly composed of Sm metal with a purity of 99% by weight and Fe with a purity of 99.9% by weight and having a basic composition of Sm2Fe17 was high-frequency melted and cast in an inert gas. After coarsely pulverizing the ingot, use a jet mill in N2 gas to reduce the particle size to 3.
Finely ground to ~5 μm. The fine powder was heat-treated in an atmosphere of N2 gas or a mixture of N2 gas and NH3 gas or CH4 gas at atmospheric pressure in a temperature range of 300 to 600°C for one hour or more, and then rapidly cooled. Then, the fine powder was divided into 1
1Ton/c when oriented in a static magnetic field of 5KOe
After press forming at a pressure of m2, 500~6
Preliminary sintering was performed at 00°C, and the sintered body was sintered using a HIP device at a temperature range of 950 to 1150°C under atmospheric pressure (105 Pa) to 108 Pa in a N2 atmosphere.
Heat treatment was performed. Table 1 shows these conditions and the magnetic properties of the obtained sintered magnet. As shown in Table 1,
Those heat-treated under a pressure of less than 107 Pa are
Magnetic properties are inferior to those heat-treated under pressures of Pa or more.

【0011】[0011]

【表1】[Table 1]

【0012】0012

【発明の効果】本発明により、高密度化が困難であった
N侵入型磁石合金の焼結が可能となり、得られた Sm
2Fe17NxCy系磁石は、従来のSmCo系磁石に
較べて高価なCoを使用することなく低コストでしかも
高磁気特性が得られるため、産業上その利用価値は極め
て高い。
[Effects of the Invention] The present invention has made it possible to sinter N interstitial magnet alloys, which were difficult to increase in density, and the resulting Sm
2Fe17NxCy magnets are less expensive than conventional SmCo magnets and have high magnetic properties without using expensive Co, so they have extremely high industrial utility value.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】R2Fe17型磁石合金粉末成形体(ここ
にR は希土類元素を表す)をN2、NH3、CH4ガ
スの1種または2種以上の混合ガス雰囲気中、ガス圧1
07Pa 以上で焼結、熱処理することを特徴とする希
土類永久磁石の製造方法。
Claim 1: An R2Fe17 type magnet alloy powder compact (here R represents a rare earth element) is heated under a gas pressure of 1 in an atmosphere of one or more mixed gases of N2, NH3, and CH4 gases.
A method for producing a rare earth permanent magnet, characterized by sintering and heat treatment at a pressure of 0.07 Pa or higher.
【請求項2】請求項1に記載の製造方法により作製して
成ることを特徴とする希土類永久磁石。
2. A rare earth permanent magnet produced by the manufacturing method according to claim 1.
JP3171698A 1991-06-17 1991-06-17 Rare-earthe permanent magnet and manufacture thereof Pending JPH04369203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3171698A JPH04369203A (en) 1991-06-17 1991-06-17 Rare-earthe permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3171698A JPH04369203A (en) 1991-06-17 1991-06-17 Rare-earthe permanent magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04369203A true JPH04369203A (en) 1992-12-22

Family

ID=15928028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3171698A Pending JPH04369203A (en) 1991-06-17 1991-06-17 Rare-earthe permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04369203A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089687A (en) * 2011-10-14 2013-05-13 Nitto Denko Corp Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
JP2013191612A (en) * 2012-03-12 2013-09-26 Nitto Denko Corp Rare earth permanent magnet and method of manufacturing the same
JP2013191611A (en) * 2012-03-12 2013-09-26 Nitto Denko Corp Rare earth permanent magnet and method of manufacturing the same
JP2013191613A (en) * 2012-03-12 2013-09-26 Nitto Denko Corp Rare earth permanent magnet and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089687A (en) * 2011-10-14 2013-05-13 Nitto Denko Corp Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
JP2013191612A (en) * 2012-03-12 2013-09-26 Nitto Denko Corp Rare earth permanent magnet and method of manufacturing the same
JP2013191611A (en) * 2012-03-12 2013-09-26 Nitto Denko Corp Rare earth permanent magnet and method of manufacturing the same
JP2013191613A (en) * 2012-03-12 2013-09-26 Nitto Denko Corp Rare earth permanent magnet and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH0531807B2 (en)
US5565043A (en) Rare earth cast alloy permanent magnets and methods of preparation
Kaneko et al. Recent developments of high-performance NEOMAX magnets
JPS63301505A (en) R-b-fe sintered magnet
JPS60144906A (en) Permanent magnet material
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPS62136551A (en) Permanent magnet material
JPH0855712A (en) Magnetic material and its manufacture
JPH04369203A (en) Rare-earthe permanent magnet and manufacture thereof
US4099995A (en) Copper-hardened permanent-magnet alloy
JPH04241402A (en) Permanent magnet
JPH05135978A (en) Manufacture of rare earth element magnet
JPS60244003A (en) Permanent magnet
JPS6151901A (en) Manufacture of permanent magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPS62241304A (en) Rare earth permanent magnet
JPS60144908A (en) Permanent magnet material
JPS60255941A (en) Manufacture of rare earth element-transition metal element-semimetal alloy magnet
CN108335900B (en) Preparation of SmCo7Method for manufacturing/Co composite permanent magnet and magnet thereof
JPH06112019A (en) Nitride magnetic material
JPH04308062A (en) Magnet alloy containing rare earth element and permanent magnet containing rare earth element
JP2000294415A (en) Rare earth permanent magnet and manufacture thereof
JPH04240703A (en) Manufacture of permanent magnet
JPH04346607A (en) Production of permanent magnet powder
JPS62136553A (en) Permanent magnet material