JPH04368415A - Method of detecting insulation deterioration of power system and devices for detecting, discriminating, and monitoring insulation deterioration, grounding generator, and resonance frequency measuring system - Google Patents
Method of detecting insulation deterioration of power system and devices for detecting, discriminating, and monitoring insulation deterioration, grounding generator, and resonance frequency measuring systemInfo
- Publication number
- JPH04368415A JPH04368415A JP3144516A JP14451691A JPH04368415A JP H04368415 A JPH04368415 A JP H04368415A JP 3144516 A JP3144516 A JP 3144516A JP 14451691 A JP14451691 A JP 14451691A JP H04368415 A JPH04368415 A JP H04368415A
- Authority
- JP
- Japan
- Prior art keywords
- zero
- power system
- phase
- insulation deterioration
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006866 deterioration Effects 0.000 title claims abstract description 140
- 238000009413 insulation Methods 0.000 title claims abstract description 89
- 238000000034 method Methods 0.000 title claims description 18
- 238000012544 monitoring process Methods 0.000 title 1
- 238000001228 spectrum Methods 0.000 claims description 19
- 238000010586 diagram Methods 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 5
- 238000012806 monitoring device Methods 0.000 claims 5
- 238000004891 communication Methods 0.000 abstract description 12
- 238000012545 processing Methods 0.000 abstract description 8
- 238000004804 winding Methods 0.000 abstract description 7
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 238000012360 testing method Methods 0.000 description 10
- 230000005856 abnormality Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Testing Relating To Insulation (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、電力系統の絶縁劣化検
出方法及び装置に係り、特に、配電系統における絶縁劣
化検出とその発生区間の判定を高感度で行うに好適な電
力系統の絶縁劣化検出方法及び装置に関する。[Industrial Application Field] The present invention relates to a method and apparatus for detecting insulation deterioration in a power system, and particularly to a method and apparatus for detecting insulation deterioration in a power distribution system, and particularly for detecting insulation deterioration in a power distribution system and determining the section where the deterioration occurs with high sensitivity. Detection method and device.
【0002】0002
【従来の技術】一般に電力系統には、地絡や短絡故障を
検出して送電を停止する保護装置が設けられている。こ
のような保護装置は、例えば、配電系統の場合、樹枝状
の系統構成になっており、その根元の部分に設けられて
いるため、一旦故障がおこり保護装置が動作すると、広
範囲に亘る停電を招くことになる。このため、故障を未
然に防止すべく定期的な機器交換、巡回による目視点検
などが行われているが、配電系統では多くの配電機材が
広範囲にわたって配置されており様々な環境に曝されて
いること、機材の隠蔽化が進んでいることなどの理由に
より、労力の割には故障の未然防止率が小さかった。2. Description of the Related Art Generally, power systems are provided with a protection device that detects ground faults or short circuit failures and stops power transmission. For example, in the case of power distribution systems, such protection devices have a tree-like system configuration and are installed at the base of the system, so once a failure occurs and the protection device is activated, it can cause a widespread power outage. I will invite you. For this reason, regular equipment replacement and visual inspections are carried out to prevent breakdowns, but in power distribution systems, much of the equipment is located over a wide area and is exposed to various environments. Due to this and the increasing concealment of equipment, the rate of preventing failures was low considering the amount of effort involved.
【0003】実際の配電線で発生する故障の大部分は、
地絡故障であり、この種の故障は何らかの前駆地絡信号
(以下、劣化信号と呼ぶ)を伴うことが多い。そこで、
この劣化信号をとらえ、その発生区間を検出することに
より、重点的に設備更新を行い、故障を未然防止する技
術が提案されている。[0003] Most of the failures that occur in actual distribution lines are
This is a ground fault, and this type of fault is often accompanied by some kind of precursor ground fault signal (hereinafter referred to as a degradation signal). Therefore,
Techniques have been proposed to detect this deterioration signal and detect the section where it occurs, thereby updating equipment in a focused manner and preventing failures.
【0004】この従来技術としては、例えば、「配電系
統の絶縁劣化区間検出法に関する基礎検討」(長山,青
柳他、平成2年電気学会電力,エネルギー部門全国大会
)が挙げられる。[0004] An example of this prior art is ``Basic Study on a Method for Detecting Deteriorated Sections of Insulation in a Power Distribution System'' (Nagayama, Aoyagi et al., 1990 National Conference of the Electric Power and Energy Division of the Institute of Electrical Engineers of Japan).
【0005】[0005]
【発明が解決しようとする課題】従来の技術では、電力
系統の共振周波数,残留分や系統ノイズにより発生する
信号と絶縁劣化により発生する信号との区別が困難であ
り、絶縁劣化の高感度検出が難しかった。[Problems to be Solved by the Invention] With conventional technology, it is difficult to distinguish between signals generated by the resonant frequency of the power system, residual components, and system noise, and signals generated by insulation deterioration, and high-sensitivity detection of insulation deterioration is required. was difficult.
【0006】また、絶縁劣化検出後の出力の表示方法に
ついても考慮されていなかった。Further, no consideration has been given to the method of displaying the output after insulation deterioration has been detected.
【0007】さらに、絶縁劣化発生試験装置についても
特に考案されていなかった。Furthermore, no particular device for testing the occurrence of insulation deterioration has been devised.
【0008】本発明の目的は、これらの残留分や系統ノ
イズ等の影響を低減し、電力系統の絶縁劣化の発生及び
その区間を高感度で検出,判定するにある。また、オペ
レータに一目で劣化に関する情報を得られるような表示
を提供することにある。さらに、試験効率を向上できる
ような絶縁劣化発生試験装置を提供することにある。An object of the present invention is to reduce the influence of these residual components and system noise, and to detect and determine the occurrence of insulation deterioration in a power system and the area thereof with high sensitivity. Another object is to provide a display that allows the operator to obtain information regarding deterioration at a glance. Another object of the present invention is to provide an insulation deterioration occurrence test device that can improve test efficiency.
【0009】[0009]
【課題を解決するための手段】上記の目的は、絶縁劣化
の発生が、上記三相電力系統の共振周波数を除く帯域で
の零相電圧、及びまたは、零相電流の発生レベルの大き
さを用いて検出されることによって達成される。[Means for Solving the Problems] The above object is to reduce the occurrence of insulation deterioration by reducing the magnitude of the generation level of zero-sequence voltage and/or zero-sequence current in a band other than the resonant frequency of the three-phase power system. This is achieved by being detected using
【0010】上記の目的は、また、絶縁劣化発生区間が
、上記三相電力系統の共振周波数を除く帯域での零相電
圧と、零相電流との位相差スペクトルを用いて判定され
ることによっても達成される。[0010] The above object is also achieved by determining the insulation deterioration occurrence section using the phase difference spectrum between the zero-sequence voltage and the zero-sequence current in a band excluding the resonance frequency of the three-phase power system. is also achieved.
【0011】上記の目的は、零相電圧の低周波数成分を
トリガとして、絶縁劣化の発生が、上記三相電力系統の
共振周波数を除く帯域での零相電圧、及びまたは、零相
電流の発生レベルの大きさを用いて検出されることによ
っても達成される。[0011] The above object is to prevent the occurrence of insulation deterioration from occurring as a zero-sequence voltage and/or zero-sequence current in a band other than the resonant frequency of the three-phase power system, using the low frequency component of the zero-sequence voltage as a trigger. This can also be achieved by being detected using the magnitude of the level.
【0012】上記の目的は、また、零相電圧、及びまた
は、零相電流は、電源周波数と、上記三相電力系統の共
振周波数とを除く帯域での零相電圧、及びまたは、零相
電流であることされることによっても達成される。[0012] The above object also provides that the zero-sequence voltage and/or zero-sequence current is a zero-sequence voltage and/or zero-sequence current in a band excluding the power supply frequency and the resonant frequency of the three-phase power system. It is also achieved by being and being done.
【0013】上記の目的は、また、絶縁劣化の発生が、
上記三相電力系統の共振周波数を除く帯域での零相電圧
、及びまたは、零相電流の発生レベルの大きさを用いて
検出されるもの、または零相電圧の低周波数成分をトリ
ガとして、絶縁劣化の発生が、上記三相電力系統の共振
周波数を除く帯域での零相電圧、及びまたは、零相電流
の発生レベルの大きさを用いて検出されることにおいて
、上記の目的は、また、零相電圧、及びまたは、零相電
流は、電源周波数と、上記三相電力系統の共振周波数と
を除く帯域での零相電圧、及びまたは、零相電流である
ことによっても達成される。[0013] The above object also aims to prevent the occurrence of insulation deterioration.
Insulation that is detected using the generation level of zero-sequence voltage and/or zero-sequence current in a band other than the resonant frequency of the three-phase power system, or triggered by the low frequency component of zero-sequence voltage. The above object is also characterized in that the occurrence of deterioration is detected using the magnitude of the generation level of zero-sequence voltage and/or zero-sequence current in a band other than the resonant frequency of the three-phase power system. The zero-sequence voltage and/or zero-sequence current can also be achieved by being a zero-sequence voltage and/or zero-sequence current in a band excluding the power supply frequency and the resonant frequency of the three-phase power system.
【0014】上記の目的は、また、絶縁劣化の発生が、
上記三相電力系統の共振周波数を除く帯域での零相電圧
、及びまたは、零相電流の発生レベルの大きさを用いて
検出されるもの、または零相電圧の低周波数成分をトリ
ガとして、絶縁劣化の発生が、上記三相電力系統の共振
周波数を除く帯域での零相電圧、及びまたは、零相電流
の発生レベルの大きさを用いて検出されることにおいて
、上記の目的は、また零相電圧、及びまたは、零相電流
は、電源周波数と、その自然数倍周波数と、上記三相電
力系統の共振周波数とを除く帯域での零相電圧、及びま
たは、零相電流であることによっても達成される。[0014] The above object also aims to prevent the occurrence of insulation deterioration.
Insulation that is detected using the generation level of zero-sequence voltage and/or zero-sequence current in a band other than the resonant frequency of the three-phase power system, or triggered by the low frequency component of zero-sequence voltage. The above objective is also to detect the occurrence of deterioration using the magnitude of the generation level of zero-sequence voltage and/or zero-sequence current in a band other than the resonant frequency of the three-phase power system. The phase voltage and/or zero-sequence current is a zero-sequence voltage and/or zero-sequence current in a band excluding the power supply frequency, its natural number multiple frequency, and the resonant frequency of the three-phase power system. is also achieved.
【0015】上記の目的は、また、絶縁劣化発生区間が
、上記三相電力系統の共振周波数を除く帯域での零相電
圧と、零相電流との位相差スペクトルを用いて判定され
るもの、または、零相電圧の低周波数成分をトリガとし
て、絶縁劣化発生区間が、上記三相電力系統の共振周波
数を除く帯域での零相電圧と、零相電流との位相差スペ
クトルを用いて判定されるものにおいて、上記の目的は
、また零相電圧と零相電流とは、電源周波数と、上記三
相電力系統の共振周波数とを除く帯域での零相電圧と零
相電流とであることによっても達成される。The above object also provides a method in which the insulation deterioration occurrence section is determined using a phase difference spectrum between the zero-sequence voltage and the zero-sequence current in a band excluding the resonance frequency of the three-phase power system; Alternatively, using the low frequency component of the zero-sequence voltage as a trigger, the section where insulation deterioration occurs is determined using the phase difference spectrum between the zero-sequence voltage and the zero-sequence current in a band other than the resonant frequency of the three-phase power system. The above purpose is also achieved by the fact that zero-sequence voltage and zero-sequence current are zero-sequence voltage and zero-sequence current in a band excluding the power supply frequency and the resonant frequency of the three-phase power system. is also achieved.
【0016】上記の目的は、また、絶縁劣化発生区間が
、上記三相電力系統の共振周波数を除く帯域での零相電
圧と、零相電流との位相差スペクトルパタ−ンを用いて
判定されるもの、または、零相電圧の低周波数成分をト
リガとして、絶縁劣化発生区間が、上記三相電力系統の
共振周波数を除く帯域での零相電圧と、零相電流との位
相差スペクトルを用いて判定されることにおいて、上記
の目的は、また零相電圧と零相電流とは、電源周波数と
、その自然数倍周波数と、上記三相電力系統の共振周波
数とを除く帯域での零相電圧と零相電流とであることに
よっても達成される。[0016] The above object is also achieved by determining the section where insulation deterioration occurs using the phase difference spectrum pattern between the zero-sequence voltage and the zero-sequence current in a band excluding the resonant frequency of the three-phase power system. or using the phase difference spectrum between the zero-sequence voltage and the zero-sequence current in a band other than the resonant frequency of the three-phase power system, where the insulation deterioration occurs using the low-frequency component of the zero-sequence voltage as a trigger. The above purpose is also that zero-sequence voltage and zero-sequence current refer to zero-sequence voltage and zero-sequence current in a band excluding the power supply frequency, its natural number multiples, and the resonant frequency of the three-phase power system. This is also achieved by voltage and zero-sequence current.
【0017】上記の目的は、また、電源周波数を除く帯
域での零相電圧、及びまたは、零相電流の発生レベルの
大きさを求め、その後、電源周波数を超える周波数帯域
の零相電圧の低周波数成分をトリガとして、絶縁劣化の
発生が検出されることによっても達成される。The above purpose is also to find the magnitude of the generation level of zero-sequence voltage and/or zero-sequence current in a band excluding the power supply frequency, and then to calculate the magnitude of the zero-sequence voltage in the frequency band exceeding the power supply frequency. This can also be achieved by detecting the occurrence of insulation deterioration using a frequency component as a trigger.
【0018】上記の目的は、また、電源周波数を除く帯
域での零相電圧、及びまたは、零相電流の発生レベルの
大きさを求め、その後、電源周波数を超える周波数帯域
の零相電圧の低周波数成分をトリガとして、絶縁劣化の
発生が検出されることにおいて、上記零相電圧、及びま
たは、零相電流は、電源周波数と、その自然数倍周波数
とを除く帯域での零相電圧、及びまたは、零相電流であ
ることによっても達成される。The above purpose is also to find the magnitude of the generation level of zero-sequence voltage and/or zero-sequence current in a band excluding the power supply frequency, and then to calculate the magnitude of the zero-sequence voltage generation level in the frequency band exceeding the power supply frequency. When the occurrence of insulation deterioration is detected using a frequency component as a trigger, the zero-sequence voltage and/or zero-sequence current is a zero-sequence voltage in a band excluding the power supply frequency and its natural number multiple frequencies. Alternatively, this can also be achieved by using zero-sequence current.
【0019】上記の目的は、また、電源周波数を除く帯
域での零相電圧と、零相電流の位相差スペクトルパター
ンを求め、その後、電源周波数を超える周波数帯域の零
相電圧の低周波数成分をトリガとして、絶縁劣化発生区
間が判定されることによっても達成される。The above purpose is also to obtain the phase difference spectrum pattern of the zero-sequence voltage and zero-sequence current in a band excluding the power supply frequency, and then to calculate the low frequency component of the zero-sequence voltage in the frequency band exceeding the power supply frequency. This can also be achieved by determining the section where insulation deterioration occurs as a trigger.
【0020】上記の目的は、また、電源周波数を除く帯
域での零相電圧と、零相電流の位相差スペクトルを求め
、その後、電源周波数を超える周波数帯域の零相電圧の
低周波数成分をトリガとして、絶縁劣化発生区間が判定
されることにおいて、前記零相電圧と零相電流とは、電
源周波数と、その自然数倍周波数とを除く帯域での零相
電圧と零相電流とであることによっても達成される。The above purpose is also to obtain the phase difference spectrum of the zero-sequence voltage and zero-sequence current in a band excluding the power supply frequency, and then to trigger the low frequency component of the zero-sequence voltage in the frequency band exceeding the power supply frequency. In determining the section where insulation deterioration occurs, the zero-sequence voltage and zero-sequence current are zero-sequence voltage and zero-sequence current in a band excluding the power supply frequency and its natural number multiple frequencies. It is also achieved by
【0021】上記の目的は、また、前記電源周波数を除
く帯域での零相電圧、及びまたは、零相電流の発生レベ
ルの大きさを求め、その後、電源周波数を超える周波数
帯域の零相電圧の低周波数成分をトリガとして、絶縁劣
化の発生が検出されること、または、上記零相電圧、及
びまたは、零相電流は、電源周波数と、その自然数倍周
波数とを除く帯域での零相電圧、及びまたは、零相電流
であること、または、電源周波数を除く帯域での零相電
圧と、零相電流の位相差スペクトルを求め、その後、電
源周波数を超える周波数帯域の零相電圧の低周波数成分
をトリガとして、絶縁劣化発生区間が判定されること、
または、上記零相電圧と零相電流とは、電源周波数と、
その自然数倍周波数とを除く帯域での零相電圧と零相電
流とであることにおいて、上記零相電圧の低周波数成分
は、上記電源周波数の2倍未満であることであることに
よっても達成される。[0021] The above purpose is also to find the magnitude of the generation level of zero-sequence voltage and/or zero-sequence current in a band excluding the power supply frequency, and then to calculate the magnitude of the generation level of zero-sequence voltage and/or zero-sequence current in a frequency band exceeding the power supply frequency. The occurrence of insulation deterioration is detected using a low frequency component as a trigger, or the above zero-sequence voltage and/or zero-sequence current is a zero-sequence voltage in a band excluding the power supply frequency and its natural number multiple frequencies. , and/or the zero-sequence current, or find the phase difference spectrum of the zero-sequence voltage and zero-sequence current in a band excluding the power supply frequency, and then calculate the low frequency of the zero-sequence voltage in the frequency band exceeding the power supply frequency. determining the insulation deterioration occurrence section using the component as a trigger;
Or, the above zero-sequence voltage and zero-sequence current are the power supply frequency,
The zero-sequence voltage and zero-sequence current are in a band excluding natural number multiples of the frequency, and the low frequency component of the zero-sequence voltage is less than twice the power supply frequency. be done.
【0022】上記の目的は、また、電源周波数を除く帯
域での零相電圧に対する零相電流の位相平均値θ(但し
、|θ|≦180°)が、
−90°+θ1>θ>−90°−θ2 (θ1,θ2
:定数≦90°)
であれば、負荷側で絶縁劣化が発生と判定し、−90°
+θ1<θ<180°、または、−90°−θ2>θ>
−180°
であれば、電源側で絶縁劣化が発生と判定されることに
よっても達成される。The above object is also such that the phase average value θ of the zero-sequence current with respect to the zero-sequence voltage in a band excluding the power supply frequency (where |θ|≦180°) is -90°+θ1>θ>−90 °−θ2 (θ1, θ2
: constant ≦90°), it is determined that insulation deterioration has occurred on the load side, and -90°
+θ1<θ<180° or -90°−θ2>θ>
If it is −180°, this can also be achieved by determining that insulation deterioration has occurred on the power supply side.
【0023】上記の目的は、また、電源周波数を除く帯
域での零相電圧に対する零相電流の位相平均値θ(但し
、|θ|≦180°)が、
−90°+θ1>θ>−90°−θ2 (θ1,θ2
:定数≦90°)
であれば、負荷側で絶縁劣化が発生と判定し、−90°
+θ1<θ<180°、または、−90°−θ2>θ>
−180°
であれば、電源側で絶縁劣化が発生と判定されることに
おいて、上記零相電圧に対する零相電流の位相平均値θ
は、上記電源周波数と、その自然数倍周波数とを除く帯
域での零相電圧に対する零相電流の位相平均値θである
ことによっても達成される。The above object is also such that the phase average value θ of the zero-sequence current with respect to the zero-sequence voltage in the band excluding the power supply frequency (however, |θ|≦180°) is -90°+θ1>θ>-90 °−θ2 (θ1, θ2
: constant ≦90°), it is determined that insulation deterioration has occurred on the load side, and -90°
+θ1<θ<180° or -90°−θ2>θ>
-180°, it is determined that insulation deterioration has occurred on the power supply side, and the phase average value θ of the zero-sequence current with respect to the above-mentioned zero-sequence voltage
can also be achieved by being the phase average value θ of the zero-sequence current with respect to the zero-sequence voltage in a band excluding the power supply frequency and its natural number multiple frequencies.
【0024】上記の目的は、また、前記解決するための
手段おいて、θ1<θ2であることによっても達成され
る。The above object can also be achieved by satisfying θ1<θ2 in the above-mentioned means for solving the problem.
【0025】上記の目的は、また、前記解決するための
手段おいて、上記零相電流の位相平均値θは、電源周波
数の自然数倍周波数までの低周波数領域での位相平均値
であることによっても達成される。上記の課題は、また
、前記解決するための手段において、上記電源周波数の
自然数倍周波数は、上記電源周波数の4倍の周波数であ
ることによっても達成される。[0025] Also, in the above-mentioned means for solving the above-mentioned object, the phase average value θ of the zero-sequence current is a phase average value in a low frequency region up to frequencies that are natural number multiples of the power supply frequency. It is also achieved by The above problem can also be achieved by, in the means for solving the problem, the natural number multiple frequency of the power supply frequency being four times the power supply frequency.
【0026】上記の目的は、また、前記解決するための
手段において、上記電力系統の電源側から絶縁劣化の発
生を判定することによっても達成される。The above object can also be achieved by determining the occurrence of insulation deterioration from the power source side of the power system in the means for solving the problem.
【0027】上記の目的は、また、上記配電線に接続さ
れる第1の電極と、該第1の電極と対向し、接地電位に
接続される第2の電極と、上記対向する第1の電極と第
2の電極とのギャップ長を制御する手段とを具備する地
絡発生装置を備えることによっても達成される。[0027] The above object also includes a first electrode connected to the power distribution line, a second electrode facing the first electrode and connected to the ground potential, and a second electrode connected to the power distribution line. This is also accomplished by providing a ground fault generating device comprising means for controlling the gap length between the electrode and the second electrode.
【0028】上記の目的は、また、前記地絡発生装置に
おいて、上記第1の電極と第2の電極との少なくとも一
方は、耐弧メタルを含むことによっても達成される。[0028] The above object can also be achieved by, in the ground fault generating device, at least one of the first electrode and the second electrode containing an arc-resistant metal.
【0029】上記の目的は、また、前記地絡発生装置と
、電力系統固有の共振周波数を測定する手段とを具備す
ることによっても達成される。[0029] The above object can also be achieved by providing the above-mentioned ground fault generating device and means for measuring a resonant frequency specific to the power system.
【0030】上記の目的は、また、三相電力系統の絶縁
劣化区間を特定する情報を生成する手段と、三相電力系
統図の少なくとも一部と上記絶縁劣化区間を特定する情
報とを同一画面領域に表示する表示装置とを具備される
ことによっても達成される。上記の目的は、また、三相
電力系統における少なくとも一個所での零相電圧に対す
る零相電流の位相平均値θと絶対値とを演算する手段と
、零相電圧に対する零相電流の位相平均値と絶対値との
関係を示す二次元座標領域内に、負荷側及び又は電源側
で絶縁劣化が発生する領域を特定する情報と、上記所定
個所での零相電圧に対する零相電流の位相平均値θと絶
対値とに対応する情報とを同時に表示する表示装置とを
具備することによっても達成される。[0030] The above object also provides a means for generating information for specifying insulation deteriorated sections of a three-phase power system, and a means for displaying at least a part of the three-phase power system diagram and the information for specifying the insulation deteriorated sections on the same screen. This can also be achieved by providing a display device for displaying information in the area. The above object also provides means for calculating the phase average value θ and absolute value of zero-sequence current with respect to zero-sequence voltage at at least one point in a three-phase power system, and a means for calculating the phase average value θ and absolute value of zero-sequence current with respect to zero-sequence voltage Information specifying the area where insulation deterioration occurs on the load side and/or power supply side within the two-dimensional coordinate area showing the relationship between This can also be achieved by providing a display device that simultaneously displays information corresponding to θ and the absolute value.
【0031】上記の目的は、また、前記演算する手段と
前記表示装置であることにおいて、上記演算する手段は
、複数個所でのそれぞれの零相電圧に対する零相電流の
位相平均値θと絶対値とを演算する手段であり、上記表
示装置は、上記複数個所の一つでの零相電圧に対する零
相電流の位相平均値θと絶対値とに対応する情報を表示
する表示装置であることによっても達成される。The above object is also the calculating means and the display device, wherein the calculating means calculates the phase average value θ and absolute value of the zero-sequence current for each zero-sequence voltage at a plurality of locations. and the display device is a display device that displays information corresponding to the phase average value θ and absolute value of the zero-sequence current with respect to the zero-sequence voltage at one of the plurality of locations. is also achieved.
【0032】上記の目的は、また、前記演算する手段と
前記表示装置であることにおいて、上記演算する手段は
、複数個所でのそれぞれの零相電圧に対する零相電流の
位相平均値θと絶対値とを演算する手段であり、上記表
示装置は、上記複数個所での零相電圧に対する零相電流
の位相平均値θと絶対値とに対応する情報を同時に表示
する表示装置であることによっても達成される。The above object is also the calculating means and the display device, wherein the calculating means calculates the phase average value θ and absolute value of the zero-sequence current for each zero-sequence voltage at a plurality of locations. This can also be achieved by the display device being a display device that simultaneously displays information corresponding to the phase average value θ and the absolute value of the zero-sequence current with respect to the zero-sequence voltage at the plurality of locations. be done.
【0033】上記の目的は、また、三相電力系統におけ
る少なくとも一個所での零相電圧に対する零相電流の位
相平均値θと絶対値とを演算する手段と、零相電圧に対
する零相電流の位相平均値と絶対値とに応じて、絶縁劣
化の進展度が、互いに識別可能な複数の領域と、上記所
定個所での零相電圧に対する零相電流の位相平均値θと
絶対値とに対応する情報とを同時に表示する表示装置と
を具備されることによっても達成される。The above object also provides means for calculating the phase average value θ and absolute value of the zero-sequence current with respect to the zero-sequence voltage at at least one point in a three-phase power system, and The degree of progress of insulation deterioration corresponds to a plurality of mutually distinguishable regions according to the phase average value and absolute value, and the phase average value θ and absolute value of the zero-sequence current with respect to the zero-sequence voltage at the predetermined location. This can also be achieved by being equipped with a display device that simultaneously displays the information to be displayed.
【0034】上記の目的は、また、三相電力系統におけ
る少なくとも一個所での零相電圧に対する零相電流の位
相平均値θと絶対値とを演算する手段と、零相電圧に対
する零相電流の位相平均値と絶対値とに応じて、絶縁劣
化の進展度が、互いに識別可能な複数の領域と、上記所
定個所での零相電圧に対する零相電流の位相平均値θと
絶対値とに対応する情報とを同時に表示する表示装置と
を具備することによっても達成される。The above object also provides a means for calculating the phase average value θ and absolute value of the zero-sequence current with respect to the zero-sequence voltage at at least one point in a three-phase power system, and The degree of progress of insulation deterioration corresponds to a plurality of mutually distinguishable regions according to the phase average value and absolute value, and the phase average value θ and absolute value of the zero-sequence current with respect to the zero-sequence voltage at the predetermined location. This can also be achieved by providing a display device that simultaneously displays the information that is displayed.
【0035】[0035]
【作用】劣化信号発生メカニズムについて、落雷時の大
電流による碍子の亀裂発生を例にとり説明する。まず、
碍子に亀裂発生しただけでは絶縁上何ら異常が発生しな
いが、亀裂部に塩分などが付着した状態で雨が降ると、
絶縁耐力が低下し小さな放電が発生し劣化信号を観察さ
れるようになる。しかし、放電がある程度続くと、その
部分の温度上昇により水分が蒸発してしまい一時的に正
常な状態に戻る。この状態では劣化電流の継続時間が短
かくそのレベルも小さいため、保護装置は動作せず亀裂
の発生はわからないままである。その結果、単発的放電
を再び繰り返しながら、ついには永久故障に至ってしま
う。この途中では、放電劣化電流の継続時間が比較的長
く、保護装置が動作する場合もあり得るが、再送電時に
は水分が蒸発してしまっており原因探索は困難を極める
ことになる。ここでは、碍子の亀裂発生を例に取り上げ
たが、樹木や鳥獣接触についても同様な現象になる。発
明者らは、これらの現象に伴う劣化信号と残留分や系統
ノイズとが異なる特徴をもつことを発見し、該特徴を利
用して絶縁劣化検出してその区間を高感度で判定するこ
とができた。この特徴の一つは、劣化による放電のよう
な不連続現象に伴う零相電圧,零相電流のスペクトルは
、電源周波数とその自然数倍周波数以外にも多くの成分
を含み、特に零相電圧のスペクトルは低周波数成分ほど
大きくなる傾向を示す点にある。一方、残留分は、電源
周波数とその自然数倍周波数成分がほとんどである。
また、負荷の入切などにより発生する系統ノイズは劣化
信号に比較して高周波帯域に存在することがわかった。[Operation] The mechanism of generation of a deterioration signal will be explained using as an example the occurrence of cracks in an insulator due to a large current during a lightning strike. first,
A crack in the insulator will not cause any abnormality in the insulation, but if it rains with salt etc. attached to the crack,
The dielectric strength decreases, a small discharge occurs, and a deterioration signal is observed. However, if the discharge continues for a certain amount of time, the water will evaporate due to the temperature rise in that area, and the state will temporarily return to normal. In this state, the duration of the deterioration current is short and its level is small, so the protection device does not operate and the occurrence of cracks remains unknown. As a result, the single discharge repeats again, eventually leading to a permanent failure. During this period, the duration of the discharge deterioration current is relatively long, and the protection device may operate, but when the power is retransmitted, the moisture has evaporated, making it extremely difficult to find the cause. Here, we have taken as an example the occurrence of cracks in insulators, but the same phenomenon occurs when trees or animals come into contact with animals. The inventors discovered that the deterioration signal associated with these phenomena has different characteristics from the residual components and system noise, and found that it is possible to use these characteristics to detect insulation deterioration and determine the area with high sensitivity. did it. One of the characteristics of this is that the spectrum of zero-sequence voltage and zero-sequence current that accompanies discontinuous phenomena such as discharge due to deterioration contains many components in addition to the power supply frequency and its natural number multiples, and especially the zero-sequence voltage The spectrum of is that the lower the frequency component, the larger the tendency. On the other hand, most of the residual components are the power supply frequency and its natural number multiple frequency components. In addition, it was found that system noise generated by switching on and off loads exists in a higher frequency band compared to degraded signals.
【0036】本発明では、まず、残留分と系統ノイズの
影響が大きい電源周波数と高周波成分を除いた零相電圧
発生レベルにより劣化の発生が検出される。次に、電源
周波数の自然数倍周波数を除いた帯域での零相電流と零
相電圧の位相を利用して劣化発生区間が判定される。In the present invention, the occurrence of deterioration is first detected based on the zero-phase voltage generation level excluding the power supply frequency and high frequency components, which are largely affected by residual components and system noise. Next, the deterioration occurrence section is determined using the phase of the zero-sequence current and zero-sequence voltage in a band excluding frequencies that are natural number multiples of the power supply frequency.
【0037】[0037]
【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は、三相の配電系統に本発明に係る絶縁劣
化検出装置が装着された状態を示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a state in which an insulation deterioration detection device according to the present invention is installed in a three-phase power distribution system.
【0038】図に示す配電系統は、上位の高電圧系統か
ら供給される電力を配電電圧に変圧する変圧器1と、該
変圧器1に接続され図示されていない保護装置の遮断指
令により動作する遮断器2と、該遮断器2に接続された
三相母線3と、該三相母線3に遮断器4,5,6を介し
て接続された複数の三相フィーダ7,8,9(ここでは
3フィーダとした)を含んで形成されている。この配電
系統に装着された絶縁劣化検出装置は、前記三相フィー
ダ7,8,9に所定の間隔をおいて装着されたセンサ装
置10A〜10C,11A〜11C,12A〜12Cと
、これらセンサ装置にそれぞれ接続され該センサ装置の
出力信号が入力され、前処理される子局13A〜13C
,14A〜14C,15A〜15Cと、同一フィーダ上
の隣接する子局を相互に接続する通信線16,17,1
8と、前記各フィーダの最も電源側に配置された子局1
3A,14A,15Aに接続して配置された判定手段で
ある親局19とを含んで構成されている。また、三相母
線3に取り付けられ、その出力信号が通信線33を介し
て親局19に接続されるセンサ装置20及び子局21も
含んで構成されている。The power distribution system shown in the figure operates by a transformer 1 that transforms power supplied from an upper high voltage system into a distribution voltage, and a shutdown command from a protection device (not shown) connected to the transformer 1. A circuit breaker 2, a three-phase bus 3 connected to the circuit breaker 2, and a plurality of three-phase feeders 7, 8, 9 connected to the three-phase bus 3 via circuit breakers 4, 5, 6 (here 3 feeders). The insulation deterioration detection device installed in this power distribution system includes sensor devices 10A to 10C, 11A to 11C, and 12A to 12C installed at predetermined intervals on the three-phase feeders 7, 8, and 9, and these sensor devices. The slave stations 13A to 13C are connected to the respective sensor devices, and the output signals of the sensor devices are inputted and preprocessed.
, 14A to 14C, 15A to 15C and communication lines 16, 17, 1 that interconnect adjacent slave stations on the same feeder.
8, and a slave station 1 located closest to the power supply side of each feeder.
3A, 14A, and 15A, and a master station 19 serving as a determining means. It also includes a sensor device 20 and a slave station 21 that are attached to the three-phase bus 3 and whose output signals are connected to the master station 19 via the communication line 33.
【0039】センサ装置20及び子局21の構成を図2
を参照して説明する。図2において、センサ装置20は
、三相母線3に接続されたスター結線の一次巻線22と
デルタ結線の二次巻線23からなる接地変圧器を用いた
V0 センサで構成される。一次巻線22の中性点は
接地され、デルタ結線の一辺には限流抵抗24が接続さ
れる。子局21は限流抵抗24の両端の電圧として検出
される V0 を入力とするアンプ25と、該アンプ2
5出力側にそれぞれ接続され電源周波数、例えば、50
Hzに同調されたノッチフィルタ26と、該ノッチフィ
ルタ26の出力側に接続された 1 kHzのカットオ
フ周波数の持つローパスフィルタ27と、該ローパスフ
ィルタ27の出力をディジタル信号に変換するAD変換
器28と、、前記ノッチフィルタ26の出力側に接続さ
れた 90 Hzのカットオフ周波数の持つローパスフ
ィルタ29と、該ローパスフィルタ29の出力を入力と
するコンパレータ30と、該コンパレータ30と前記A
D変換器28の出力側に接続されたメモリ31と、該メ
モリ31の出力側に接続された通信端末32を含んで構
成されている。通信端末32は、親局19に通信線33
を介して接続されている。FIG. 2 shows the configuration of the sensor device 20 and slave station 21.
Explain with reference to. In FIG. 2, the sensor device 20 is constituted by a V0 sensor using a grounding transformer including a star-connected primary winding 22 and a delta-connected secondary winding 23 connected to the three-phase bus 3. A neutral point of the primary winding 22 is grounded, and a current limiting resistor 24 is connected to one side of the delta connection. The slave station 21 includes an amplifier 25 whose input is V0 detected as the voltage across the current limiting resistor 24, and the amplifier 2.
5 connected to the output side respectively and the power supply frequency, e.g. 50
A notch filter 26 tuned to Hz, a low-pass filter 27 with a cutoff frequency of 1 kHz connected to the output side of the notch filter 26, and an AD converter 28 that converts the output of the low-pass filter 27 into a digital signal. , a low-pass filter 29 having a cutoff frequency of 90 Hz connected to the output side of the notch filter 26, a comparator 30 whose input is the output of the low-pass filter 29, and the comparator 30 and the A
It is configured to include a memory 31 connected to the output side of the D converter 28 and a communication terminal 32 connected to the output side of the memory 31. The communication terminal 32 connects the communication line 33 to the master station 19.
connected via.
【0040】次に、同一構成であるセンサ装置10A〜
10C,11A〜11C,12A〜12C及び子局13
A〜13C,14A〜14C,15A〜15Cの構成に
ついて、センサ装置10A及び子局13Aを例に取り図
3を参照して説明する。Next, sensor devices 10A~ having the same configuration
10C, 11A to 11C, 12A to 12C and slave station 13
The configurations of A to 13C, 14A to 14C, and 15A to 15C will be described with reference to FIG. 3, taking the sensor device 10A and the slave station 13A as examples.
【0041】図3において、センサ装置10Aは三相フ
ィーダ7に結合されたI0 センサ34で構成される。
子局13Aは、前記 I0 センサ34の出力が接続さ
れるアンプ35と、該アンプ35の出力側に接続される
電源周波数の 50 Hzに同調されたノッチフィルタ
36と、該ノッチフィルタ36の出力側に接続された
1 kHzのカットオフ周波数の持つローパスフィルタ
37と、該ローパスフィルタ37の出力をディジタル信
号に変換するAD変換器38と、該AD変換器38の出
力側に接続されたメモリ39と、該メモリ39の出力側
に接続された通信端末40とを含んで構成されている。
通信端末40は、親局19及び同一フィーダ7上の隣接
子局13Bに通信線16を介して接続されている。In FIG. 3, the sensor device 10A is comprised of an I0 sensor 34 coupled to a three-phase feeder 7. In FIG. The slave station 13A includes an amplifier 35 to which the output of the I0 sensor 34 is connected, a notch filter 36 connected to the output side of the amplifier 35 and tuned to a power frequency of 50 Hz, and an output side of the notch filter 36. connected to
A low-pass filter 37 having a cutoff frequency of 1 kHz, an AD converter 38 that converts the output of the low-pass filter 37 into a digital signal, a memory 39 connected to the output side of the AD converter 38, and the memory 39. The communication terminal 40 is connected to the output side of the communication terminal 40. The communication terminal 40 is connected to the master station 19 and the adjacent slave station 13B on the same feeder 7 via the communication line 16.
【0042】上記構成のセンサ装置及び子局は、次のよ
うに動作する。図2において、限流抵抗24の両端の電
圧として検出される V0 は、アンプ25に入力され
て信号処理に適当な電圧信号に変換される。劣化時に発
生するV0 信号は前述のように電源とその自然数倍周
波数以外にも多くの周波数成分を含み、特に低周波成分
ほど大きくなる。そこで、アンプ25の出力信号から
50 Hzノッチフィルタ26によって残留分が最も大
きくなる電源周波数成分が除去し、さらに 1 kHz
ローパスフィルタ27で系統ノイズが除去することによ
って、劣化時に比較的多く発生する微小な V0 信号
のみが精度良く抽出できるようになる。特に本発明では
、系統ノイズは系統が持つインダクタンスと容量の共振
によって増大し、その共振周波数は一般の系統が持つイ
ンダクタンスと容量の値から考えて、ほとんどが 1
kHz以上になることを見出し 1 kHzローパスフ
ィルタ27を用いたものである。ここでは、フィルタと
してローパスフィルタ27を用いたが、系統の共振周波
数帯域だけを除去するバンドパスフィルタを用いても良
い。The sensor device and slave station configured as described above operate as follows. In FIG. 2, V0 detected as the voltage across the current limiting resistor 24 is input to the amplifier 25 and converted into a voltage signal suitable for signal processing. As mentioned above, the V0 signal generated at the time of deterioration includes many frequency components in addition to the power supply and its natural number multiple frequency, and the lower the frequency component, the larger the frequency component becomes. Therefore, from the output signal of amplifier 25,
The 50 Hz notch filter 26 removes the power frequency component with the largest residual component, and further removes the 1 kHz
By removing systematic noise with the low-pass filter 27, only the minute V0 signal that occurs relatively frequently during deterioration can be extracted with high accuracy. In particular, in the present invention, system noise increases due to the resonance of the inductance and capacitance of the system, and the resonance frequency is almost 1, considering the values of the inductance and capacitance of the general system.
It was discovered that the frequency was higher than 1 kHz, and a 1 kHz low-pass filter 27 was used. Here, the low-pass filter 27 is used as a filter, but a band-pass filter that removes only the resonance frequency band of the system may be used.
【0043】1 kHzローパスフィルタ27の出力は
AD変換器28に入力されディジタル信号に変換された
後、メモリ31に繰り返し書き込まれる。一方、 50
Hzノッチフィルタ26の出力は 90 Hzローパ
スフィルタ29にも入力され、劣化によって特徴的に発
生する低周波成分の中でも比較的低周波帯域の成分だけ
が抽出される。抽出された低周波成分はコンパレータ3
0であらかじめ設定された基準値と比較され、基準値を
越えていれば劣化発生と判断してメモリホールド信号が
出力されメモリ31にその時の V0 時間データがス
トアされる。ここで、ローパスフィルタ29のカットオ
フ周波数は、低く設定するほど残留分やノイズに対して
強くなるが、電源周波数以下にすると劣化発生に対する
応答が悪くなり検出が難しくなる。逆に、カットオフ周
波数を高く設定すると残留分やノイズによって誤動作し
、特に電源の自然数倍周波数の帯域ではその危険性が大
きくなる。本発明では以上のべたことを実験的に見出し
、ローパスフィルタ29のカットオフ周波数を電源周波
数を超え、かつ、電源周波数の2倍未満であるところの
90Hzに設定した。ここで、ローパスフィルタ27の
カットオフ周波数を 1 kHzとし、ローパスフィル
タ29のそれより高くした理由は、メモリ31のデータ
に対しては、後述するように電源の自然数倍周波数の残
留分が、親局19の処理により除去できるため、系統ノ
イズの影響を受けない範囲でできるだけ劣化現象に対し
て応答性を高めたためである。
コンパレータ30からのメモリホールド信号は、親局1
9を経由して通信線16,17,18により子局13A
〜13C,14A〜14C,15A〜15Cにも伝送さ
れる。The output of the 1 kHz low-pass filter 27 is input to the AD converter 28, converted into a digital signal, and then repeatedly written into the memory 31. On the other hand, 50
The output of the Hz notch filter 26 is also input to a 90 Hz low-pass filter 29, and only components in a relatively low frequency band among the low frequency components characteristically generated due to deterioration are extracted. The extracted low frequency component is sent to comparator 3.
0 is compared with a preset reference value, and if it exceeds the reference value, it is determined that deterioration has occurred, a memory hold signal is output, and the V0 time data at that time is stored in the memory 31. Here, the lower the cutoff frequency of the low-pass filter 29 is set, the stronger it becomes against residual components and noise, but if it is set below the power supply frequency, the response to the occurrence of deterioration becomes poor and detection becomes difficult. On the other hand, if the cutoff frequency is set high, residual components and noise will cause malfunctions, and the risk of this is particularly high in a frequency range that is a natural number multiple of the power supply. In the present invention, the above points were experimentally discovered, and the cutoff frequency of the low-pass filter 29 was set to 90 Hz, which exceeds the power supply frequency and is less than twice the power supply frequency. Here, the reason why the cutoff frequency of the low-pass filter 27 is set to 1 kHz, which is higher than that of the low-pass filter 29, is that for the data in the memory 31, as will be described later, the residual frequency of the natural number multiple of the power supply is This is because the response to the deterioration phenomenon can be increased as much as possible without being affected by system noise, since it can be removed by the processing of the master station 19. The memory hold signal from the comparator 30 is transmitted to the master station 1.
9 to slave station 13A via communication lines 16, 17, and 18.
~13C, 14A~14C, and 15A~15C are also transmitted.
【0044】図3における子局13Aの動作もメモリホ
ールド信号の発生動作を除けば、図2に示した子局21
と同様であり、親局19からのメモリホールド信号によ
り、劣化発生時のI0時間データがメモリ39にホール
ドされる。子局13B〜13C,14A〜14C,15
A〜15Cについても同様に動作する。 V0 ,I0
時間データが各子局のメモリにストアされるとあらため
てメモリから親局19に劣化発生を示す信号が伝送され
、親局19の劣化区間判定プログラムが起動することに
なる。The operation of the slave station 13A in FIG. 3 is similar to that of the slave station 21 shown in FIG. 2, except for the memory hold signal generation operation.
The I0 time data at the time of occurrence of deterioration is held in the memory 39 by a memory hold signal from the master station 19. Slave stations 13B-13C, 14A-14C, 15
A to 15C operate similarly. V0, I0
When the time data is stored in the memory of each slave station, a signal indicating the occurrence of deterioration is again transmitted from the memory to the master station 19, and the deterioration section determination program of the master station 19 is activated.
【0045】親局19の処理アルゴリズムについて、図
4をもとに説明する。まず、S1では伝送されてきた子
局21の V0 時間データ、及び子局13A〜13C
,14A〜14C,15A〜15Cの I0 時間デー
タから、 V0 に対する I0 各子局の位相が複数
周波数毎に求められる。具体的手段としてはディジタル
フィルタあるいはフーリェ変換などが用いられる。ここ
で、複数周波数として 0〜電源周波数の4倍となる
200 Hzの間で 0 Hz及び電源とその自然数倍
周波数を除いたものを選ぶ。0 〜 200 Hzの帯
域を用いる理由は、この帯域の成分が劣化によって比較
的大きくなるためである。また、電源とその自然数倍周
波数のデータを除く理由は、残留分の影響が大きい成分
であるためである。S2では、S1で求められた複数周
波数における位相の平均値が、各子局毎に求められる。
求められた位相の平均値を θ(i,j) で表わすこ
とにする。ここで、括弧内の i,j はそれぞれフィ
ーダNo. と子局 No. を示し、子局13A〜1
3Cを例にとるとi=1であり、j=1,2,3のよう
に表わすことにする。以下、フィーダ7,8,9をそれ
ぞれフィーダNo.1,2,3と呼ぶ。The processing algorithm of the master station 19 will be explained based on FIG. First, in S1, the V0 time data of the slave station 21 and the slave stations 13A to 13C that have been transmitted are transmitted.
, 14A to 14C, and 15A to 15C, the phase of each I0 slave station with respect to V0 is determined for each of a plurality of frequencies. As a specific means, a digital filter or Fourier transform is used. Here, the multiple frequencies range from 0 to 4 times the power supply frequency.
Select a frequency between 200 Hz and 0 Hz, excluding the power source and its natural number multiple frequencies. The reason for using the 0 to 200 Hz band is that the components in this band become relatively large due to deterioration. Furthermore, the reason for excluding data on the power supply and its natural number multiple frequencies is that these components have a large residual influence. In S2, the average value of the phases at the plurality of frequencies determined in S1 is determined for each slave station. The average value of the determined phases is expressed as θ(i, j). Here, i and j in parentheses are feeder numbers, respectively. and slave station no. , and the slave stations 13A to 1
Taking 3C as an example, i=1 and will be expressed as j=1, 2, 3. Hereinafter, feeders 7, 8, and 9 will be referred to as feeder No. Call them 1, 2, 3.
【0046】S5では、まず θ(1,1)すなわち子
局13Aの位相平均値が判定され−160°≦θ(1,
1)≦−60°を満足しなければ他フィーダで劣化発生
と判断され、S9で最終フィーダではないことがチェッ
クされた後、S4に戻り i に 1 を加えてからθ
(2,1)の判定を行なう。このようにして、最終フィ
ーダまでチェックしてもすべて −160°≦ θ(i
,1) ≦ −60°を満足せず、他フィーダで劣化発
生と判断された場合には、誤起動と判断してS10で異
常なしのメッセージを出力して終了する。一方、 −1
60°≦ θ(1,1) ≦ −60°を満足した場合
には、フィーダ No.1 で劣化発生と判断して、S
7に進み劣化区間の探索を開始する。S7では−160
°≦θ(1,2) ≦−60°が成立するか否かを調べ
る。この条件が成立しない場合には、子局13Bより電
源側区間すなわち子局13Aと13Bとの間で劣化発生
と判定し、S11でフィーダ No.と子局 No.を
表示して終了する。一方、前記条件が成立した場合には
、S7で位相をチェックした子局がフィーダNo.1の
末端子局かどうか調べる。この場合は末端子局ではない
ので、S6に戻り j に 1 を加えてから、S7で
θ(1,3) に対する判定をする。ここで、 θ(
1,3) が条件を満足していれば子局13Bより負荷
側区間すなわちフィーダ No.1 の末端区間で劣化
発生と判定、S12で表示して終了する。ここでは、フ
ィーダ No.1 の劣化区間の探索について説明した
が、他フィーダについても同様である。In S5, first, θ(1, 1), that is, the phase average value of the slave station 13A is determined, and -160°≦θ(1,
1) If ≦-60° is not satisfied, it is determined that deterioration has occurred in another feeder, and after checking that it is not the final feeder in S9, return to S4, add 1 to i, and then θ
A determination of (2, 1) is made. In this way, even if you check all the way to the final feeder, -160°≦ θ(i
, 1) ≦ -60° is not satisfied, and if it is determined that deterioration has occurred in another feeder, it is determined that an erroneous activation has occurred, a message indicating that there is no abnormality is output in S10, and the process ends. On the other hand, −1
If 60°≦θ(1,1)≦−60° is satisfied, feeder No. 1, it is determined that deterioration has occurred, and S
Proceed to step 7 and start searching for a degraded section. -160 in S7
Check whether °≦θ(1,2)≦−60° holds true. If this condition is not satisfied, it is determined that deterioration has occurred in the power supply side section from the slave station 13B, that is, between the slave stations 13A and 13B, and in S11, the feeder No. and slave station no. is displayed and exits. On the other hand, if the above conditions are met, the slave station whose phase was checked in S7 is the feeder No. Check whether it is the terminal slave station of 1. In this case, since it is not a terminal slave station, the process returns to S6 and 1 is added to j, and then a determination is made regarding θ(1,3) in S7. Here, θ(
1, 3) satisfies the conditions, the load side section from slave station 13B, that is, feeder No. It is determined that deterioration has occurred in the end section of 1, the display is displayed in S12, and the process ends. Here, feeder No. Although the search for the degraded section No. 1 has been described, the same applies to other feeders.
【0047】ここで、S5あるいはS7で −160°
≦ θ(i,j) ≦ −60°が成立した場合にはそ
のフィーダあるいは負荷側区間、成立しない場合には他
フィーダあるいは電源側区間で劣化発生と判定される理
由について図5をもとに説明する。なお、図5の表現法
は文献(中山:保護継電システム,電気書院)によった
。[0047] Here, at S5 or S7 -160°
Based on Figure 5, we will explain why it is determined that deterioration has occurred in the feeder or load side section if ≦ θ (i, j) ≦ -60° holds, and in other feeders or power supply side sections if it does not hold. explain. Note that the representation in FIG. 5 is based on the literature (Nakayama: Protective Relay System, Denki Shoin).
【0048】図5は劣化発生時に系統に流れる I0
の等価回路であり、50は系統の対地静電容量を表わす
。51は図2で説明した接地変圧器の二次巻線23の一
辺に接続された限流抵抗24を一次側に換算した抵抗で
ある。図5に示すように、フィーダ8のF点で劣化が発
生すると、健全フィーダ7,9それぞれの対地充電電流
Ic1, Ic3 が、三相母線3を経由して劣化点F
に流れ込む。また、接地変圧器の一次巻線22の中性点
を経由する電流 In も劣化点Fに流れ込む。劣化発
生フィーダでは、劣化点Fより電源側の対地充電電流
Ic2′と負荷側の対地充電電流Ic2′′ が劣化点
Fに流れ込む。ここで、電流 In により生じる中性
点電圧の上昇が V0 であり、符号を次のように決め
ることにする。FIG. 5 shows the flow of I0 in the grid when deterioration occurs.
50 represents the ground capacitance of the system. Reference numeral 51 represents a resistance on the primary side of the current-limiting resistance 24 connected to one side of the secondary winding 23 of the grounding transformer described in FIG. As shown in FIG. 5, when deterioration occurs at point F of the feeder 8, the ground charging currents Ic1 and Ic3 of the healthy feeders 7 and 9 pass through the three-phase bus 3 to the deterioration point F.
flows into. Further, the current In flowing through the neutral point of the primary winding 22 of the grounding transformer also flows into the deterioration point F. In the feeder where deterioration occurs, the ground charging current on the power supply side from the deterioration point F
Ic2' and the load-side ground charging current Ic2'' flow into the deterioration point F. Here, the increase in the neutral point voltage caused by the current In is V0, and the sign is determined as follows.
【0049】[0049]
【数1】[Math 1]
【0050】ここで、Rn:一次換算抵抗51の値数1
のように符号を決めると、図5のフィーダ8において、
劣化点を挟んで両側に流れる I0 のベクトル図は図
6のように表わすことができる。図6において、I0′
, I0″はそれぞれ劣化点より電源側,負荷側のフィ
ーダを流れる I0 であり、I0Nは系統や検出回路
に存在するノイズである。なおここでは、I0″,I0
N,Ic2″の大きさが小さい例を示し便宜上そのスケ
ールを拡大して表示する。Here, Rn: value number 1 of the primary conversion resistance 51
If the code is determined as follows, in the feeder 8 of FIG.
A vector diagram of I0 flowing on both sides of the deterioration point can be expressed as shown in FIG. In FIG. 6, I0'
, I0'' are the I0 flowing through the feeder on the power supply side and the load side from the deterioration point, respectively, and I0N is the noise existing in the system and detection circuit.Here, I0'', I0
An example in which the magnitudes of N and Ic2'' are small is shown in an enlarged scale for convenience.
【0051】ここで、 V0 に対する I0′の位相
αは In と Ic1+Ic3+Ic2′ の絶対値
の比によって変化する。
すなわち、位相αは近似的には一次換算抵抗51の値
Rn と系統対地静電容量 Cs によって、次式のよ
うに様々に変化する。Here, the phase α of I0' with respect to V0 changes depending on the ratio of the absolute values of In and Ic1+Ic3+Ic2'. That is, the phase α is approximately the value of the primary conversion resistance 51.
It varies depending on Rn and the system ground capacitance Cs as shown in the following equation.
【0052】[0052]
【数2】[Math 2]
【0053】ここで、ω:角周波数
一般の配電系統においては、Rn は数 10 kΩ、
Cs は 0.1〜 20μF程度であり、数2から
位相αは −160°〜−90°付近に分布するように
なる。これに対して、抵抗値 Rn と並列にリアクト
ルが接続される場合やノイズの影響が大きい場合も考え
ると、αが、−90°以下になることもあるため、今回
は余裕を見て−160°≦α≦ −60°が成立した場
合にフィーダの負荷側区間で劣化発生と判定した。ここ
で、図7に示すようにαの範囲を −90°に対して非
対称として0°〜−90°の範囲を 30°とせまくし
た理由は、次のようなものである。一般に、ノイズI0
Nは、電源とその自然数倍周波数を除いているため、広
帯域なランダムノイズとなり、その位相は、複数周波数
の平均をとることによって 0°付近に分布するように
なる。したがって、比較的ノイズの影響を受けやすい
0°付近から離れた領域で位相判定することにより、誤
判定する危険性を減少できることになるためである。Here, ω: angular frequency In a general power distribution system, Rn is several 10 kΩ,
Cs is about 0.1 to 20 μF, and from Equation 2, the phase α is distributed around −160° to −90°. On the other hand, considering the case where a reactor is connected in parallel with the resistance value Rn or the influence of noise is large, α may be -90° or less, so this time we took a margin and set it to -160°. When °≦α≦−60° was established, it was determined that deterioration occurred in the load side section of the feeder. Here, the reason why the range of α is made asymmetric with respect to −90° and the range from 0° to −90° is narrowed to 30° as shown in FIG. 7 is as follows. In general, the noise I0
Since N excludes the power supply and its natural number multiple frequencies, it becomes broadband random noise, and its phase is distributed around 0° by taking the average of multiple frequencies. Therefore, it is relatively susceptible to noise.
This is because the risk of erroneous determination can be reduced by determining the phase in a region away from around 0°.
【0054】一方 I0″の位相βは、ノイズ I0N
の影響が小さい場合には90°になるが、ノイズ I
0N の影響が大きくなると 0°〜 90°付近に分
布するようになる。
ここで、他フィーダで劣化発生と判定する位相範囲をで
きるだけ広くしておけば、誤起動と判断してS10で異
常なしのメッセージを出力するだけであるため、他の外
来ノイズにより誤判定することがなくなり、ノイズに強
いシステムになる。一方、そのフィーダで劣化発生と判
定されて劣化区間の探索ルーチンに入った場合には、電
源側区間で劣化発生と判定する位相範囲をできるだけ広
くしておけば確実に劣化区間を発見できることになる。
以上の理由により、図7に示すように−160° ≦
θ(i,j) ≦ −60°以外の位相に対してはすべ
て他フィーダであるいは電源側区間で劣化発生と判定す
ることにしたものである。On the other hand, the phase β of I0″ is the noise I0N
If the influence of I is small, it will be 90°, but the noise I
When the influence of 0N becomes large, the distribution will be around 0° to 90°. Here, if the phase range in which it is determined that deterioration has occurred in other feeders is made as wide as possible, it will be determined that it is an erroneous activation and a message indicating that there is no abnormality will be output at S10, which will prevent erroneous determinations due to other external noises. This eliminates noise, making the system resistant to noise. On the other hand, if it is determined that deterioration has occurred in that feeder and the search routine for the deterioration section is entered, the deterioration section can be reliably discovered by widening the phase range in which it is determined that deterioration has occurred in the power supply side section as much as possible. . For the above reasons, as shown in Figure 7, −160° ≦
For all phases other than θ(i,j)≦−60°, it is determined that deterioration occurs in other feeders or in the power supply side section.
【0055】図8,9に、実際の配電機器で劣化発生さ
せたときに、それぞれ劣化点より電源側子局、負荷側子
局でストアされたデータを親局で処理した結果の一例を
示す。電源周波数は 50 Hzである。各図において
、(a),(b)はそれぞれ V0 , I0 の時間
データ及びスペクトルである。両図の時間データともノ
イズが多く含まれており、 V0 データにわずかに波
形変化が見られる程度である。これに対して、スペクト
ルでは既に説明したように、健全時にも存在する電源と
その自然数倍周波数の成分以外にも多くの周波数成分が
発生しており、特に V0 のスペクトルは低い周波数
成分ほど大きくなる傾向を示している。図8(c),9
(c)は、V0に対するI0の位相スペクトルを示す。
それぞれの位相スペクトルから電源とその自然数倍周波
数を除く複数周波数における位相が求められ、その平均
値をそれぞれθ(i,j),θ(i,j+1) とする
と、このケースでは
θ(i,j) = −68° , θ(i,j+1)
= 12°となり、図4で説明した親局19の処理アル
ゴリズムによりフィーダNo.iの子局No.j と
j+1 の区間で劣化発生と判定できることになる。[0055] Figures 8 and 9 show examples of the results of processing data stored in the power supply side slave station and load side slave station at the master station from the point of deterioration, respectively, when deterioration occurs in actual power distribution equipment. . The power frequency is 50 Hz. In each figure, (a) and (b) are time data and spectra of V0 and I0, respectively. The time data in both figures contains a lot of noise, and only slight waveform changes can be seen in the V0 data. On the other hand, as explained above, in the spectrum, many frequency components are generated in addition to the power supply and its natural number multiple frequency components that exist even in a healthy state, and in particular, in the spectrum of V0, the lower the frequency component, the larger the frequency component. It shows a tendency to Figure 8(c), 9
(c) shows the phase spectrum of I0 with respect to V0. From each phase spectrum, the phases at multiple frequencies excluding the power supply and its natural number multiple frequencies are determined, and their average values are respectively θ(i, j) and θ(i, j+1). In this case, θ(i, j) = −68°, θ(i, j+1)
= 12°, and the processing algorithm of the master station 19 explained in FIG. i's slave station No. j and
This means that it can be determined that deterioration has occurred in the interval j+1.
【0056】本発明の上記一実施例の親局アルゴリズム
によれば、S7では−160°≦θ(i,j)≦ −6
0°が成立しなけれは、直ちにS11に進み劣化区間を
出力するようにしているが、これに対して一旦劣化フィ
ーダの全子局の位相を調べた後、総合的に判定しても良
い。この場合は、例えば途中の子局に不具合があったと
しても総合的に見るため、的確な判定が期待できる。図
10に、判定出力結果となる表示装置の表示画面を示す
。ここで、34は I0 センサであり各センサに付記
されている矢印が劣化方向判定結果、101が劣化区間
を示す記号である。また、図11は各子局から得られた
I0 の絶対値と V0 に対する位相情報をベクト
ル平面上に表示した表示装置の表示画面である。この平
面上には I0 の絶対値と位相情報により得られる劣
化の進展度を示す情報も色分け(図示せず)して示され
る。According to the master station algorithm of the above embodiment of the present invention, in S7 -160°≦θ(i,j)≦-6
If 0° is not established, the process immediately proceeds to S11 and the deteriorated section is output. However, on the other hand, the phase of all slave stations of the deteriorated feeder may be checked and then comprehensively determined. In this case, even if there is a problem with a slave station on the way, accurate judgment can be expected because it is looked at comprehensively. FIG. 10 shows a display screen of the display device that is the determination output result. Here, 34 is an I0 sensor, the arrow attached to each sensor is a deterioration direction determination result, and 101 is a symbol indicating a deterioration section. Moreover, FIG. 11 is a display screen of a display device that displays the absolute value of I0 obtained from each slave station and the phase information for V0 on a vector plane. On this plane, information indicating the degree of progress of deterioration obtained from the absolute value of I0 and phase information is also shown in different colors (not shown).
【0057】本発明の上記一実施例によれば、残留分や
系統ノイズの影響を低減できるので、絶縁劣化の発生及
びその区間を高感度で検出できる。また、劣化発生方向
を示す矢印など劣化区間を特定する情報を生成する手段
と、配電系統図の少なくとも一部と、劣化発生区間を示
す情報を同一画面領域に表示したので、オペレータは一
目で劣化に関する情報を得ることができるようになる。
さらに、劣化の進展度が色分けして示されるので、オペ
レータは次の対策を打つための劣化情報を一目で得るこ
とができるようになる。According to the above-described embodiment of the present invention, the influence of residual components and system noise can be reduced, so that the occurrence of insulation deterioration and its area can be detected with high sensitivity. In addition, a means for generating information that identifies degraded sections, such as arrows indicating the direction of deterioration occurrence, and at least part of the power distribution system diagram, and information indicating the degraded sections are displayed in the same screen area, allowing operators to easily identify degraded sections at a glance. You will be able to obtain information about. Furthermore, since the degree of progress of deterioration is shown in different colors, the operator can obtain deterioration information at a glance for taking the next countermeasure.
【0058】上記一実施例のセンサ装置10A〜10C
,11A〜11C,12A〜12Cでは I0 のみを
検出したが、これに対して V0 も併せて検出するよ
うにしても良い。 V0 センサとしては三相フィーダ
に接続されたコンデンサが用いられる。この場合、子局
21からメモリホールド信号が伝送されてくる点は上記
一実施例と同様であるが、V0 , I0 を用いて子
局13A〜13C,14A〜14C,15A〜15Cに
おいて図4で説明した処理により方向判定までの処理を
する点が異なる。親局19では、子局の方向判定結果を
用いて劣化区間を判定し出力する。なお、本実施例の場
合、子局21では V0 を使用してコンパレートした
後、基準値を越えていればメモリホールド信号を出力す
るだけで、その V0 は劣化発生方向判定用データと
しては使用しない。Sensor devices 10A to 10C of the above embodiment
, 11A to 11C, and 12A to 12C, only I0 is detected, but V0 may also be detected at the same time. A capacitor connected to a three-phase feeder is used as the V0 sensor. In this case, the point that the memory hold signal is transmitted from the slave station 21 is the same as in the above embodiment, but V0 and I0 are used to transmit the memory hold signal in the slave stations 13A to 13C, 14A to 14C, and 15A to 15C as shown in FIG. The difference is that the process described above includes processing up to direction determination. The master station 19 determines and outputs a degraded section using the direction determination result of the slave station. In the case of this embodiment, after the slave station 21 compares using V0, if it exceeds the reference value, it simply outputs a memory hold signal, and that V0 is used as data for determining the direction of deterioration. do not.
【0059】本発明の上記した他の実施例によれば、残
留分や系統ノイズの影響を低減でき、絶縁劣化の発生及
びその区間を高感度で検出できる他、各子局で求められ
た方向判定結果が伝送されるだけなので伝送量が少なく
てすむなどの効果がある。According to the above-described other embodiments of the present invention, it is possible to reduce the influence of residual components and system noise, to detect the occurrence of insulation deterioration and its area with high sensitivity, and to detect the direction determined by each slave station. Since only the determination result is transmitted, the amount of transmission can be reduced.
【0060】本発明の別な実施例について図面に基づい
て説明する。図12,13は、それぞれ本発明の検証試
験やアルゴリズムの位相設定に用いる地絡発生装置の平
面図及び側面図である。地絡発生装置は配電線の一相に
接続される第1の電極120と、該第1の電極120に
対向し接地電位に接続される第2の電極121と、前記
第1の電極120が支持される手動アーム122と、前
記第2の電極が支持される自動アーム123と、手動ア
ーム122及び自動アーム123をそれぞれに支持する
固定架台124,125と、固定架台124,125が
固着される共通ベース128とで構成される。手動アー
ム122と固定架台124は、手動アーム122に固着
されたピニオンギア(図示せず)と固定架台124に固
着されたラックギア(図示せず)でリンクされ、手動ア
ーム122が電極の軸に対して直角2方向に手動で移動
可能に構成される。一方、自動アーム123と固定架台
125は、自動アーム123に固着されたピニオンギア
(図示せず)と固定架台125に固着されたラックギア
126でリンクされ、さらにラックギア126はステッ
ピングモータ127の軸に回転可能に取り付けられるこ
とにより、移動アーム123が電極の軸方向に移動可能
に構成される。ステッピングモータ127の回転角は遠
隔装置(図示せず)によりコントロール可能に構成され
る。なお、前記第1,第2の電極材料としてはアーク発
生によって表面が荒れない耐弧メタルが使用される。Another embodiment of the present invention will be explained based on the drawings. 12 and 13 are a plan view and a side view, respectively, of a ground fault generating device used for verification tests and algorithm phase setting of the present invention. The ground fault generating device includes a first electrode 120 connected to one phase of the distribution line, a second electrode 121 facing the first electrode 120 and connected to the ground potential, and the first electrode 120 connected to the ground potential. The manual arm 122 that is supported, the automatic arm 123 that supports the second electrode, the fixed frames 124 and 125 that respectively support the manual arm 122 and the automatic arm 123, and the fixed frames 124 and 125 are fixed. It is composed of a common base 128. The manual arm 122 and the fixed pedestal 124 are linked by a pinion gear (not shown) fixed to the manual arm 122 and a rack gear (not shown) fixed to the fixed pedestal 124, so that the manual arm 122 is connected to the axis of the electrode. It is configured so that it can be manually moved in two directions at right angles. On the other hand, the automatic arm 123 and the fixed frame 125 are linked by a pinion gear (not shown) fixed to the automatic arm 123 and a rack gear 126 fixed to the fixed frame 125, and the rack gear 126 is further rotated by the shaft of the stepping motor 127. The movable arm 123 is configured to be movable in the axial direction of the electrode. The rotation angle of the stepping motor 127 is configured to be controllable by a remote device (not shown). Incidentally, as the first and second electrode materials, an arc-resistant metal whose surface is not roughened by arc generation is used.
【0061】動作について説明する。まず、第2の電極
121と第1の電極120の軸が一致するように、手動
アーム122の位置が調整される。次に、遠隔装置から
ステッピングモータ127に出力されるパルス数すなわ
ち回転角が決められ、スタートボタンを押すと電極間の
ギャップ長が短くなるように、自動アーム123が所定
の距離だけ移動し地絡を発生させた後、再び元の位置ま
で戻って一連の動作を終了する。The operation will be explained. First, the position of the manual arm 122 is adjusted so that the axes of the second electrode 121 and the first electrode 120 coincide. Next, the number of pulses, that is, the rotation angle, to be output from the remote device to the stepping motor 127 is determined, and when the start button is pressed, the automatic arm 123 moves a predetermined distance to shorten the gap length between the electrodes. After generating this, the robot returns to its original position and completes the series of operations.
【0062】本発明の上記した別な実施例によれば、常
に一定のギャップ長にコントロールすることが可能にな
り、かつ電極材料として耐弧メタルを用いているため、
地絡波形の再現性が向上し検証試験やアルゴリズムの位
相設定試験時の効率向上が可能になる。また、図3にお
いて、系統ノイズを除去するローパスフィルタ37のカ
ットオフ周波数を設定するために行なう、系統の共振試
験の効率向上の点でも効果がある。すなわち、系統に地
絡発生装置を取り付けて地絡を発生させることにより、
常に系統の自由振動を安定して励起させることができ、
共振周波数の測定が簡単になる。According to the above-described other embodiment of the present invention, it is possible to always control the gap length to a constant value, and since arc-resistant metal is used as the electrode material,
The reproducibility of ground fault waveforms is improved, making it possible to improve efficiency during verification tests and algorithm phase setting tests. Furthermore, in FIG. 3, it is also effective in improving the efficiency of the system resonance test performed to set the cutoff frequency of the low-pass filter 37 that removes system noise. In other words, by installing a ground fault generator in the system and generating a ground fault,
It is possible to constantly excite the free vibrations of the system stably,
Measurement of resonant frequency becomes easy.
【0063】[0063]
【発明の効果】以上に説明したように、本発明によれば
電力系統から検出される零相電圧及び零相電流における
残留分や系統ノイズの影響が低減されるので、該電力系
統の絶縁劣化の発生及びその発生区間の検出,判定が高
感度で行なわれる効果がある。また、劣化発生方向を示
す矢印など劣化区間を特定する情報を生成する手段と、
配電系統図の少なくとも一部と、劣化発生区間を示す情
報を同一画面領域に表示したので、オペレータは一目で
劣化に関する情報を得ることができるようになる。Effects of the Invention As explained above, according to the present invention, the effects of residual components and system noise in the zero-sequence voltage and zero-sequence current detected from the power system are reduced, thereby reducing insulation deterioration of the power system. This has the effect of allowing highly sensitive detection and determination of the occurrence and the period in which it occurs. Further, means for generating information for specifying a degraded section such as an arrow indicating the direction of occurrence of the degradation;
Since at least a portion of the power distribution system diagram and information indicating the section where deterioration has occurred are displayed in the same screen area, the operator can obtain information regarding deterioration at a glance.
【0064】さらに、常に一定のギャップ長にコントロ
ールすることが可能になりかつ電極材料として耐弧メタ
ルを用いているため、各種試験の効率向上が可能になる
。Furthermore, since the gap length can always be controlled to a constant value and arc-resistant metal is used as the electrode material, it is possible to improve the efficiency of various tests.
【図1】本発明の一実施例が配電系統に適用された図で
ある。FIG. 1 is a diagram in which an embodiment of the present invention is applied to a power distribution system.
【図2】図1に示す一実施例の要素装置の詳細図である
。FIG. 2 is a detailed diagram of the element device of the embodiment shown in FIG. 1;
【図3】図1に示す一実施例の別な要素装置の詳細図で
ある。FIG. 3 is a detailed view of another element device of the embodiment shown in FIG. 1;
【図4】図1に示す一実施例の処理アルゴリズムを示す
フロー図である。FIG. 4 is a flow diagram showing a processing algorithm of the embodiment shown in FIG. 1;
【図5】本発明の作用を説明するための等価回路図であ
る。FIG. 5 is an equivalent circuit diagram for explaining the operation of the present invention.
【図6】本発明の作用を説明するためのベクトル図であ
る。FIG. 6 is a vector diagram for explaining the operation of the present invention.
【図7】図1に示す一実施例の機能説明図である。FIG. 7 is a functional explanatory diagram of the embodiment shown in FIG. 1;
【図8】図1に示す一実施例で得られたデータ例を示す
図である。8 is a diagram showing an example of data obtained in the example shown in FIG. 1. FIG.
【図9】図1に示す一実施例で得られた別なデータ例を
示す図である。9 is a diagram showing another example of data obtained in the example shown in FIG. 1. FIG.
【図10】本発明で得られた出力結果図である。FIG. 10 is an output result diagram obtained by the present invention.
【図11】本発明で得られた別な出力結果図である。FIG. 11 is another output result diagram obtained by the present invention.
【図12】本発明の別な実施例で得られた試験装置の平
面図である。FIG. 12 is a plan view of a test device obtained in another embodiment of the present invention.
【図13】本発明の別な実施例で得られた試験装置の側
面図である。FIG. 13 is a side view of a test device obtained in another embodiment of the present invention.
7,8,9…三相フィーダ(送電線)、10A〜10C
,11A〜11C,12A〜12C…センサ装置、13
A〜13C,14A〜14C,15A〜15C…子局、
16,17,18…通信線、19…親局、20…センサ
装置、21…子局。7, 8, 9...Three-phase feeder (power transmission line), 10A to 10C
, 11A to 11C, 12A to 12C...sensor device, 13
A~13C, 14A~14C, 15A~15C...Slave stations,
16, 17, 18...Communication line, 19...Master station, 20...Sensor device, 21...Slave station.
Claims (27)
おいて、絶縁劣化の発生が、上記三相電力系統の共振周
波数を除く帯域での零相電圧、及びまたは、零相電流の
発生レベルの大きさを用いて検出されることを特徴とす
る電力系統の絶縁劣化検出装置。Claim 1: In a device for detecting insulation deterioration in a three-phase power system, the occurrence of insulation deterioration occurs at the level of occurrence of zero-sequence voltage and/or zero-sequence current in a band other than the resonant frequency of the three-phase power system. An apparatus for detecting insulation deterioration in an electric power system, characterized in that detection is performed using the magnitude of .
おいて、絶縁劣化発生区間が、上記三相電力系統の共振
周波数を除く帯域での零相電圧と、零相電流との位相差
スペクトルを用いて判定されることを特徴とする電力系
統の絶縁劣化検出装置。2. A device for detecting insulation deterioration in a three-phase power system, wherein the insulation deterioration occurrence section is a phase difference spectrum between a zero-sequence voltage and a zero-sequence current in a band excluding the resonance frequency of the three-phase power system. A power system insulation deterioration detection device characterized in that the determination is made using the following.
おいて、零相電圧の低周波数成分をトリガとして、絶縁
劣化の発生が、上記三相電力系統の共振周波数を除く帯
域での零相電圧、及びまたは、零相電流の発生レベルの
大きさを用いて検出されることを特徴とする電力系統の
絶縁劣化検出装置。3. In a device for detecting insulation deterioration in a three-phase power system, when a low frequency component of a zero-phase voltage is used as a trigger, occurrence of insulation deterioration occurs in a zero-phase in a band other than the resonant frequency of the three-phase power system. 1. An insulation deterioration detection device for a power system, characterized in that detection is performed using the magnitude of the generation level of voltage and/or zero-sequence current.
おいて、零相電圧の低周波数成分をトリガとして、絶縁
劣化発生区間が、上記三相電力系統の共振周波数を除く
帯域での零相電圧と、零相電流との位相差スペクトルを
用いて判定されることを特徴とする電力系統の絶縁劣化
検出装置。4. A device for detecting insulation deterioration in a three-phase power system, in which a low frequency component of a zero-phase voltage is used as a trigger, and an interval in which insulation deterioration occurs is a zero-phase in a band other than the resonant frequency of the three-phase power system. A power system insulation deterioration detection device characterized in that determination is made using a phase difference spectrum between voltage and zero-sequence current.
零相電圧、及びまたは、零相電流は、電源周波数と、上
記三相電力系統の共振周波数とを除く帯域での零相電圧
、及びまたは、零相電流であることを特徴とする電力系
統の絶縁劣化検出装置。5. In claim 1 or 3, the zero-sequence voltage and/or zero-sequence current is a zero-sequence voltage in a band excluding the power supply frequency and the resonance frequency of the three-phase power system. , and/or a zero-sequence current.
零相電圧、及びまたは、零相電流は、電源周波数と、そ
の自然数倍周波数と、上記三相電力系統の共振周波数と
を除く帯域での零相電圧、及びまたは、零相電流である
ことを特徴とする電力系統の絶縁劣化検出装置。6. In claim 1 or 3, the zero-sequence voltage and/or the zero-sequence current has a power frequency, a natural number multiple frequency thereof, and a resonance frequency of the three-phase power system. A power system insulation deterioration detection device characterized by detecting zero-sequence voltage and/or zero-sequence current in an exclusive band.
零相電圧と零相電流とは、電源周波数と、上記三相電力
系統の共振周波数とを除く帯域での零相電圧と零相電流
とであることを特徴とする電力系統の絶縁劣化検出装置
。7. In claim 2 or 4, the zero-sequence voltage and zero-sequence current are the zero-sequence voltage and zero-sequence current in a band excluding the power supply frequency and the resonant frequency of the three-phase power system. A power system insulation deterioration detection device characterized by a phase current.
零相電圧と零相電流とは、電源周波数と、その自然数倍
周波数と、上記三相電力系統の共振周波数とを除く帯域
での零相電圧と零相電流とであることを特徴とする電力
系統の絶縁劣化検出装置。8. In claim 2 or 4, the zero-sequence voltage and zero-sequence current are in a band excluding the power supply frequency, its natural number multiples, and the resonance frequency of the three-phase power system. A power system insulation deterioration detection device characterized in that the zero-sequence voltage and zero-sequence current are as follows.
おいて、電源周波数を除く帯域での零相電圧、及びまた
は、零相電流の発生レベルの大きさを求め、その後、電
源周波数を超える周波数帯域の零相電圧の低周波数成分
をトリガとして、絶縁劣化の発生が、検出されることを
特徴とする電力系統の絶縁劣化検出方法。9. In a device for detecting insulation deterioration in a three-phase power system, the magnitude of the generation level of zero-sequence voltage and/or zero-sequence current in a band other than the power supply frequency is determined, and then A method for detecting insulation deterioration in a power system, characterized in that occurrence of insulation deterioration is detected using a low frequency component of a zero-sequence voltage in a frequency band as a trigger.
または、零相電流は、電源周波数と、その自然数倍周波
数とを除く帯域での零相電圧、及びまたは、零相電流で
あることを特徴とする電力系統の絶縁劣化検出方法。10. In claim 9, the zero-sequence voltage and/or zero-sequence current is a zero-sequence voltage and/or zero-sequence current in a band excluding the power supply frequency and its natural number multiple frequencies. A method for detecting insulation deterioration in a power system, characterized by:
において、電源周波数を除く帯域での零相電圧と、零相
電流の位相差スペクトルを求め、その後、電源周波数を
超える周波数帯域の零相電圧の低周波数成分をトリガと
して、絶縁劣化発生区間が判定されることを特徴とする
電力系統の絶縁劣化検出方法。11. A method for detecting insulation deterioration in a three-phase power system, wherein a phase difference spectrum of a zero-sequence voltage and a zero-sequence current in a band excluding the power supply frequency is determined, and then a phase difference spectrum of a zero-sequence voltage in a frequency band exceeding the power supply frequency is determined. A method for detecting insulation deterioration in a power system, characterized in that an insulation deterioration occurrence section is determined using a low frequency component of a phase voltage as a trigger.
相電流とは、電源周波数と、その自然数倍周波数とを除
く帯域での零相電圧と零相電流とであることを特徴とす
る電力系統の絶縁劣化検出方法。12. Claim 11, characterized in that the zero-sequence voltage and zero-sequence current are zero-sequence voltage and zero-sequence current in a band excluding the power supply frequency and its natural number multiple frequencies. A method for detecting insulation deterioration in power systems.
て、上記零相電圧の低周波数成分は、上記電源周波数の
2倍未満であることを特徴とする電力系統の絶縁劣化検
出方法。13. The method for detecting insulation deterioration in an electric power system according to claim 9, wherein the low frequency component of the zero-sequence voltage is less than twice the frequency of the power supply.
において、電源周波数を除く帯域での零相電圧に対する
零相電流の位相平均値θ(但し、|θ|≦180°)が
、 −90°+θ1>θ>−90°−θ2 (θ1,θ2
:定数≦90°) であれば、負荷側で絶縁劣化が発生と判定し、−90°
+θ1<θ<180°、または、−90°−θ2>θ>
−180° であれば、電源側で絶縁劣化が発生と判定することを特
徴とする電力系統の絶縁劣化判定装置。14. In a device for determining insulation deterioration in a three-phase power system, the phase average value θ of zero-sequence current with respect to zero-sequence voltage in a band excluding the power supply frequency (however, |θ|≦180°) is - 90°+θ1>θ>−90°−θ2 (θ1, θ2
: constant ≦90°), it is determined that insulation deterioration has occurred on the load side, and -90°
+θ1<θ<180° or -90°−θ2>θ>
-180°, an insulation deterioration determination device for an electric power system is characterized in that it is determined that insulation deterioration has occurred on the power supply side.
する零相電流の位相平均値θは、上記電源周波数と、そ
の自然数倍周波数とを除く帯域での零相電圧に対する零
相電流の位相平均値θであることを特徴とする電力系統
の絶縁劣化判定装置。15. In claim 14, the phase average value θ of the zero-sequence current with respect to the zero-sequence voltage is the phase of the zero-sequence current with respect to the zero-sequence voltage in a band excluding the power supply frequency and its natural number multiple frequencies. A power system insulation deterioration determination device characterized by an average value θ.
、θ1<θ2であることを特徴とする電力系統の絶縁劣
化判定装置。16. The apparatus for determining insulation deterioration in a power system according to claim 14 or 15, wherein θ1<θ2.
いて、上記零相電流の位相平均値θは、電源周波数の自
然数倍周波数までの低周波数領域での位相平均値である
ことを特徴とする電力系統の絶縁劣化判定装置。17. In any one of claims 14 to 16, the phase average value θ of the zero-sequence current is a phase average value in a low frequency region up to a natural number multiple frequency of the power supply frequency. This is an insulation deterioration determination device for electric power systems.
自然数倍周波数は、上記電源周波数の4倍の周波数であ
ることを特徴とする電力系統の絶縁劣化判定装置。18. The insulation deterioration determination device for an electric power system according to claim 17, wherein the natural number multiple frequency of the power supply frequency is a frequency four times the power supply frequency.
いて、上記電力系統の電源側から絶縁劣化の発生を判定
することを特徴とする電力系統の絶縁劣化判定装置。19. An apparatus for determining insulation deterioration in an electric power system according to any one of claims 14 to 18, characterized in that the occurrence of insulation deterioration is determined from the power source side of the electric power system.
断器が動作しない程度の地絡を発生させるものにおいて
、上記配電線に接続される第1の電極と、該第1の電極
と対向し、接地電位に接続される第2の電極と、上記対
向する第1の電極と第2の電極とのギャップ長を制御す
る手段とを具備することを特徴とする地絡発生装置。20. A device that causes a ground fault to such an extent that the circuit breaker of a distribution line connected via a circuit breaker does not operate, comprising: a first electrode connected to the distribution line; A ground fault generating device comprising: a second electrode facing the ground potential and connected to a ground potential; and means for controlling a gap length between the facing first electrode and the second electrode.
第2の電極との少なくとも一方は、耐弧メタルを含むこ
とを特徴とする地絡発生装置。21. The ground fault generating device according to claim 20, wherein at least one of the first electrode and the second electrode includes an arc-resistant metal.
れた地絡発生装置と、電力系統固有の共振周波数を測定
する手段とを具備することを電力系統の共振周波数測定
システム。22. A resonant frequency measuring system for a power system, comprising the ground fault generating device according to claim 20 or 21, and means for measuring a resonant frequency specific to the power system.
情報を生成する手段と、三相電力系統図の少なくとも一
部と上記絶縁劣化区間を特定する情報とを同一画面領域
に表示する表示装置とを具備することを特徴とする電力
系統の絶縁劣化監視装置。23. Means for generating information specifying an insulation deteriorated section of a three-phase power system, and a display for displaying at least a part of the three-phase power system diagram and the information specifying the insulation deteriorated section in the same screen area. What is claimed is: 1. A power system insulation deterioration monitoring device comprising:
での零相電圧に対する零相電流の位相平均値θと絶対値
とを演算する手段と、零相電圧に対する零相電流の位相
平均値と絶対値との関係を示す二次元座標領域内に、負
荷側及び又は電源側で絶縁劣化が発生する領域を特定す
る情報と、上記所定個所での零相電圧に対する零相電流
の位相平均値θと絶対値とに対応する情報とを同時に表
示する表示装置とを具備することを特徴とする電力系統
の絶縁劣化監視装置。24. Means for calculating a phase average value θ and an absolute value of a zero-sequence current with respect to a zero-sequence voltage at at least one location in a three-phase power system; In the two-dimensional coordinate area showing the relationship with the value, information specifying the area where insulation deterioration occurs on the load side and/or the power supply side, and the phase average value θ of the zero-sequence current with respect to the zero-sequence voltage at the above-mentioned predetermined location. 1. A power system insulation deterioration monitoring device, comprising: a display device that simultaneously displays an absolute value and information corresponding to the absolute value.
は、複数個所でのそれぞれの零相電圧に対する零相電流
の位相平均値θと絶対値とを演算する手段であり、上記
表示装置は、上記複数個所の一つでの零相電圧に対する
零相電流の位相平均値θと絶対値とに対応する情報を表
示する表示装置であることを特徴とする電力系統の絶縁
劣化監視装置。25. In claim 24, the calculating means is means for calculating a phase average value θ and an absolute value of a zero-sequence current for each zero-sequence voltage at a plurality of locations, and the display device comprises: A power system insulation deterioration monitoring device, characterized in that it is a display device that displays information corresponding to a phase average value θ and an absolute value of a zero-sequence current with respect to a zero-sequence voltage at one of the plurality of locations.
は、複数個所でのそれぞれの零相電圧に対する零相電流
の位相平均値θと絶対値とを演算する手段であり、上記
表示装置は、上記複数個所での零相電圧に対する零相電
流の位相平均値θと絶対値とに対応する情報を同時に表
示する表示装置であることを特徴とする電力系統の絶縁
劣化監視装置。26. In claim 24, the calculating means is means for calculating a phase average value θ and an absolute value of a zero-sequence current for each zero-sequence voltage at a plurality of locations, and the display device comprises: A power system insulation deterioration monitoring device characterized in that it is a display device that simultaneously displays information corresponding to a phase average value θ and an absolute value of a zero-sequence current with respect to a zero-sequence voltage at the plurality of locations.
での零相電圧に対する零相電流の位相平均値θと絶対値
とを演算する手段と、零相電圧に対する零相電流の位相
平均値と絶対値とに応じて、絶縁劣化の進展度が、互い
に識別可能な複数の領域と、上記所定個所での零相電圧
に対する零相電流の位相平均値θと絶対値とに対応する
情報とを同時に表示する表示装置とを具備することを特
徴とする電力系統の絶縁劣化監視装置。27. Means for calculating the phase average value θ and absolute value of zero-sequence current with respect to zero-sequence voltage at at least one point in a three-phase power system; At the same time, information corresponding to the phase average value θ and absolute value of the zero-sequence current with respect to the zero-sequence voltage at the predetermined location is simultaneously displayed. 1. A power system insulation deterioration monitoring device, comprising: a display device for displaying information.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14451691A JP3161757B2 (en) | 1991-06-17 | 1991-06-17 | Power system insulation deterioration detection method, insulation deterioration detection device, insulation deterioration detection system, and insulation deterioration determination device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14451691A JP3161757B2 (en) | 1991-06-17 | 1991-06-17 | Power system insulation deterioration detection method, insulation deterioration detection device, insulation deterioration detection system, and insulation deterioration determination device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04368415A true JPH04368415A (en) | 1992-12-21 |
JP3161757B2 JP3161757B2 (en) | 2001-04-25 |
Family
ID=15364165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14451691A Expired - Fee Related JP3161757B2 (en) | 1991-06-17 | 1991-06-17 | Power system insulation deterioration detection method, insulation deterioration detection device, insulation deterioration detection system, and insulation deterioration determination device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3161757B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013036884A (en) * | 2011-08-09 | 2013-02-21 | Fuji Electric Fa Components & Systems Co Ltd | Insulation monitoring method and insulation monitor |
KR20140097489A (en) | 2011-12-02 | 2014-08-06 | 샤프 가부시키가이샤 | Laminate |
WO2015093188A1 (en) * | 2013-12-20 | 2015-06-25 | 日立オートモティブシステムズ株式会社 | Diagnostic device that identifies anomalies in electrical-power transmission path |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109596932B (en) | 2018-11-08 | 2020-10-16 | 杭州求是电力技术有限公司 | Zero sequence parameter measurement and grounding voltage control method for resonance grounding system |
KR102655623B1 (en) * | 2021-11-12 | 2024-04-09 | 주식회사 스마트파워서플라이 | Multi-channel arc detection device |
-
1991
- 1991-06-17 JP JP14451691A patent/JP3161757B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013036884A (en) * | 2011-08-09 | 2013-02-21 | Fuji Electric Fa Components & Systems Co Ltd | Insulation monitoring method and insulation monitor |
KR20140097489A (en) | 2011-12-02 | 2014-08-06 | 샤프 가부시키가이샤 | Laminate |
WO2015093188A1 (en) * | 2013-12-20 | 2015-06-25 | 日立オートモティブシステムズ株式会社 | Diagnostic device that identifies anomalies in electrical-power transmission path |
JPWO2015093188A1 (en) * | 2013-12-20 | 2017-03-16 | 日立オートモティブシステムズ株式会社 | Diagnostic device for determining abnormality of power transmission path |
Also Published As
Publication number | Publication date |
---|---|
JP3161757B2 (en) | 2001-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10522998B2 (en) | Method for detecting an open-phase condition of a transformer | |
JP3704532B2 (en) | Method and apparatus for determining a ground fault on a conductor of an electric machine | |
US5602709A (en) | High impedance fault detector | |
US6172862B1 (en) | Partial discharge relay and monitoring device | |
CN211236675U (en) | Calibration device for automatic tuning controller of arc suppression coil | |
JPH04368415A (en) | Method of detecting insulation deterioration of power system and devices for detecting, discriminating, and monitoring insulation deterioration, grounding generator, and resonance frequency measuring system | |
JPH0727812A (en) | Insulation diagnosing device | |
JPH05133993A (en) | Contactless electric field/magnetic field sensor | |
JPS63265516A (en) | Ground-fault detector for three-phase ac circuit | |
JP2958594B2 (en) | Insulation deterioration diagnosis device | |
JP3361195B2 (en) | Method and method for locating intermittent arc light ground fault section in neutral-point ungrounded high-voltage distribution system | |
JP3657064B2 (en) | High voltage insulation constant monitoring device | |
JPH06331665A (en) | Diagnostic monitoring system for insulation of power cable | |
JPH0279750A (en) | Diagnostic method of insulation of electrical equipment | |
JPH10307163A (en) | Residual current detector | |
JPH01234016A (en) | System for determining position of abnormality of gas insulated apparatus | |
US3031613A (en) | Systems for localizing leakage in electric networks | |
JPS63294214A (en) | Monitor system of insulation of power distribution facility | |
JPH02275372A (en) | Ground fault current sensor and localization of ground fault point | |
JPS5934977B2 (en) | Power cable insulation resistance measuring device | |
JPH0342584A (en) | Deciding system for insulation deterioration of electric power system | |
WO2017199346A1 (en) | Distribution-line phase-management support method and distribution-line phase-management support system | |
JPH1073623A (en) | Uninterruptible insulation-resistance measuring apparatus | |
JPH0731049A (en) | Method and apparatus for measuring primary current of zero-phase current transformer | |
JPH01238418A (en) | Method of forecasting electrical accident related to discharge phenomenon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080223 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090223 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090223 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100223 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |