WO2015093188A1 - Diagnostic device that identifies anomalies in electrical-power transmission path - Google Patents

Diagnostic device that identifies anomalies in electrical-power transmission path Download PDF

Info

Publication number
WO2015093188A1
WO2015093188A1 PCT/JP2014/079906 JP2014079906W WO2015093188A1 WO 2015093188 A1 WO2015093188 A1 WO 2015093188A1 JP 2014079906 W JP2014079906 W JP 2014079906W WO 2015093188 A1 WO2015093188 A1 WO 2015093188A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission path
power transmission
abnormality
diagnostic apparatus
load
Prior art date
Application number
PCT/JP2014/079906
Other languages
French (fr)
Japanese (ja)
Inventor
門田 圭司
山田 博之
寛之 竹本
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2015553428A priority Critical patent/JPWO2015093188A1/en
Publication of WO2015093188A1 publication Critical patent/WO2015093188A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a diagnostic apparatus for determining an abnormality in a power transmission path.
  • a high performance battery such as a nickel metal hydride battery or a lithium ion battery is used, and the AC power is driven by converting DC power from these batteries into AC power by an inverter.
  • a battery that can store such high energy requires the precise management of the charge amount and charge / discharge power, so it is equipped with a monitoring unit that measures the battery voltage and input / output current and monitors the battery status. Yes. Also in the inverter, in order to achieve high motor efficiency, a control arithmetic device that performs control while monitoring the voltage applied from the power source to the inverter and the supply current to the motor is added.
  • the direct current supplied to the inverter which is a load from the battery of a power supply reaches several hundred A.
  • the transmission path of the direct current has a sufficiently low resistance, and an abnormality that can increase the resistance of the transmission path needs to be detected as early as possible.
  • Patent Document 1 a resistance detection unit including a degradation detection power source and an ammeter is attached in parallel to a DC current power cable between a main power source and a load, and degradation detection is performed by measuring the resistance value of the power cable. It is shown.
  • Patent Document 1 can periodically diagnose the deterioration of the power cable, it cannot always detect the deterioration of the power cable, and is driven by a timer as shown in Patent Document 1. It is necessary to provide a changeover switch and detect deterioration at predetermined time intervals. Furthermore, although not explicitly described in Patent Document 1, during operation with the main power source, current from other than the degradation detection power source flows through the resistance meter, and therefore degradation detection may not be possible.
  • An object of the present invention is to provide a power cable that can constantly monitor the deterioration of the power cable regardless of the operating state of the main power source and can detect signs of deterioration appearing with a short-time phenomenon such as a cable swing. It is to provide a diagnostic apparatus.
  • the present application includes a plurality of means for solving the above-described problems.
  • the first information including the voltage value of the power supply
  • a receiving unit that receives the second information including the voltage value of the load and the third information including the current value of the power source or the load, and includes the first information and the second information. Based on the third information, an electrical resistance of the power transmission path is calculated, the electrical resistance is compared with a predetermined threshold value, and abnormality of the power transmission path is determined.
  • a power cable that can constantly monitor the deterioration of the power cable regardless of the operating state of the main power source and can detect signs of deterioration that appear with a short-time phenomenon such as cable swinging.
  • a diagnostic apparatus can be provided.
  • FIG. 1 is a schematic diagram of a power device according to an embodiment of the present invention.
  • 6 is a flowchart from the start to the end of diagnosis of a power transmission path according to an embodiment of the present invention. The timing chart at the time of the power cable degradation detection by embodiment of this invention.
  • FIG. 1 shows a power device according to an embodiment of the present invention.
  • a battery 1 as a DC power source
  • an inverter 2 as a load
  • a motor 4 driven by the inverter 2 and DC power from the battery 1 to the inverter 2 are transmitted.
  • an inverter control unit 6 for controlling the inverter 2.
  • the battery 1 is a secondary battery such as a nickel metal hydride battery or a lithium ion battery, and holds a high voltage of about 100 V to 300 V.
  • the battery monitoring unit 5 detects the current of the battery 1 and the power supply voltage, respectively. This is performed by the unit 520 and the voltage detection unit 530. These current and power supply voltage are transmitted to the communication line 7 by the communication control unit 510.
  • the inverter 2 includes transistors 230, and these transistors are on / off controlled by a PWM signal supplied from the inverter control unit 6, so that the motor 4 is driven by the supply of electric power from the battery 1.
  • an external torque command given from the outside of the inverter control unit 6 is inputted to the torque limiting unit 640 and a target torque is outputted to the current map unit 650, and the current map unit 650 receives a signal from the motor rotation sensor 410.
  • the target current is output to the current control unit 660 from the motor rotational speed and the target torque calculated by the rotation detection unit 680, and the current control unit 660 uses the signal from the three-phase current sensor 240 to output to the current detection unit 690.
  • the target voltage is output to the PWM control unit 670 from the calculated three-phase current and the target current, and the PWM control unit 670 is output using the load voltage and the target voltage from the voltage detection unit 630.
  • the power cable diagnosis unit 620 calculates the power from the current and power supply voltage received by the communication control unit 610 from the communication line 7, the negative overvoltage input from the voltage detection unit 630, and the target torque input from the torque limiting unit 640. Diagnose the cable.
  • the inverter control unit 6 outputs a PWM signal to the inverter 2 via the current map unit 650, the current control unit 660, and the PWM control unit 670 when an external torque command is input to the torque limiting unit 640.
  • the transistor 230 of the inverter starts on / off control. As a result, the voltage generated by the battery 1 is applied to the motor 4, current is supplied from the battery 1 to the motor 4 via the power cable 3 and the inverter 2, and the motor 4 is driven.
  • the power cable diagnosis unit 620 determines whether or not a target torque equal to or greater than a predetermined value, which is a condition for starting diagnosis, is input from the torque limiting unit 640, and a current equal to or greater than the predetermined value is low-pass from the communication control unit 610. It is determined whether or not the input is made through the filter 612.
  • the resistance value R includes the resistance value of the power cable 3, the resistance value of the connection portion between the power cable 3 and the battery 1, and the resistance value of the connection portion of the power cable 3 and the inverter 2. Even if there is an abnormality in the resistance value of the location, it appears as an abnormality in the resistance value R.
  • the power cable diagnosis unit 620 compares the resistance value R with the first abnormality detection value R1, and if the resistance value R is greater than the first abnormality detection value R1, the power cable diagnosis unit 620
  • the resistance value R is determined to be out of the normal range, and a first abnormal state is output to the communication control unit 610 as a diagnosis result.
  • the communication control unit 610 transmits a diagnosis result to the communication control unit 830 of the warning device 8 via the communication line 7, the communication control unit 830 inputs the diagnosis result to the warning light control device 820, and the warning light control device 820 In response to the first abnormal state, the warning lamp 810 is turned on.
  • the power cable diagnosis unit 620 compares the resistance value R with the second abnormality detection value R2, and if the resistance value R is greater than the second abnormality detection value R2, the power cable diagnosis unit 620 It is determined that output restriction is necessary, and a diagnosis result is output to the torque limiting unit 640 that the second abnormal state is present, and the torque limiting unit 640 is less than or equal to a predetermined torque limit in the second abnormal state.
  • the output of the target torque to the current map unit 650 is limited and the external torque command is larger than the predetermined limit torque, the target torque is set to the predetermined limit torque, and the external torque command is equal to or less than the predetermined limit torque. If it is, the value of the external torque command is output to the current map unit 650 as the value of the target torque.
  • the power cable diagnosis unit 620 compares the resistance value R with the third abnormality detection value R3. If the resistance value R is greater than the third abnormality detection value R3, the power cable diagnosis unit 620 Then, it is determined that the operation stop is necessary, and a diagnosis result is output to the PWM control unit 670 that it is in the third abnormal state, and the PWM control unit 670 stops outputting the PWM signal to the inverter 2.
  • FIG. 2 is a flowchart showing the operation of the power device when diagnosing the power cable, one diagnosis cycle, that is, from the start of diagnosis to the end of diagnosis.
  • S1 it is determined whether or not the power device has started operation, whether or not the target torque is greater than or equal to a predetermined value, and whether or not the current is greater than or equal to a predetermined value. If the condition is not satisfied, S1 is executed again, and if it is satisfied, the process proceeds to S2.
  • the resistance R is calculated from the negative overvoltage V2, the power supply voltage V1, and the current I and substituted. Thereafter, the process proceeds to S3, where it is determined whether or not the resistance value R is greater than the first abnormality detection value R1. If not, the diagnosis ends. If it is greater, the process proceeds to S4 and the warning lamp is turned on. In S5, it is determined whether or not the resistance value R is larger than the second abnormality detection value R2.
  • FIG. 3 is a time chart showing the operation when the power device starts operating and the power cable diagnostic device detects an abnormality in the power cable.
  • the external torque command increases from 0 Nm to 100 Nm, and in response, the target torque increases from 0 Nm to 100 Nm, and the current also increases from 0 A to 200 A.
  • the power cable diagnosis device diagnoses T1.
  • the resistance R calculated by the power cable diagnosis unit 620 is, for example, 3 m ⁇ .
  • the power cable diagnosis unit 620 sends a diagnosis result to the warning light control unit 820.
  • the warning lamp 810 is turned on.
  • the power cable diagnosis unit 620 sends a diagnosis result to the torque control unit. Is transmitted to limit the target torque to a predetermined value or less.
  • the power cable diagnosis unit 620 diagnoses the PWM control unit. By sending the result, the PWM signal is stopped.
  • the present invention is a power device comprising a general power source and a power source monitoring device such as a battery monitoring unit 5, a load and a load control device such as an inverter control unit 6, and a power cable connecting them. If it has a function to communicate with each other, it can be realized by adding a power cable diagnostic unit to the load control device, and since the power cable diagnostic unit can be realized by changing the control program, the cost increases due to the addition of parts There is no.
  • the power cable diagnosis unit is not limited to the load control device, and may be provided in a power supply monitoring device or other devices connected by communication.
  • the present embodiment is applied to a power device using a battery as a power source and an inverter and a motor as a load has been described.
  • the present embodiment can also be applied to other types of power sources and other electrical loads.
  • the present embodiment is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This invention provides a power-cable diagnostic device that can watch for degradation of a power cable at all times, regardless of an operating state associated with a primary power supply, and can detect symptoms of degradation accompanying short-duration phenomena such as cable sway. Said diagnostic device, which identifies anomalies in an electrical-power transmission path from a power supply to a load, has a reception unit that receives first information including the voltage across the power supply, second information including the voltage across the load, and third information including the current flowing through the power supply or the load. Said diagnostic device identifies anomalies in the electrical-power transmission path by computing the electrical resistance thereof on the basis of the aforementioned first information, second information, and third information and comparing said electrical resistance to a prescribed threshold.

Description

電力伝達経路の異常を判定する診断装置Diagnostic device for determining abnormality of power transmission path
 本発明は、電力伝達経路の異常を判定する診断装置に関する。 The present invention relates to a diagnostic apparatus for determining an abnormality in a power transmission path.
 近年、数多く開発されているハイブリッド自動車および電気自動車のモータ駆動システムにおいては、車軸と連結される車両駆動用のモータに必要とされる出力は数10kWとされ、この高出力を達成するため、電源としてニッケル水素電池やリチウムイオン電池などの高性能バッテリが使用され、これらバッテリからの直流電力をインバータにて交流電力に変換して交流モータを駆動している。 In recent years, in many motor drive systems for hybrid vehicles and electric vehicles that have been developed, the output required for the motor for driving the vehicle connected to the axle is several tens of kW. To achieve this high output, A high performance battery such as a nickel metal hydride battery or a lithium ion battery is used, and the AC power is driven by converting DC power from these batteries into AC power by an inverter.
 このような高いエネルギーを蓄積できるバッテリは、充電量や充放電電力の緻密な管理が欠かせないため、バッテリの電圧や入出力電流を計測し、バッテリの状態を監視する監視ユニットを搭載している。インバータにおいても、高いモータ効率を達成するため、電源からインバータに印加される電圧や、モータへの供給電流をモニタしながら制御を行う制御演算装置が付加されている。 A battery that can store such high energy requires the precise management of the charge amount and charge / discharge power, so it is equipped with a monitoring unit that measures the battery voltage and input / output current and monitors the battery status. Yes. Also in the inverter, in order to achieve high motor efficiency, a control arithmetic device that performs control while monitoring the voltage applied from the power source to the inverter and the supply current to the motor is added.
 そして、このようなモータ駆動システムにおいては、電源のバッテリから負荷であるインバータに供給される直流電流は数百Aに達する。 And in such a motor drive system, the direct current supplied to the inverter which is a load from the battery of a power supply reaches several hundred A.
 そのため、この直流電流の伝達経路は十分に低い抵抗をもつことが望ましく、伝達経路の抵抗が増大し得る異常は、可能な限り早期に検出する必要がある。 Therefore, it is desirable that the transmission path of the direct current has a sufficiently low resistance, and an abnormality that can increase the resistance of the transmission path needs to be detected as early as possible.
 特許文献1では、主電源と負荷の間の直流電流の電力ケーブルに、劣化検出用電源と電流計から成る抵抗計を並列に取り付け、電力ケーブルの抵抗値を計測することで劣化検出を行う構成が示されている。 In Patent Document 1, a resistance detection unit including a degradation detection power source and an ammeter is attached in parallel to a DC current power cable between a main power source and a load, and degradation detection is performed by measuring the resistance value of the power cable. It is shown.
特開昭62-288485号公報JP-A-62-288485
 特許文献1の方法は、定期的に電力ケーブルの劣化を診断することができるが、常に電力ケーブルの劣化を検出することはできず、特許文献1に示されている通り、タイマーにより駆動される切替スイッチを設けて所定の時間間隔で劣化検出を行う必要がある。さらに、特許文献1には明記されていないが、主電源による運転中は、抵抗計に劣化検出用電源以外からの電流が流れるため、劣化検出ができない可能性がある。 Although the method of Patent Document 1 can periodically diagnose the deterioration of the power cable, it cannot always detect the deterioration of the power cable, and is driven by a timer as shown in Patent Document 1. It is necessary to provide a changeover switch and detect deterioration at predetermined time intervals. Furthermore, although not explicitly described in Patent Document 1, during operation with the main power source, current from other than the degradation detection power source flows through the resistance meter, and therefore degradation detection may not be possible.
 一方で、車両に搭載された電力ケーブルの劣化を早期に検出するためには、電力ケーブルの揺動に対して、電力ケーブルの断線部は接触と非接触を繰り返すため、常時監視を行う必要がある。特に車両に応用する場合、電力ケーブルの揺動は、走行中のみ、すなわち主電源による運転状態にのみ、発生するため、主電源による運転状態で劣化検出ができない場合は、電力ケーブル劣化の発見が遅れる恐れがある。 On the other hand, in order to detect the deterioration of the power cable mounted on the vehicle at an early stage, it is necessary to constantly monitor the disconnection of the power cable with respect to the fluctuation of the power cable because the disconnected part of the power cable repeats contact and non-contact. is there. Especially when applied to vehicles, the oscillation of the power cable occurs only during traveling, that is, only in the operating state with the main power supply. There is a risk of being late.
 本発明の目的は、主電源による運転状態に関わらず、常時電力ケーブルの劣化を監視でき、かつケーブルの揺動のような短時間の現象に伴って現れる劣化の兆候を検出可能な、電力ケーブルの診断装置を提供することである。 An object of the present invention is to provide a power cable that can constantly monitor the deterioration of the power cable regardless of the operating state of the main power source and can detect signs of deterioration appearing with a short-time phenomenon such as a cable swing. It is to provide a diagnostic apparatus.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、電源から負荷への電力伝達経路の異常を判定する診断装置において、前記電源の電圧値を含む第1の情報と、前記負荷の電圧値を含む第2の情報と、前記電源又は前記負荷の電流値を含む第3の情報と、を受信する受信部を備え、前記第1の情報、前記第2の情報、前記第3の情報に基づいて、前記電力伝達経路の電気抵抗を算出し、前記電気抵抗と所定のしきい値とを比較し、前記電力伝達経路の異常を判定することを特徴とする。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems. For example, in the diagnostic apparatus for determining an abnormality in the power transmission path from the power supply to the load, the first information including the voltage value of the power supply A receiving unit that receives the second information including the voltage value of the load and the third information including the current value of the power source or the load, and includes the first information and the second information. Based on the third information, an electrical resistance of the power transmission path is calculated, the electrical resistance is compared with a predetermined threshold value, and abnormality of the power transmission path is determined.
 本発明によれば、主電源による運転状態に関わらず、常時電力ケーブルの劣化を監視でき、かつケーブルの揺動のような短時間の現象に伴って現れる劣化の兆候を検出可能な、電力ケーブルの診断装置を提供することができる。 According to the present invention, a power cable that can constantly monitor the deterioration of the power cable regardless of the operating state of the main power source and can detect signs of deterioration that appear with a short-time phenomenon such as cable swinging. A diagnostic apparatus can be provided.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の実施形態による電力装置の概略図。1 is a schematic diagram of a power device according to an embodiment of the present invention. 本発明の実施形態による電力伝達経路の診断開始から終了までのフローチャート。6 is a flowchart from the start to the end of diagnosis of a power transmission path according to an embodiment of the present invention. 本発明の実施形態による電力ケーブル劣化検出時のタイミングチャート。The timing chart at the time of the power cable degradation detection by embodiment of this invention.
 以下、図面を用いて本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態による電力装置であり、直流電源であるバッテリ1と、負荷であるインバータ2と、インバータ2によって駆動されるモータ4と、バッテリ1からインバータ2へ直流電力を伝達する電力ケーブル3と、インバータ2を制御するインバータ制御ユニット6を備える。 FIG. 1 shows a power device according to an embodiment of the present invention. A battery 1 as a DC power source, an inverter 2 as a load, a motor 4 driven by the inverter 2, and DC power from the battery 1 to the inverter 2 are transmitted. And an inverter control unit 6 for controlling the inverter 2.
 バッテリ1はニッケル水素電池やリチウムイオン電池などの2次電池であり、100Vから300V程度の高い電圧を保持しており、バッテリ監視ユニット5によりバッテリ1の電流および電源電圧の検出が、それぞれ電流検出部520および電圧検出部530で行われる。これら電流および電源電圧は、通信制御部510により通信線7に送信される。 The battery 1 is a secondary battery such as a nickel metal hydride battery or a lithium ion battery, and holds a high voltage of about 100 V to 300 V. The battery monitoring unit 5 detects the current of the battery 1 and the power supply voltage, respectively. This is performed by the unit 520 and the voltage detection unit 530. These current and power supply voltage are transmitted to the communication line 7 by the communication control unit 510.
 インバータ2は、トランジスタ230を備え、これらトランジスタがインバータ制御ユニット6から与えられるPWM信号によりオンオフ制御されることでモータ4が、バッテリ1からの電力の供給を受けて駆動される。 The inverter 2 includes transistors 230, and these transistors are on / off controlled by a PWM signal supplied from the inverter control unit 6, so that the motor 4 is driven by the supply of electric power from the battery 1.
 このPWM信号は、インバータ制御ユニット6の外部から与えられる外部トルク指令がトルク制限部640に入力されて目標トルクが電流マップ部650に出力され、電流マップ部650はモータ回転センサ410からの信号を用いて回転検出部680により算出されるモータ回転数と目標トルクから、目標電流を電流制御部660に出力し、電流制御部660は三相電流センサ240からの信号を用いて電流検出部690にて算出される三相電流と目標電流から、目標電圧をPWM制御部670に出力し、PWM制御部670が電圧検出部630からの負荷電圧と目標電圧を用いて、出力される。 As for this PWM signal, an external torque command given from the outside of the inverter control unit 6 is inputted to the torque limiting unit 640 and a target torque is outputted to the current map unit 650, and the current map unit 650 receives a signal from the motor rotation sensor 410. The target current is output to the current control unit 660 from the motor rotational speed and the target torque calculated by the rotation detection unit 680, and the current control unit 660 uses the signal from the three-phase current sensor 240 to output to the current detection unit 690. The target voltage is output to the PWM control unit 670 from the calculated three-phase current and the target current, and the PWM control unit 670 is output using the load voltage and the target voltage from the voltage detection unit 630.
 電力ケーブル診断部620は、通信線7から通信制御部610が受信した電流および電源電圧と、電圧検出部630から入力される負過電圧と、トルク制限部640から入力される目標トルクとから、電力ケーブルの診断を行う。 The power cable diagnosis unit 620 calculates the power from the current and power supply voltage received by the communication control unit 610 from the communication line 7, the negative overvoltage input from the voltage detection unit 630, and the target torque input from the torque limiting unit 640. Diagnose the cable.
 以下、電力ケーブルの診断を行うときのシステムの動作を説明する。 Hereinafter, the operation of the system when diagnosing a power cable will be described.
 インバータ制御ユニット6は、外部トルク指令がトルク制限部640に入力されることにより、電流マップ部650と、電流制御部660と、PWM制御部670を介してPWM信号を、インバータ2に出力し、インバータのトランジスタ230がオンオフ制御を開始する。これによりバッテリ1の発生する電圧がモータ4に印加されて、バッテリ1から電力ケーブル3とインバータ2を介してモータ4に電流が供給され、モータ4が駆動される。 The inverter control unit 6 outputs a PWM signal to the inverter 2 via the current map unit 650, the current control unit 660, and the PWM control unit 670 when an external torque command is input to the torque limiting unit 640. The transistor 230 of the inverter starts on / off control. As a result, the voltage generated by the battery 1 is applied to the motor 4, current is supplied from the battery 1 to the motor 4 via the power cable 3 and the inverter 2, and the motor 4 is driven.
 このとき、電力ケーブル診断部620は、診断を開始する条件である、所定値以上の目標トルクがトルク制限部640から入力されているか否かと、所定値以上の電流が、通信制御部610からローパスフィルタ612を介して入力されているか否かを判定する。 At this time, the power cable diagnosis unit 620 determines whether or not a target torque equal to or greater than a predetermined value, which is a condition for starting diagnosis, is input from the torque limiting unit 640, and a current equal to or greater than the predetermined value is low-pass from the communication control unit 610. It is determined whether or not the input is made through the filter 612.
 診断を開始する条件が成立していれば、電力ケーブル診断部620は、通信制御部610から、それぞれの信号のローパスフィルタを介して、電源電圧V1と、電流Iと、負過電圧V2とから、電源電圧センサ120と負荷電圧センサ210の間の、電力ケーブル3を含む、電力伝達経路の抵抗値Rを下式にて演算する。
 R= | V2-V1 | / | I |
If the condition for starting the diagnosis is satisfied, the power cable diagnosis unit 620 from the communication control unit 610 through the low-pass filter of each signal, from the power supply voltage V1, the current I, and the negative overvoltage V2, A resistance value R of the power transmission path including the power cable 3 between the power supply voltage sensor 120 and the load voltage sensor 210 is calculated by the following equation.
R = | V2-V1 | / | I |
 なお、抵抗値Rには、電力ケーブル3の抵抗値と、電力ケーブル3とバッテリ1との接続部の抵抗値と、電力ケーブル3とインバータ2の接続部の抵抗値と、を含み、いずれの箇所の抵抗値に異常があっても抵抗値Rの異常として現れる。 The resistance value R includes the resistance value of the power cable 3, the resistance value of the connection portion between the power cable 3 and the battery 1, and the resistance value of the connection portion of the power cable 3 and the inverter 2. Even if there is an abnormality in the resistance value of the location, it appears as an abnormality in the resistance value R.
 次に、電力ケーブル診断部620は、抵抗値Rと、第1の異常検出値R1との比較を行い、抵抗値Rが第1の異常検出値R1より大きければ、電力ケーブル診断部620は、抵抗値Rは正常な範囲を逸脱していると判断し、診断結果として、第1の異常状態であることを、通信制御部610に出力する。通信制御部610は、通信線7を介して警告装置8の通信制御部830に診断結果を送信し、通信制御部830は警告灯制御装置820に診断結果を入力し、警告灯制御装置820は、第1の異常状態であることを受けて警告灯810を点灯する。 Next, the power cable diagnosis unit 620 compares the resistance value R with the first abnormality detection value R1, and if the resistance value R is greater than the first abnormality detection value R1, the power cable diagnosis unit 620 The resistance value R is determined to be out of the normal range, and a first abnormal state is output to the communication control unit 610 as a diagnosis result. The communication control unit 610 transmits a diagnosis result to the communication control unit 830 of the warning device 8 via the communication line 7, the communication control unit 830 inputs the diagnosis result to the warning light control device 820, and the warning light control device 820 In response to the first abnormal state, the warning lamp 810 is turned on.
 さらに、電力ケーブル診断部620は、抵抗値Rと、第2の異常検出値R2との比較を行い、抵抗値Rが第2の異常検出値R2より大きければ、電力ケーブル診断部620は、運転出力の制限が必要と判断し、診断結果として、トルク制限部640に、第2の異常状態であることを出力し、トルク制限部640は、所定の、第2の異常状態における制限トルク以下に、目標トルクの、電流マップ部650への出力を制限し、外部トルク指令が前記所定の制限トルクより大きい場合は、目標トルクは前記所定の制限トルクとし、外部トルク指令が前記所定の制限トルク以下である場合は、外部トルク指令の値を目標トルクの値として電流マップ部650に出力する。 Furthermore, the power cable diagnosis unit 620 compares the resistance value R with the second abnormality detection value R2, and if the resistance value R is greater than the second abnormality detection value R2, the power cable diagnosis unit 620 It is determined that output restriction is necessary, and a diagnosis result is output to the torque limiting unit 640 that the second abnormal state is present, and the torque limiting unit 640 is less than or equal to a predetermined torque limit in the second abnormal state. When the output of the target torque to the current map unit 650 is limited and the external torque command is larger than the predetermined limit torque, the target torque is set to the predetermined limit torque, and the external torque command is equal to or less than the predetermined limit torque. If it is, the value of the external torque command is output to the current map unit 650 as the value of the target torque.
 また最後に、電力ケーブル診断部620は、抵抗値Rと、第3の異常検出値R3との比較を行い、抵抗値Rが第3の異常検出値R3より大きければ、電力ケーブル診断部620は、運転停止が必要と判断し、診断結果として、PWM制御部670に、第3の異常状態であることを出力し、PWM制御部670は、インバータ2へのPWM信号出力を停止する。 Finally, the power cable diagnosis unit 620 compares the resistance value R with the third abnormality detection value R3. If the resistance value R is greater than the third abnormality detection value R3, the power cable diagnosis unit 620 Then, it is determined that the operation stop is necessary, and a diagnosis result is output to the PWM control unit 670 that it is in the third abnormal state, and the PWM control unit 670 stops outputting the PWM signal to the inverter 2.
 図2に、電力ケーブルの診断を行うときの、電力装置の動作について、診断サイクル1回分、すなわち診断開始から診断終了までをフローチャートにて示す。 FIG. 2 is a flowchart showing the operation of the power device when diagnosing the power cable, one diagnosis cycle, that is, from the start of diagnosis to the end of diagnosis.
 まず、S1にて電力装置が動作を開始しているか否かを、目標トルクが所定値以上か否か、および電流が所定値以上か否かを判断する。条件が成立していなければ再度S1を実行し、成立していればS2に進む。S2では抵抗Rを負過電圧V2と電源電圧V1と電流Iから演算し、代入する。その後S3に進み、抵抗値Rが第1の異常検出値R1より大きいか否かの判定を行い、大きくなければ診断終了、大きければS4に進み、警告灯を点灯する。S5では、抵抗値Rが第2の異常検出値R2より大きいか否かの判定を行い、大きくなければ診断終了、大きければS6に進み、目標トルクを所定値以下に制限する。次にS7に進み、抵抗値Rが第3の異常検出値R3より大きいか否かの判定を行い、大きくなければ診断終了、大きければS8に進み、PWM信号出力を停止する。次は診断終了となり、1回の診断サイクルが終了する。 First, in S1, it is determined whether or not the power device has started operation, whether or not the target torque is greater than or equal to a predetermined value, and whether or not the current is greater than or equal to a predetermined value. If the condition is not satisfied, S1 is executed again, and if it is satisfied, the process proceeds to S2. In S2, the resistance R is calculated from the negative overvoltage V2, the power supply voltage V1, and the current I and substituted. Thereafter, the process proceeds to S3, where it is determined whether or not the resistance value R is greater than the first abnormality detection value R1. If not, the diagnosis ends. If it is greater, the process proceeds to S4 and the warning lamp is turned on. In S5, it is determined whether or not the resistance value R is larger than the second abnormality detection value R2. If not, the diagnosis ends. If it is larger, the process proceeds to S6, and the target torque is limited to a predetermined value or less. Next, the process proceeds to S7, where it is determined whether or not the resistance value R is greater than the third abnormality detection value R3. If it is not larger, the diagnosis ends. If it is larger, the process proceeds to S8 and the PWM signal output is stopped. Next, the diagnosis ends, and one diagnosis cycle ends.
 図3に、電力装置が動作を開始し、電力ケーブルの診断装置が、電力ケーブルの異常を検出したときの動作をタイムチャートにて示す。 FIG. 3 is a time chart showing the operation when the power device starts operating and the power cable diagnostic device detects an abnormality in the power cable.
 T1にて、外部トルク指令が0Nmから100Nmまで上昇し、それを受けて目標トルクが0Nmから100Nmに上昇、同時に電流も0Aから200Aに上昇する。 At T1, the external torque command increases from 0 Nm to 100 Nm, and in response, the target torque increases from 0 Nm to 100 Nm, and the current also increases from 0 A to 200 A.
 電力ケーブル診断部620が診断を開始するための、目標トルクと電流に対する所定のしきい値が、例えば、目標トルクが10Nm以上、電流が10A以上とすると、電力ケーブルの診断装置はT1に診断を開始する。そのときT1では、電力ケーブル診断部620が算出した抵抗Rは、例えば3mΩとなる。 If the predetermined thresholds for the target torque and current for the power cable diagnosis unit 620 to start diagnosis are, for example, the target torque is 10 Nm or more and the current is 10 A or more, the power cable diagnosis device diagnoses T1. Start. At that time, at T1, the resistance R calculated by the power cable diagnosis unit 620 is, for example, 3 mΩ.
 その後T2にて、電力ケーブル3の抵抗が増加し、抵抗Rが10mΩまで上昇すると、例えば第1の異常検出値R1が5mΩとすると、電力ケーブル診断部620は、警告灯制御部820に診断結果を送信することにより、警告灯810を点灯する。 Thereafter, at T2, when the resistance of the power cable 3 increases and the resistance R increases to 10 mΩ, for example, when the first abnormality detection value R1 is 5 mΩ, the power cable diagnosis unit 620 sends a diagnosis result to the warning light control unit 820. , The warning lamp 810 is turned on.
 その後T3に、電力ケーブル3の抵抗の増加が進行し、抵抗Rが100mΩまで上昇すると、例えば第2の異常検出値R2が50mΩとした場合、電力ケーブル診断部620は、トルク制御部に診断結果を送信することにより、目標トルクを所定値以下に制限する。 After that, when the resistance of the power cable 3 increases and the resistance R increases to 100 mΩ at T3, for example, when the second abnormality detection value R2 is 50 mΩ, the power cable diagnosis unit 620 sends a diagnosis result to the torque control unit. Is transmitted to limit the target torque to a predetermined value or less.
 その後T4に、電力ケーブル3の抵抗の増加がさらに進行し、抵抗Rが1000mΩまで上昇すると、例えば第3の異常検出値R3が500mΩとした場合、電力ケーブル診断部620は、PWM制御部に診断結果を送信することにより、PWM信号を停止する。 Thereafter, when the resistance of the power cable 3 further increases at T4 and the resistance R increases to 1000 mΩ, for example, when the third abnormality detection value R3 is 500 mΩ, the power cable diagnosis unit 620 diagnoses the PWM control unit. By sending the result, the PWM signal is stopped.
 本発明は、一般的な電源及び、バッテリ監視ユニット5のような電源監視装置と、負荷及び、インバータ制御ユニット6のような負荷制御装置及び、それらを接続する電力ケーブルから成る電力装置であって、互いに通信を行う機能を備えていれば、負荷制御装置に電力ケーブル診断部を追加することで実現でき、また電力ケーブル診断部は制御プログラムの変更により実現可能なため、部品追加によるコストの増加はない。 The present invention is a power device comprising a general power source and a power source monitoring device such as a battery monitoring unit 5, a load and a load control device such as an inverter control unit 6, and a power cable connecting them. If it has a function to communicate with each other, it can be realized by adding a power cable diagnostic unit to the load control device, and since the power cable diagnostic unit can be realized by changing the control program, the cost increases due to the addition of parts There is no.
 なお、電力ケーブル診断部は、負荷制御装置に限らず、電源監視装置や、通信で接続されている他の装置に設けても良い。 Note that the power cable diagnosis unit is not limited to the load control device, and may be provided in a power supply monitoring device or other devices connected by communication.
 以上説明は、電源としてバッテリを、負荷としてインバータおよびモータを使用する電力装置に本実施形態を適用した場合について述べたが、他の種類の電源、および他の電気的負荷にも適用が可能であり、本実施形態はこれに限定されるものではない。 In the above description, the case where the present embodiment is applied to a power device using a battery as a power source and an inverter and a motor as a load has been described. However, the present embodiment can also be applied to other types of power sources and other electrical loads. The present embodiment is not limited to this.
 今回開示された実施形態はすべての点で例示であって制限的なものではない。本実施形態の技術的範囲は特許請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更も本実施形態の技術的範囲に含まれる。 The embodiment disclosed this time is illustrative in all respects and not restrictive. The technical scope of the present embodiment is defined by the claims, and all modifications within the scope equivalent to the configuration described therein are also included in the technical scope of the present embodiment.
  1 バッテリ
  2 インバータ
  3 電力ケーブル
  4 モータ
  5 バッテリ監視ユニット
  6 インバータ制御ユニット
  7 通信線
  8 警告装置
  110 電流センサ
  120 電源電圧センサ
  210 負荷電圧センサ
  220 平滑コンデンサ
  230 トランジスタ
  240 3相電流センサ
  410 モータ回転センサ
  510 通信制御部
  520 電流検出部
  530 電圧検出部
  610 通信制御部
  620 電力ケーブル診断部
  630 電圧検出部
  640 トルク制限部
  650 電流マップ部
  660 電流制御部
  670 PWM制御部
  680 回転検出部
  690電流検出部
  611,612,613 ローパスフィルタ
  810 警告灯
  820 警告灯制御部
  830 通信制御部
DESCRIPTION OF SYMBOLS 1 Battery 2 Inverter 3 Power cable 4 Motor 5 Battery monitoring unit 6 Inverter control unit 7 Communication line 8 Warning device 110 Current sensor 120 Power supply voltage sensor 210 Load voltage sensor 220 Smoothing capacitor 230 Transistor 240 Three-phase current sensor 410 Motor rotation sensor 510 Communication Control unit 520 Current detection unit 530 Voltage detection unit 610 Communication control unit 620 Power cable diagnosis unit 630 Voltage detection unit 640 Torque limit unit 650 Current map unit 660 Current control unit 670 PWM control unit 680 Rotation detection unit 690 Current detection unit 611, 612 , 613 Low-pass filter 810 Warning light 820 Warning light control unit 830 Communication control unit

Claims (22)

  1.  電源から負荷への電力伝達経路の異常を判定する診断装置において、
     前記電源の電圧値を含む第1の情報と、
     前記負荷の電圧値を含む第2の情報と、
     前記電源又は前記負荷の電流値を含む第3の情報と、を受信する受信部を備え、
     前記第1の情報、前記第2の情報、前記第3の情報に基づいて、
     前記電力伝達経路の電気抵抗を算出し、
     前記電気抵抗と所定のしきい値とを比較し、
     前記電力伝達経路の異常を判定する診断装置。
    In the diagnostic device for judging the abnormality of the power transmission path from the power source to the load,
    First information including a voltage value of the power supply;
    Second information including a voltage value of the load;
    A receiver that receives the third information including the current value of the power source or the load;
    Based on the first information, the second information, and the third information,
    Calculating the electrical resistance of the power transmission path;
    Comparing the electrical resistance with a predetermined threshold;
    A diagnostic apparatus for determining an abnormality in the power transmission path.
  2.  請求項1に記載の電力伝達経路の異常を判定する診断装置において、
     前記電流値は、前記負荷の電流値とする、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines abnormality of the electric power transmission path according to claim 1,
    The current value is the current value of the load.
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  3.  請求項1または2に記載の電力伝達経路の異常を判定する診断装置において、
     前記電流値は、前記負荷に印加される電圧、
     および前記負荷の運転状態から推定した値とする、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines the abnormality of the electric power transmission path according to claim 1 or 2,
    The current value is a voltage applied to the load,
    And a value estimated from the operating state of the load,
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  4.  請求項1から3のいずれかに記載の電力伝達経路の異常を判定する診断装置において、
     前記異常の判定は、
     前記電流値が所定の値より大きいときのみ行う、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines the abnormality of the electric power transmission path | route in any one of Claim 1 to 3,
    The determination of the abnormality is
    Only when the current value is greater than a predetermined value,
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  5.  請求項1から4のいずれかに記載の電力伝達経路の異常を判定する診断装置において、
     前記異常の判定は、
     前記電流値の時間変化率が所定の値より小さいときのみ行う、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines the abnormality of the electric power transmission path in any one of Claim 1 to 4,
    The determination of the abnormality is
    Only when the time change rate of the current value is smaller than a predetermined value,
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  6.  電源から負荷への電力伝達経路の異常を判定する診断装置において、
     前記電源の電圧値を含む第1の情報と、
     前記負荷の電圧値を含む第2の情報と、
     前記負荷の運転状態を含む第3の情報と、を受信する受信部を備え、
     前記第1の情報、前記第2の情報、前記第3の情報に基づいて、
     前記第1の情報と前記第2の情報の差と、前記第3の情報を比較し、
     前記電力伝達経路の異常を判定する診断装置。
    In the diagnostic device for judging the abnormality of the power transmission path from the power source to the load,
    First information including a voltage value of the power supply;
    Second information including a voltage value of the load;
    A receiver that receives the third information including the operating state of the load;
    Based on the first information, the second information, and the third information,
    Comparing the difference between the first information and the second information with the third information;
    A diagnostic apparatus for determining an abnormality in the power transmission path.
  7.  電源から負荷への電力伝達経路の異常を判定する診断装置において、
     前記電源の電圧値を含む第1の情報と、
     前記負荷の電圧値を含む第2の情報と、を受信する受信部を備え、
     前記第1の情報、前記第2の情報に基づいて、
     前記第1の情報と前記第2の情報の差と所定のしきい値とを比較し、
     前記電力伝達経路の異常を判定する診断装置。
    In the diagnostic device for judging the abnormality of the power transmission path from the power source to the load,
    First information including a voltage value of the power supply;
    A receiving unit that receives second information including a voltage value of the load;
    Based on the first information and the second information,
    Comparing the difference between the first information and the second information and a predetermined threshold;
    A diagnostic apparatus for determining an abnormality in the power transmission path.
  8.  請求項7に記載の電力伝達経路の異常を判定する診断装置において、
     異常の判定は、前記負荷の運転状態が、所定の出力以上のときに行う、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines abnormality of the electric power transmission path according to claim 7,
    The determination of abnormality is performed when the operating state of the load is equal to or higher than a predetermined output.
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  9.  請求項1から8のいずれかに記載の電力伝達経路の異常を判定する診断装置において、
     異常の判定は、前記負荷の運転状態が、所定の出力以上のときに行う、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines the abnormality of the electric power transmission path | route in any one of Claim 1 to 8,
    The determination of abnormality is performed when the operating state of the load is equal to or higher than a predetermined output.
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  10.  請求項1から9のいずれかに記載の電力伝達経路の異常を判定する診断装置において、
     異常の判定は、前記負荷の運転状態が、所定の出力変化率以下のときに行う、
    ことを特徴とする、
     前記電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines the abnormality of the electric power transmission path in any one of Claim 1 to 9,
    The determination of abnormality is performed when the operating state of the load is equal to or less than a predetermined output change rate.
    It is characterized by
    A diagnostic apparatus for determining an abnormality in the power transmission path.
  11.  請求項1から10のいずれかに記載の電力伝達経路の異常を判定する診断装置において、
     前記第1の情報、または前記第2の情報、または前記第3の情報、
     またはこれらに基づいて算出された電力伝達経路の電気抵抗、のうち、
     少なくとも1つに、所定の時定数をもつローパスフィルタによるフィルタ処理を施す、ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines the abnormality of the electric power transmission path | route in any one of Claim 1 to 10,
    The first information, the second information, or the third information;
    Or, among the electric resistance of the power transmission path calculated based on these,
    A diagnostic apparatus for determining an abnormality in a power transmission path, wherein at least one is subjected to a filtering process using a low-pass filter having a predetermined time constant.
  12.  請求項11に記載の電力伝達経路の異常を判定する診断装置において、
     前記所定の時定数は、前記負荷の駆動周波数、および、前記電源と前記負荷と前記電力伝達経路により構成される閉回路の電気的共振周波数、のうち少なくとも一方を用いて決定する、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines abnormality of the electric power transmission path according to claim 11,
    The predetermined time constant is determined using at least one of a driving frequency of the load and an electric resonance frequency of a closed circuit configured by the power source, the load, and the power transmission path.
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  13.  請求項1から12のいずれかに記載の電力伝達経路の異常を判定する診断装置において、
     前記異常の判定を1秒間に行う回数は、電力伝達経路の機械的揺動の共振周波数以上とする、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines the abnormality of the electric power transmission path | route in any one of Claim 1 to 12,
    The number of times that the abnormality is determined per second is equal to or higher than the resonance frequency of mechanical oscillation of the power transmission path.
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  14.  請求項1から13のいずれかに記載の電力伝達経路の異常を判定する診断装置において、
     さらに、前記電源または前記負荷の運転者に、光、または音、または負荷の通常とは異なる動作、のいずれかにて異常を知らせる警告装置を用い、
     前記電力伝達経路が異常と判定された後は、前記警告装置にて前記運転者に異常を知らせる、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines the abnormality of the electric power transmission path in any one of Claims 1-13,
    Furthermore, using a warning device that informs the driver of the power supply or the load of any abnormality by either light, sound, or an unusual operation of the load,
    After the power transmission path is determined to be abnormal, the warning device notifies the driver of the abnormality.
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  15.  請求項1から14のいずれかに記載の電力伝達経路の異常を判定する診断装置において、
     さらに、過去の診断の結果を記憶する、記憶装置を用い、
     前記電力伝達経路が異常と判定された後は、記憶装置の記憶消去が行われるまで、前記電力伝達経路の抵抗値の算出結果にかかわらず、前記電力伝達経路は異常とみなす、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines the abnormality of the electric power transmission path | route in any one of Claim 1 to 14,
    Furthermore, using a storage device that stores the results of past diagnosis,
    After it is determined that the power transmission path is abnormal, the power transmission path is regarded as abnormal regardless of the calculation result of the resistance value of the power transmission path until the storage device is erased.
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  16.  請求項1から15のいずれかに記載の電力伝達経路の異常を判定する診断装置において、
     さらに、過去の電気抵抗の算出結果を記憶する、記憶装置を用い、
     前記電気抵抗と、前記予め定めたしきい値との比較は、前記電気抵抗を算出した後に、予め記憶装置に記憶した過去の電気抵抗と、前記電気抵抗との比較を行い、前記過去の電気抵抗のほうが大きい場合は、前記過去の電気抵抗と、前記予め定めたしきい値の比較を行う、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines the abnormality of the electric power transmission path | route in any one of Claim 1 to 15,
    Furthermore, using a storage device that stores past calculation results of electrical resistance,
    The comparison between the electrical resistance and the predetermined threshold value is performed by comparing the past electrical resistance stored in a storage device in advance with the electrical resistance after calculating the electrical resistance. When the resistance is larger, the past electric resistance is compared with the predetermined threshold value.
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  17.  請求項1から16のいずれかに記載の電力伝達経路の異常を判定する診断装置において、
     前記、予め定めたしきい値は、正常状態における電力伝達経路の抵抗値の、製造ばらつき上限値とする、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines the abnormality of the electric power transmission path | route in any one of Claim 1 to 16,
    The predetermined threshold value is a manufacturing variation upper limit value of the resistance value of the power transmission path in a normal state.
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  18.  請求項17に記載の電力伝達経路の異常を判定する診断装置において、
     さらに、前記電源または前記負荷の運転者に異常を知らせる、警告灯を用い、
     前記電力伝達経路が異常と判定された後は、前記警告灯にて前記運転者に異常を知らせる、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which judges abnormality of the electric power transmission path according to claim 17,
    Furthermore, using a warning light to inform the driver of the power source or the load,
    After determining that the power transmission path is abnormal, inform the driver of the abnormality with the warning light,
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  19.  請求項1から18のいずれかに記載の電力伝達経路の異常を判定する診断装置において、
     前記予め定めたしきい値は、前記負荷を、前記電力伝達経路に最大の電流が流れるように運転した場合、前記電力伝達経路が正常な温度範囲を逸脱し得る抵抗値とする、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines the abnormality of the electric power transmission path | route in any one of Claim 1 to 18,
    The predetermined threshold value is a resistance value at which the power transmission path can deviate from a normal temperature range when the load is operated so that a maximum current flows through the power transmission path.
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  20.  請求項19に記載の電力伝達経路の異常を判定する診断装置において、
     前記電力伝達経路が異常と判定された後は、前記負荷の出力を、予め定めた出力に制限する、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    The diagnostic apparatus for determining an abnormality of the power transmission path according to claim 19,
    After the power transmission path is determined to be abnormal, the load output is limited to a predetermined output.
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  21.  請求項1から20のいずれかに記載の電力伝達経路の異常を判定する診断装置において、
     前記予め定めたしきい値より大きい別のしきい値を設け、
     前記負荷を、前記予め定めた出力に制限して運転した場合に、前記電力伝達経路が正常な温度範囲を逸脱し得る抵抗値とする、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines the abnormality of the electric power transmission path | route in any one of Claim 1 to 20,
    Providing another threshold value greater than the predetermined threshold value;
    When the load is operated while being limited to the predetermined output, the resistance value is such that the power transmission path can deviate from a normal temperature range.
    A diagnostic apparatus for determining an abnormality in a power transmission path.
  22.  請求項21に記載の電力伝達経路の異常を判定する診断装置において、
     前記電力伝達経路が異常と判定された後は、前記負荷の出力を停止する、
    ことを特徴とする、電力伝達経路の異常を判定する診断装置。
    In the diagnostic apparatus which determines abnormality of the electric power transmission path according to claim 21,
    After the power transmission path is determined to be abnormal, the output of the load is stopped.
    A diagnostic apparatus for determining an abnormality in a power transmission path.
PCT/JP2014/079906 2013-12-20 2014-11-12 Diagnostic device that identifies anomalies in electrical-power transmission path WO2015093188A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015553428A JPWO2015093188A1 (en) 2013-12-20 2014-11-12 Diagnostic device for determining abnormality of power transmission path

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013263208 2013-12-20
JP2013-263208 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015093188A1 true WO2015093188A1 (en) 2015-06-25

Family

ID=53402544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079906 WO2015093188A1 (en) 2013-12-20 2014-11-12 Diagnostic device that identifies anomalies in electrical-power transmission path

Country Status (2)

Country Link
JP (1) JPWO2015093188A1 (en)
WO (1) WO2015093188A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018125963A (en) * 2017-01-31 2018-08-09 トヨタ自動車株式会社 Power supply device for electric vehicle
FR3067122A1 (en) * 2017-06-06 2018-12-07 Renault S.A.S DIAGNOSIS OF AN ELECTRICAL CHARGE OF A MOTOR VEHICLE
JP2019176684A (en) * 2018-03-29 2019-10-10 Tdk株式会社 Wireless power reception device and wireless power transmission system
CN111137133A (en) * 2018-11-06 2020-05-12 湖南中车时代电动汽车股份有限公司 Protection circuit of electric automobile electric drive system and electric automobile electric drive system
CN111551872A (en) * 2020-02-27 2020-08-18 西北工业大学 Online diagnosis method for open-circuit fault of PMSM (permanent magnet synchronous motor) driving system inverter
CN117233541A (en) * 2023-11-15 2023-12-15 国网甘肃省电力公司张掖供电公司 Power distribution network power line running state measurement method and measurement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368415A (en) * 1991-06-17 1992-12-21 Hitachi Ltd Method of detecting insulation deterioration of power system and devices for detecting, discriminating, and monitoring insulation deterioration, grounding generator, and resonance frequency measuring system
JP2006092076A (en) * 2004-09-22 2006-04-06 Fuji Xerox Co Ltd Constant voltage supply power source
JP2007232491A (en) * 2006-02-28 2007-09-13 Toyota Motor Corp Power control device and vehicle
JP2012225692A (en) * 2011-04-15 2012-11-15 Nippon Soken Inc Abnormal contact detecting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102101A (en) * 2001-09-25 2003-04-04 Suzuki Motor Corp Power control device for electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368415A (en) * 1991-06-17 1992-12-21 Hitachi Ltd Method of detecting insulation deterioration of power system and devices for detecting, discriminating, and monitoring insulation deterioration, grounding generator, and resonance frequency measuring system
JP2006092076A (en) * 2004-09-22 2006-04-06 Fuji Xerox Co Ltd Constant voltage supply power source
JP2007232491A (en) * 2006-02-28 2007-09-13 Toyota Motor Corp Power control device and vehicle
JP2012225692A (en) * 2011-04-15 2012-11-15 Nippon Soken Inc Abnormal contact detecting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018125963A (en) * 2017-01-31 2018-08-09 トヨタ自動車株式会社 Power supply device for electric vehicle
FR3067122A1 (en) * 2017-06-06 2018-12-07 Renault S.A.S DIAGNOSIS OF AN ELECTRICAL CHARGE OF A MOTOR VEHICLE
JP2019176684A (en) * 2018-03-29 2019-10-10 Tdk株式会社 Wireless power reception device and wireless power transmission system
CN111137133A (en) * 2018-11-06 2020-05-12 湖南中车时代电动汽车股份有限公司 Protection circuit of electric automobile electric drive system and electric automobile electric drive system
CN111551872A (en) * 2020-02-27 2020-08-18 西北工业大学 Online diagnosis method for open-circuit fault of PMSM (permanent magnet synchronous motor) driving system inverter
CN117233541A (en) * 2023-11-15 2023-12-15 国网甘肃省电力公司张掖供电公司 Power distribution network power line running state measurement method and measurement system
CN117233541B (en) * 2023-11-15 2024-03-15 国网甘肃省电力公司张掖供电公司 Power distribution network power line running state measurement method and measurement system

Also Published As

Publication number Publication date
JPWO2015093188A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2015093188A1 (en) Diagnostic device that identifies anomalies in electrical-power transmission path
US8655535B2 (en) Electric vehicle and method for controlling same
US9929674B2 (en) Power supply system for vehicle
JP5854242B2 (en) Electric power supply device using electric vehicle
JP6228666B2 (en) Battery system
JP5808418B2 (en) Battery monitoring device, battery monitoring system
JP6084225B2 (en) Battery control device, secondary battery system
WO2013051688A1 (en) Battery state management device, battery state management method
WO2010109956A1 (en) Electric storage device
US10386419B2 (en) Battery management device, battery monitoring circuit, and control system
US20130271146A1 (en) Battery system
US20180198289A1 (en) Charging device, charging control method, electricity storage device, power storage device, power system, and electric vehicle
KR20160088822A (en) Electric power storage system
JP5720620B2 (en) vehicle
JP2015061335A (en) Power storage device and control method therefor
JPWO2014061137A1 (en) Power management system and power management method
KR101679924B1 (en) Apparatus for controlling converter and method for controlling converter
JPWO2012144032A1 (en) Vehicle control device
JP7140082B2 (en) Sensor abnormality determination device
JP2016015825A (en) Battery management apparatus
JP2017153316A (en) Electric vehicle
JP2014072992A (en) Chargeability determination device of battery
KR20140020659A (en) Ev battery management system using power line communication and control method thereof
JP5502183B1 (en) Battery management device
KR101622194B1 (en) Battery Charging Apparatus for Electric Vehicles Having Battery Protection Function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553428

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14871812

Country of ref document: EP

Kind code of ref document: A1