WO2013051688A1 - Battery state management device, battery state management method - Google Patents

Battery state management device, battery state management method Download PDF

Info

Publication number
WO2013051688A1
WO2013051688A1 PCT/JP2012/075917 JP2012075917W WO2013051688A1 WO 2013051688 A1 WO2013051688 A1 WO 2013051688A1 JP 2012075917 W JP2012075917 W JP 2012075917W WO 2013051688 A1 WO2013051688 A1 WO 2013051688A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
state management
management device
monitoring device
monitoring
Prior art date
Application number
PCT/JP2012/075917
Other languages
French (fr)
Japanese (ja)
Inventor
睦 菊地
彰彦 工藤
金井 友範
光 三浦
江守 昭彦
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Publication of WO2013051688A1 publication Critical patent/WO2013051688A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a battery state management device and a battery state management method.
  • the activation circuit turns on the switch to activate the battery information acquisition circuit or the wireless circuit, and the battery information acquired by the battery information acquisition circuit is transferred from the wireless circuit to the management unit.
  • a battery information management system for wireless transmission is known (see Patent Document 1).
  • a battery state management device manages a state of a battery configured by connecting one or a plurality of battery cell groups each configured by one or a plurality of battery cells connected in series.
  • the battery cell group is connected to a battery monitoring device configured to monitor a battery state for each battery cell group and wirelessly transmit a monitoring result to the battery state management device.
  • the monitoring device includes an authentication circuit that performs authentication for determining whether or not the battery state management device is a valid communication destination, and when the battery state management device is determined to be a valid communication destination by the authentication circuit
  • the battery monitoring device wirelessly transmits the monitoring result of the connected battery cell group to the battery state management device, and the battery state management device is wirelessly transmitted from the battery monitoring device.
  • a battery state management method manages a state of a battery configured by connecting one or a plurality of battery cell groups each configured by one or a plurality of battery cells connected in series.
  • the battery cell group is configured to monitor a battery state for each battery cell group and wirelessly transmit a monitoring result to the battery state management device. It is connected to the monitoring device, and the battery monitoring device performs authentication for determining whether or not the battery state management device is a valid communication destination, and the battery state management device is a valid communication destination by the authentication.
  • the monitoring result of the battery cell group to which the battery monitoring device is connected is wirelessly transmitted from the battery monitoring device to the battery state management device. Based from the battery monitoring device to a wireless transmitted monitoring result, and manages the state of the battery.
  • the present invention it is possible to appropriately manage the battery state at a stage before the battery monitoring system that transmits and receives information between the battery monitoring device and the host controller using a wireless signal is incorporated in a vehicle or the like.
  • FIG. It is a block diagram which shows the drive system of the rotary electric machine for vehicles. It is a block diagram of battery monitoring apparatus BM1. 3 is a block diagram of a battery monitoring circuit 35.
  • FIG. It is a figure which shows schematic structure of a battery state management system. It is a figure explaining a battery state management method. It is a flowchart which shows the process sequence of a battery state management apparatus. It is a flowchart which shows the process sequence of a battery monitoring apparatus. It is a figure which shows an example of the procedure of an authentication process.
  • FIG. 1 is a block diagram showing a drive system for a rotating electrical machine for a vehicle that employs a battery monitoring system according to the present invention.
  • the drive system shown in FIG. 1 includes a battery module 9, a battery monitoring system 100 that monitors the battery module 9, an inverter device 220 that converts DC power from the battery module 9 into three-phase AC power, and a motor 230 for driving the vehicle. I have. Motor 230 is driven by the three-phase AC power from inverter device 220.
  • the inverter device 220 and the battery monitoring system 100 are connected by CAN communication, and the inverter device 220 functions as a host controller for the battery monitoring system 100. Further, the inverter device 220 operates based on command information from a host controller (not shown).
  • the inverter device 220 includes a power module 226, a driver circuit 224 for driving the power module 226, and an MCU 222 for controlling the driver circuit 224.
  • the power module 226 converts the DC power supplied from the battery module 9 into three-phase AC power for driving the motor 230.
  • a large-capacity smoothing capacitor of about 700 ⁇ F to about 2000 ⁇ F is provided between the high voltage lines HV + and HV ⁇ where the power module 226 is connected to the battery module 9.
  • the smoothing capacitor serves to reduce voltage noise applied to the integrated circuit provided in the battery monitoring system 100.
  • the MCU 222 charges the smoothing capacitor by first changing the precharge relay RLP from the open state to the closed state at the start of driving of the motor 230 in accordance with a command from a higher-order controller. At this time, the smoothing capacitor is charged while limiting the maximum current via the resistor RP.
  • the relay RL is changed from the open state to the closed state, and supply of electric power from the battery module 9 to the inverter device 220 is started.
  • the relay circuit By performing such an operation, it is possible to protect the relay circuit, reduce the maximum current flowing through the battery module 9 and the inverter device 220 to a predetermined value or less, and maintain high safety.
  • the inverter device 220 controls the phase of the AC power generated by the power module 226 with respect to the rotor of the motor 230, and operates the motor 230 as a generator during vehicle braking. That is, regenerative braking control is performed, and the battery module 9 is charged by regenerating the power generated by the generator operation to the battery module 9. Even when the state of charge of the battery module 9 falls below the reference state, the inverter device 220 operates using the motor 230 as a generator. The three-phase AC power generated by the motor 230 is converted into DC power by the power module 226 and supplied to the battery module 9. As a result, the battery module 9 is charged.
  • the MCU 222 controls the driver circuit 224 so as to generate a rotating magnetic field that is delayed with respect to the rotation of the rotor of the motor 230.
  • the driver circuit 224 controls the switching operation of the power module 226.
  • AC power from the motor 230 is supplied to the power module 226, converted into DC power by the power module 226, and supplied to the battery module 9.
  • the motor 230 acts as a generator.
  • the MCU 222 controls the driver circuit 224 so as to generate a rotating magnetic field in the advancing direction with respect to the rotation of the rotor of the motor 230, in accordance with a command from the host controller.
  • the driver circuit 224 controls the switching operation of the power module 226.
  • DC power from the battery module 9 is supplied to the power module 226, converted into AC power by the power module 226, and supplied to the motor 230.
  • the power module 226 of the inverter device 220 performs conduction and interruption operations at high speed and performs power conversion between DC power and AC power. At this time, since a large current is interrupted at a high speed, a large voltage fluctuation occurs due to the inductance of the DC circuit. In order to suppress this voltage fluctuation, the inverter device 220 is provided with the above-described large-capacity smoothing capacitor.
  • the battery module 9 is composed of a plurality of battery module blocks.
  • the battery module 9 is composed of two battery module blocks 9A and 9B connected in series.
  • Each of the battery module blocks 9A and 9B includes a plurality of cell groups in which a plurality of battery cells are connected in series and further connected in series.
  • the battery module block 9A and the battery module block 9B are connected in series via a maintenance / inspection service disconnect SD in which a switch and a fuse are connected in series.
  • the service disconnect SD is opened, the series circuit of the battery module blocks 9A and 9B is interrupted. Therefore, even if a connection circuit is formed at one location between the battery module blocks 9A and 9B and the vehicle, Will not flow. With such a configuration, high safety can be maintained. Also, by opening the service disconnect SD at the time of inspection, even if an operator touches between HV + and HV ⁇ , it is safe because a high voltage is not applied to the human body.
  • a battery disconnect unit BDU including a relay RL, a resistor RP, and a precharge relay RLP is provided in the high-voltage line HV + between the battery module 9 and the inverter device 220.
  • a series circuit of the resistor RP and the precharge relay RLP is connected in parallel with the relay RL.
  • the battery monitoring system 100 mainly includes voltage measurement, total voltage measurement, current measurement, cell temperature and cell capacity adjustment, etc., for each cell of the battery module 9 as a monitoring operation for monitoring the state of the battery module 9. I do.
  • the battery monitoring system 100 includes a plurality of battery monitoring devices BM1 to BM4 and a microcomputer 30 for controlling the battery monitoring devices BM1 to BM4.
  • the plurality of battery cells provided in each of the battery module blocks 9A and 9B are divided into a plurality of cell groups.
  • the battery monitoring system 100 is provided with one battery monitoring device BM1 to BM4 for monitoring the battery cells included in each cell group for each cell group.
  • the microcomputer 30 functions as a host controller for the battery monitoring devices BM1 to BM4.
  • each cell group is composed of four battery cells connected in series.
  • Each battery module block 9A, 9B is assumed to be composed of two cell groups.
  • the number of battery cells included in each cell group is not limited to four, but may be five or more, or may be three or less.
  • One cell group may be constituted by one battery cell. That is, each of the cell groups constituted by one or a plurality of battery cells connected in series corresponds to a battery to be monitored by the battery monitoring devices BM1 to BM4.
  • cell groups having different numbers of battery cells for example, a cell group including four battery cells and a cell group including six battery cells may be combined.
  • the battery monitoring devices BM1 to BM4 provided corresponding to each cell group are used regardless of the number of battery cells included in these cell groups, for example, four or five or more. The one designed to do so can be used.
  • a plurality of cell groups may be connected in series or series-parallel in each battery module block in order to obtain the voltage and current required for electric vehicles and hybrid vehicles.
  • a plurality of battery module blocks may be connected in series or in series and parallel.
  • the battery monitoring devices BM1 to BM4 each include an antenna for performing wireless communication with the microcomputer 30.
  • the microcomputer 30 is connected to a radio communication unit RF having an antenna. Through this wireless communication unit RF, the microcomputer 30 performs wireless communication with each of the battery monitoring devices BM1 to BM4, and instructs each of the battery monitoring devices BM1 to BM4 to monitor the state of the corresponding cell group. Further, the monitoring result of the state of each cell group transmitted from each of the battery monitoring devices BM1 to BM4 is received.
  • a wireless signal transmitted from the microcomputer 30 to the battery monitoring devices BM1 to BM4 via the wireless communication unit RF is used to designate which battery monitoring device in the battery monitoring devices BM1 to BM4 is to execute the monitoring operation.
  • ID information and command information for designating the content of the monitoring operation to be performed on the cell group corresponding to the battery monitoring device designated by the ID information are included.
  • the radio communication unit RF generates radio signals by modulating the information output from the microcomputer 30 by a predetermined modulation method, and transmits the radio signals to the battery monitoring devices BM1 to BM4.
  • each of the battery monitoring devices BM1 to BM4 compares the ID information included in the wireless signal with the set ID, so that the wireless signal is transmitted to itself. It is judged whether it is a thing.
  • the battery module 9 and the battery monitoring devices BM1 to BM4 are stored in a predetermined storage location as an assembled battery in a state of being connected to each other before being mounted on the drive system of FIG.
  • wireless communication is performed between a battery state management device described later and the battery monitoring devices BM1 to BM4. A specific operation at this time will be described later.
  • a current sensor Si such as a Hall element is installed in the battery disconnect unit BDU.
  • the output of the current sensor Si is input to the microcomputer 30.
  • Signals relating to the total voltage and temperature of the battery module 9 are also input to the microcomputer 30 and are measured by an AD converter (ADC) of the microcomputer 30.
  • the temperature sensor is provided at a plurality of locations in the battery module blocks 9A and 9B.
  • FIG. 2 is a block diagram showing the configuration of the battery monitoring device BM1 according to the present invention. Although not described, the other battery monitoring devices BM2 to BM4 have the same configuration.
  • the battery monitoring device BM1 includes a receiving unit 31, an authentication circuit 33, a power supply circuit 34, a battery monitoring circuit 35, and a transmitting unit 36.
  • the receiving unit 31 checks whether or not the wireless signal is transmitted to the battery monitoring device BM1. This confirmation can be performed by comparing the ID indicated by the ID information included in the wireless signal with the ID assigned to the battery monitoring device BM1 and determining whether or not they match. . As a result, if both IDs match, it is determined that the received radio signal is transmitted to the battery monitoring device BM1, and the above-mentioned demodulated signal obtained by demodulating the radio signal includes A command based on the command information is output to the battery monitoring circuit 35.
  • the authentication circuit 33 determines whether or not the communication destination is a valid communication destination in response to an authentication request from the reception unit 31 before starting wireless communication with the microcomputer 30 or the battery state management device. Authentication to do As a result, wireless communication can be started between the battery monitoring device BM1 and the communication destination only when it is determined that the communication destination is a valid communication destination.
  • the authentication result by the authentication circuit 33 is output to the transmission unit 36 and transmitted from the transmission unit 36 to the communication destination.
  • the power supply circuit 34 supplies power to the authentication circuit 33, the battery monitoring circuit 35, and the transmission unit 36.
  • the power supply from the power supply circuit 34 is performed using the power of the battery cells BC1 to BC4 to which the battery monitoring device BM1 is connected.
  • the battery monitoring circuit 35 is connected to the battery cells BC1 to BC4 constituting the cell group corresponding to the battery monitoring device BM1, and monitors the state of the battery cells BC1 to BC4 according to a command from the receiving unit 31.
  • the monitoring operation is performed.
  • the battery monitoring circuit 35 performs the monitoring operation of the content specified by the command output from the receiving unit 31 among the various monitoring operations as described above on the battery cells BC1 to BC4. That is, based on the command information included in the radio signal from the microcomputer 30, the content of the monitoring operation performed by the battery monitoring circuit 35 is determined by outputting a command from the receiving unit 31 to the battery monitoring circuit 35.
  • the battery monitoring circuit 35 When the battery monitoring circuit 35 performs a monitoring operation on the battery cells BC1 to BC4, the battery monitoring circuit 35 outputs the result to the transmitting unit 36 as a cell state monitoring result.
  • the transmitting unit 36 generates a radio signal by modulating the cell state monitoring result output from the battery monitoring circuit 35 by a predetermined modulation method, and transmits the wireless signal to the microcomputer 30 in FIG.
  • the microcomputer 30 can obtain the monitoring results for the battery cells BC1 to BC4 from the battery monitoring device BM1 by receiving the wireless signal transmitted from the transmitting unit 36 via the wireless communication unit RF.
  • FIG. 3 is a diagram showing an internal block of the battery monitoring circuit 35 in the battery monitoring device BM1. Although not described, the same applies to the battery monitoring circuits 35 of the other battery monitoring devices BM2 to BM4.
  • the battery module 9 in FIG. 1 is divided into four cell groups corresponding to the battery monitoring devices BM1 to BM4.
  • the cell group GB1 corresponding to the battery monitoring device BM1 includes the four battery cells BC1 to BC4 shown in FIG.
  • Each input terminal of the battery monitoring circuit 35 is connected to each of the battery cells BC1 to BC4 constituting the cell group GB1.
  • the positive terminal of the battery cell BC1 is connected to the input circuit 116 via the input terminal V1.
  • the input circuit 116 includes a multiplexer.
  • the negative terminal of the battery cell BC1 and the positive terminal of the battery cell BC2 are connected via the input terminal V2.
  • the negative terminal of the battery cell BC2 and the positive terminal of the battery cell BC3 are connected via the input terminal V3 of the battery cell BC3.
  • the positive terminal of the battery cell BC4, which is a negative terminal, is connected to the input circuit 116 via the input terminal V4.
  • the negative terminal of the battery cell BC4 is connected to the terminal GND of the battery monitoring circuit 35.
  • the voltage detection circuit 122 has a circuit that converts the voltage between the terminals of each of the battery cells BC1 to BC4 into a digital value. Each terminal voltage converted to a digital value is sent to the IC control circuit 123 and held in the internal storage circuit 125. These voltages are used for self-diagnosis or transmitted to the microcomputer 30 shown in FIG.
  • the IC control circuit 123 has an arithmetic function and also includes a storage circuit 125 and a timing control circuit 252 that periodically detects various voltages and performs state diagnosis.
  • the memory circuit 125 is constituted by a register circuit, for example.
  • the voltages between the terminals of the battery cells BC1 to BC4 detected by the voltage detection circuit 122 are stored in the storage circuit 125 of the IC control circuit 123 in association with the battery cells BC1 to BC4. Further, various other detection values can also be held in the memory circuit 125 so as to be readable at a predetermined address.
  • a communication circuit 127 is connected to the IC control circuit 123.
  • the IC control circuit 123 receives a command from the microcomputer 30 output by the receiving unit 31 of FIG. 2 via the communication circuit 127 and outputs a cell state monitoring result to the transmitting unit 36 to transmit the transmitting unit 36.
  • the IC control circuit 123 decodes the content of the command and performs processing according to the command content.
  • the command from the microcomputer 30 is, for example, a command for requesting a measured value of the inter-terminal voltage of each battery cell BC1 to BC4, a command for requesting a discharge operation for adjusting the charging state of each battery cell BC1 to BC4, battery monitoring
  • a command for starting the operation of the device BM1 (Wake UP), a command for stopping the operation (sleep), a command for requesting address setting, and the like are included.
  • the positive terminal of the battery cell BC1 is connected to the terminal B1 of the battery monitoring circuit 35 via the resistor R1.
  • a balancing switch 129A is provided between the terminal B1 and the terminal V2.
  • the balancing switch 129A is connected in parallel with an operation state detection circuit 128A for detecting the operation state of the switch.
  • the balancing switch 129A is controlled to be opened and closed by the discharge control circuit 132.
  • the positive terminal of the battery cell BC2 is connected to the terminal B2 via the resistor R2, and a balancing switch 129B is provided between the terminal B2 and the terminal V3.
  • the balancing switch 129B is connected in parallel with an operation state detection circuit 128B for detecting the operation state of the switch.
  • the balancing switch 129A is controlled to be opened and closed by the discharge control circuit 132.
  • the positive terminal of the battery cell BC3 is connected to the terminal B3 via the resistor R3, and a balancing switch 129C is provided between the terminal B3 and the terminal V4.
  • the balancing switch 129C is connected in parallel with an operation state detection circuit 128C for detecting the operation state of the switch.
  • the balancing switch 129C is controlled to open and close by the discharge control circuit 132.
  • the positive terminal of the battery cell BC4 is connected to the terminal B4 via the resistor R4, and a balancing switch 129D is provided between the terminal B4 and the terminal GND.
  • An operation state detection circuit 128D for detecting the operation state of the switch is connected in parallel to the balancing switch 129D.
  • the balancing switch 129D is controlled to be opened and closed by the discharge control circuit 132.
  • the operation state detection circuits 128A to 128D repeatedly detect the voltages across the balancing switches 129A to 129D at a predetermined period, respectively, and detect whether the balancing switches 129A to 129D are normal.
  • the balancing switches 129A to 129D are switches that adjust the charging states of the battery cells BC1 to BC4. If these switches are abnormal, the state of charge of the battery cells cannot be controlled, and some battery cells may be overcharged or overdischarged. For example, even when a certain balancing switch is in a conductive state, when the voltage between the terminals indicates the terminal voltage of the corresponding battery cell, it is detected that the balancing switch is abnormal.
  • the balancing switch is not in a conductive state based on the control signal. Further, even when a certain balancing switch is in an open state, when the voltage between the terminals is lower than the terminal voltage of the corresponding battery cell, it is detected that the balancing switch is abnormal. In this case, the balancing switch is conductive regardless of the control signal.
  • a voltage detection circuit composed of, for example, a differential amplifier is used.
  • Balancing switches 129A to 129D are made of, for example, MOS FETs, and act to discharge the electric power stored in the corresponding battery cells BC1 to BC4, respectively.
  • an electric load such as an inverter is connected to the battery module 9 in which a large number of battery cells are connected in series
  • the supply of current to the electric load is performed by the entire number of battery cells connected in series.
  • SOC state of charge
  • the current is limited by the state of the battery cell that is most discharged in the battery module 9.
  • the current is supplied to the battery module 9 with respect to the whole of a large number of battery cells connected in series.
  • SOC state of charge
  • the following balancing is performed as necessary. Specifically, among a large number of battery cells connected in series in the battery module 9, for a battery cell in a predetermined charged state, for example, a charged state exceeding the average value of the charged state of each battery cell, The balancing switch connected to the battery cell is turned on. As a result, a discharge current is caused to flow from the battery cell via a resistor connected in series to the balancing switch in a conductive state. As a result, the state of charge of each battery cell is controlled to approach each other.
  • the battery cell in the battery module 9 that is in the most discharged state is used as a reference cell, and the discharge time is determined based on the difference in the charged state with the reference cell.
  • various balancing methods can be used to adjust the state of charge of each battery cell.
  • the charge state of each battery cell can be calculated
  • the voltage between the terminals of the balancing switches 129A to 129D that is, the voltage between the source and drain of each FET constituting the balancing switches 129A to 129D is detected by the operation state detection circuits 128A to 128D and output to the potential conversion circuit 130.
  • the potential conversion circuit 130 matches these potentials, and then the abnormality determination circuit 131 determines abnormality.
  • the potential conversion circuit 130 also has a function of selecting a balancing switch to be diagnosed among the balancing switches 129A to 129D based on a control signal from the IC control circuit 123.
  • the abnormality determination circuit 131 compares the voltage between the terminals with a predetermined determination voltage based on the control signal from the IC control circuit 123. To do. Thereby, the abnormality determination circuit 131 can determine whether or not the balancing switches 129A to 129D are abnormal.
  • the discharge control circuit 132 is supplied with a command signal for making the balancing switch corresponding to the battery cell to be discharged from the IC control circuit 123 conductive. Based on this command signal, the discharge control circuit 132 outputs a signal corresponding to the gate voltage for conducting the balancing switches 129A to 129D composed of MOS type FETs as described above.
  • the IC control circuit 123 receives a discharge time command corresponding to the battery cell in response to a command from the microcomputer 30 shown in FIG. 1, and executes the discharge operation as described above. Further, when detecting an abnormality in the balancing switches 129A to 129D, the IC control circuit 123 outputs the detection result to the transmission unit 36 as the cell state monitoring result shown in FIG. To do.
  • FIG. 4 is a diagram showing a schematic configuration of the battery state management system according to the present embodiment.
  • This battery state management system includes an assembled battery AB1 that is mounted on the drive system of FIG.
  • the assembled battery AB1 is configured by connecting the battery module 9 and the battery monitoring devices BM1 to BM4 to each other.
  • This assembled battery AB1 is stored in a predetermined storage location such as a warehouse in a transportation facility such as a factory or a ship, a distribution base, or the like.
  • Unique ID_A1 to ID_D1 are set in advance in each of the battery monitoring devices BM1 to BM4.
  • FIG. 4 shows the assembled battery AB1 as a representative example.
  • Other assembled batteries also have the same configuration as the assembled battery AB1.
  • the battery state management device 40 is a device for managing the state of the battery module 9 stored as the assembled battery AB1 in the storage location, and wirelessly communicates with each battery monitoring device of the assembled battery to be managed. I do.
  • a unique ID_CB is set in advance in the battery state management device 40.
  • the assembled battery to be managed by the battery state management device 40 is determined by the unique ID stored in the battery state management device 40.
  • the battery state management device 40 also stores a key generation table that is table information for generating key information for authentication.
  • the battery state management device 40 When starting wireless communication with each of the battery monitoring devices BM1 to BM4 of the battery pack AB1 to be managed, the battery state management device 40 generates key information by referring to the key generation table, and the key Information is transmitted to each of the battery monitoring devices BM1 to BM4. Then, in each of the battery monitoring devices BM1 to BM4, authentication is performed by the authentication circuit 33 (see FIG. 2) based on the key information received from the battery state management device 40, so that the battery state management device 40 is a valid communication destination. It is determined whether or not there is. As a result, when it is determined that the communication destination is valid, wireless communication is started between the battery state management device 40 and each of the battery monitoring devices BM1 to BM4.
  • the battery state management device 40 as described above is configured, for example, by connecting a personal computer and a wireless device by USB or the like. That is, a battery state management device is configured by controlling a wireless device by executing a predetermined program on a personal computer and causing the wireless device to perform wireless communication with each battery monitoring device of an assembled battery to be managed. 40 is realized.
  • the unique ID_A1 to ID_D1 of the battery monitoring devices BM1 to BM4 are read by the shipping inspection device 50, and information related to these unique IDs is taken up by the shipping inspection device 50. .
  • Information of the unique ID_A1 to ID_D1 sucked up by the shipping inspection device 50 is registered in the inspection result file server 60.
  • the information of the unique ID_A1 to ID_D1 registered in the inspection result file server 60 is read by the battery state management device 40 in advance when managing the state of the battery module 9 with the assembled battery AB1 as a management target, and the battery state management Stored in device 40. Similarly, when the battery status is managed for the assembled batteries AB1 to AB6 in the packed state stored in the warehouse, the unique IDs of the battery monitoring devices included in these are preliminarily obtained from the inspection result file server 60 in advance. And stored in the battery state management device 40.
  • the battery state management device 40 stores the unique IDs of the battery monitoring devices included in the battery packs AB1 to AB6 to be managed in the battery state management device 40, so that the battery state management device 40 can store the battery packs AB1 to AB6.
  • the wireless communication can be performed between these and the state management.
  • FIG. 6 is a flowchart showing a processing procedure of the battery state management device 40
  • FIG. 7 is a flowchart showing a processing procedure of the battery monitoring device BM1 when the assembled battery AB1 is a management target.
  • a processing procedure when the assembled battery AB1 is a management target will be described as an example, but the same applies to a case where another assembled battery is a management target.
  • the processing procedure of the battery monitoring device BM1 among the battery monitoring devices BM1 to BM4 of the assembled battery AB1 will be described as an example, but the same applies to the other battery monitoring devices BM2 to BM4.
  • the battery state management device 40 acquires a list of unique IDs registered in the inspection result file server 60.
  • the unique IDs_A1 to ID_D1 for the battery monitoring devices BM1 to BM4 included in the battery pack AB1 to be managed are selected from the list of unique IDs acquired in this way, the information is read from the inspection result file server 60, and the battery state It is stored in the management device 40.
  • step S20 the battery state management device 40 performs a predetermined authentication process with each of the battery monitoring devices BM1 to BM4 of the assembled battery AB1 to be managed.
  • the authentication process it is determined in each of the battery monitoring devices BM1 to BM4 whether or not the battery state management device 40 is a valid communication destination, and the result of the determination is the battery monitoring as the authentication result.
  • the data is transmitted from the devices BM1 to BM4 to the battery state management device 40. The specific procedure of the authentication process will be described later with reference to FIG.
  • step S30 the battery state management device 40 determines whether or not the authentication is OK based on the authentication result transmitted from each of the battery monitoring devices BM1 to BM4. If authentication is OK, that is, if it is determined that the battery state management device 40 is a valid communication destination in all of the battery monitoring devices BM1 to BM4, the process proceeds to step S40. On the other hand, when the authentication is not OK, that is, when it is determined that at least one of the battery monitoring devices BM1 to BM4 is not a valid communication destination, the processing shown in the flowchart of FIG. .
  • step S40 the battery state management device 40 acquires the cell voltage and temperature measurement results in each battery cell of the cell group to which each of the battery monitoring devices BM1 to BM4 is connected.
  • the battery state management device 40 receives the cell voltage and temperature measurement results transmitted as cell state monitoring results from each of the battery monitoring devices BM1 to BM4 by the process of step S250 in FIG.
  • the cell voltage and temperature measurement results in each battery cell of each cell group connected to the battery monitoring devices BM1 to BM4 are acquired.
  • the battery state management device 40 has an abnormal state of each battery cell in the cell group to which the battery monitoring devices BM1 to BM4 are connected based on the cell voltage and temperature measurement results obtained in step S40. It is determined whether or not. This determination can be made, for example, based on whether or not the measured cell voltage and temperature are within a predetermined range set in advance. That is, if the cell voltage or temperature is within a predetermined range, it is determined to be normal, and if it is outside the range, it is determined to be abnormal. In addition, you may determine whether the state of a battery cell is abnormal using determination methods other than this. If all the battery cells of the battery monitoring devices BM1 to BM4 are not abnormal, the process proceeds to step S60, and if any one of the battery cells is abnormal, the process proceeds to step S150.
  • step S60 the battery state management device 40 determines whether balancing is required for each of the battery monitoring devices BM1 to BM4 based on the measurement result of the cell voltage acquired in step S40. This determination can be made, for example, by estimating the state of charge of each battery cell based on each cell voltage of the measured cell group, and whether or not there is a battery that satisfies the balancing condition as described above. it can. If it is determined that balancing is not necessary for all of the battery monitoring devices BM1 to BM4, the process shown in the flowchart of FIG. 6 is terminated, and if it is determined that balancing is required for at least one of the battery monitoring devices, a step is performed. Proceed to S70.
  • step S70 the battery state management device 40 makes the balancing target among the battery cells of the cell group to which the battery monitoring device is connected with respect to the battery monitoring device determined to be balanced in step S60.
  • a battery cell (adjustment cell) is determined, and a target voltage of the adjustment cell is determined. These determinations can be made based on the cell voltage measurement results of the cell group corresponding to the battery monitoring device among the cell voltage measurement results acquired in step S40.
  • step S80 the battery state management device 40 transmits a discharge request command corresponding to the adjusted cell determined in step S70 and the target voltage to the battery monitoring device determined to be balanced in step S60. This instructs the battery monitoring device to discharge the adjustment cell until the cell voltage of the adjustment cell in the corresponding cell group reaches the target voltage.
  • step S90 the battery state management device 40 initializes an internal timer and starts time measurement using the timer.
  • step S100 the battery state management device 40 acquires the cell voltage and temperature measurement results in each battery cell of the corresponding cell group from the battery monitoring device that transmitted the discharge request command in step S80. At this time, the battery state management device 40 receives the cell voltage and temperature measurement results transmitted as cell state monitoring results from the battery monitoring device by the process of step S290 in FIG. 7 described later. Thereby, the measurement result of the cell voltage and temperature in each battery cell of the cell group connected to the battery monitoring device is acquired.
  • step S110 the battery state management device 40 determines whether or not the state of each battery cell in the cell group to which the battery monitoring device is connected is abnormal based on the measurement result of the cell voltage and temperature acquired in step S100. Determine whether. This determination can be performed by the same determination method as in step S50 described above. When all the battery cells of the battery monitoring apparatus are not abnormal, the process proceeds to step S120, and when any one of the battery cells is abnormal, the process proceeds to step S140.
  • step S120 the battery state management device 40 determines whether balancing has been completed in the battery monitoring device that has transmitted the discharge request command in step S80. This determination can be made based on whether or not a balancing completion report has been transmitted from the battery monitoring apparatus in the process of step S340 in FIG. That is, when a balancing completion report is transmitted from the battery monitoring apparatus, it is determined that balancing is complete, and the process shown in the flowchart of FIG. 6 is terminated. When the balancing completion report is not transmitted, the process proceeds to step S130.
  • step S130 the battery state management device 40 determines whether or not a predetermined time-out time set in advance by a timer is measured. If the measurement time by the timer is less than the timeout time, the process returns to step S100, and the processes of steps S100 to S130 described above are continued. On the other hand, if it is longer than the timeout time, the process returns to step S70. In this case, the adjustment cell and the target voltage are determined again based on the measurement result of the cell voltage and temperature acquired in step S100 executed immediately before, and a discharge request command corresponding to the result is retransmitted to the battery monitoring device. Send.
  • step S140 the battery state management device 40 stops discharging to stop balancing for the battery monitoring device that has determined that the state of the battery cell is abnormal in step S110 after transmitting the discharge request command in step S80. Send a command.
  • an instruction is issued to stop the discharge of the adjustment cell to the battery monitoring device that is determined to have an abnormality in the state of the battery cell during balancing.
  • step S150 the battery state management device 40 issues a warning for notifying the operator of the battery state management device 40 of the abnormality of the battery monitoring device determined to be abnormal in step S50 or S1100.
  • This warning is performed by, for example, displaying a predetermined warning message on the screen of the battery state management device 40 or outputting a voice.
  • step S160 the battery state management device 40 records an abnormality result corresponding to the warning made in step S150.
  • step S160 the battery state management apparatus 40 will complete
  • the battery monitoring device BM1 performs predetermined authentication processing with the battery state management device 40 using the reception unit 31, the authentication circuit 33, and the transmission unit 36.
  • This authentication process corresponds to that performed by the battery state management device 40 in step S20 of FIG. 6 described above, and the specific procedure will be described later with reference to FIG.
  • step S220 the battery monitoring apparatus BM1 transmits the result of the authentication process performed in step S210 to the battery state management apparatus 40 using the reception unit 31, the authentication circuit 33, and the transmission unit 36.
  • step S230 the battery monitoring apparatus BM1 determines whether or not the result of the authentication process performed in step S210 is OK by the authentication circuit 33. If the authentication is OK, that is, if it is determined in the authentication process that the battery state management device 40 is a valid communication destination, the process proceeds to step S240. On the other hand, if the authentication is not OK, that is, if the battery state management device 40 determines that the communication destination is not a valid communication destination in the authentication process, the process shown in the flowchart of FIG. 7 ends.
  • step S240 the battery monitoring device BM1 uses the battery monitoring circuit 35 to measure the cell voltage and temperature in each battery cell of the connected cell group.
  • step S250 the battery monitoring device BM1 outputs the cell voltage and temperature measured in step S240 as cell state monitoring results from the battery monitoring circuit 35 to the transmission unit 36, and these monitoring results are transmitted by the transmission unit 36 to the battery state management device. 40.
  • the cell voltage and temperature measurement results in each battery cell of the cell group to which the battery monitoring device BM1 is connected are transmitted from the battery monitoring device BM1 to the battery state management device 40 as the cell state monitoring result for each battery cell. Is done.
  • step S260 the battery monitoring device BM1 determines whether the receiving unit 31 has received the discharge request command transmitted from the battery state management device 40 in step S80 of FIG. If a discharge request command for the battery monitoring device BM1 is received from the battery state management device 40, the process proceeds to step S270, and if not received, the process shown in the flowchart of FIG.
  • step S270 the battery monitoring device BM1 controls the opening and closing of the balancing switches 129A to 129D in FIG. 3 in accordance with the discharge request command received from the battery state management device 40.
  • the discharge request command is received by the reception unit 31
  • the discharge request command is output from the reception unit 31 to the battery monitoring circuit 35.
  • the battery monitoring circuit 35 controls the discharge control circuit 132 to close the balancing switch corresponding to the adjustment cell specified by the discharge request command among the balancing switches 129A to 129D.
  • step S280 the battery monitoring device BM1 measures the cell voltage and temperature in each battery cell of the connected cell group using the battery monitoring circuit 35, as in step S240.
  • step S290 the battery monitoring device BM1 outputs the cell voltage and temperature measured in step S280 as cell state monitoring results from the battery monitoring circuit 35 to the transmission unit 36, and these monitoring results are transmitted by the transmission unit 36 to the battery state management device. 40.
  • step S250 the cell voltage and temperature measurement results in each battery cell of the cell group to which the battery monitoring device BM1 is connected are transferred from the battery monitoring device BM1 as the cell state monitoring result for each battery cell. It is transmitted to the state management device 40.
  • step S300 the battery monitoring device BM1 determines whether the receiving unit 31 has received the discharge stop command transmitted from the battery state management device 40 in step S140 of FIG. If a discharge stop command for the battery monitoring device BM1 is received from the battery state management device 40, the process proceeds to step S330, and if not received, the process proceeds to step S310.
  • step S310 the battery monitoring device BM1 compares the target voltage of the adjustment cell specified by the discharge request command received from the battery state management device 40 with the cell voltage measured in step S280 by the battery monitoring circuit 35. Based on the comparison result, it is determined whether or not the cell voltage of the adjustment cell has reached the target voltage. If the difference between the target voltage of the adjustment cell and the cell voltage is less than the predetermined value, it is determined that the target voltage has been reached, and the process proceeds to step S340. If the difference is greater than the predetermined value, it is determined that the target voltage has not been reached. Proceed to S320.
  • step S320 the battery monitoring device BM1 determines whether or not the receiving unit 31 has re-received the discharge request command from the battery state management device 40. Since the battery state management device 40 re-transmits the discharge request command to the battery monitoring device BM1 by executing the process of step S80 in FIG. 6 again, the process returns to step S270. In this case, in step S270, the switching control of the balancing switches 129A to 129D is performed again according to the re-received discharge request command. On the other hand, if the discharge request command has not been received again, the process returns to step S280, and the processes of steps S280 to S320 described above are continued.
  • step S330 the battery monitoring device BM1 stops the discharge of the adjustment cell in response to the discharge stop command received from the battery state management device 40.
  • the discharge stop command is output from the receiving unit 31 to the battery monitoring circuit 35.
  • the battery monitoring circuit 35 controls the discharge control circuit 132 to open all the balancing switches 129A to 129D including the balancing switch corresponding to the adjustment cell.
  • step S330 the battery monitoring device BM1 ends the process shown in the flowchart of FIG.
  • step S340 the battery monitoring device BM1 outputs a report indicating that balancing has been completed after the discharge of the adjustment cell from the battery monitoring circuit 35 to the transmission unit 36, and this is transmitted to the battery state management device 40 by the transmission unit 36. To do.
  • step S340 the battery monitoring device BM1 ends the process shown in the flowchart of FIG.
  • FIG. 8 is a diagram showing an example of the procedure of this authentication process.
  • the battery monitoring device BM1 will be described as an example of the battery monitoring devices BM1 to BM4 of the assembled battery AB1, but the same applies to the other battery monitoring devices BM2 to BM4.
  • the battery state management device 40 requests the battery monitoring device BM1 for a seed for generating key information for authentication.
  • the seed request transmitted from the battery state management device 40 is received by the reception unit 31 in the battery monitoring device BM1 and output to the authentication circuit 33.
  • the seed is output from the authentication circuit 33 to the transmission unit 36 and transmitted by the transmission unit 36, whereby the seed is returned from the battery monitoring device BM 1 to the battery state management device 40.
  • the seed is identification information uniquely assigned to each individual battery monitoring device, and for example, a unique ID can be used.
  • the battery state management device 40 When the seed is returned from the battery monitoring device BM1, the battery state management device 40 refers to the above-described key generation table based on the seed, and acquires key information corresponding to the seed. Then, the acquired key information is transmitted to the battery monitoring device BM1.
  • information other than the key generation table for example, information on a predetermined algorithm or function, may be stored in the battery state management device 40, and key information may be generated based on the information. As long as the key information corresponding to the seed can be generated, the battery state management device 40 may use any information.
  • the key information transmitted from the battery state management device 40 is received by the reception unit 31 in the battery monitoring device BM1 and output to the authentication circuit 33.
  • the authentication circuit 33 confirms whether or not this key information corresponds to the seed returned to the battery state management device 40, thereby determining whether or not the battery state management device 40 is a valid communication destination. Determine.
  • the determination result is output from the authentication circuit 33 to the transmission unit 36 and transmitted to the battery state management device 40, so that the battery monitoring device BM1 returns a response indicating whether or not authentication is possible. .
  • this reply indicating whether authentication is possible corresponds to the processing in step S220 in FIG.
  • the battery state management device 40 performs the determination in step S30 of FIG. 6 based on the content. As a result, when the authentication is possible, the battery state management operation is started by executing the processing after step S40.
  • the battery monitoring device BM1 includes an authentication circuit 33 that performs authentication for determining whether or not the battery state management device 40 is a valid communication destination.
  • the battery monitoring device BM1 includes the cell group connected in the battery module 9. The monitoring result is wirelessly transmitted to the battery state management device 40 (steps S250 and S290).
  • the battery state management device 40 determines whether or not there is an abnormality in the battery monitoring device BM1 based on the monitoring result wirelessly transmitted from the battery monitoring device BM1 (steps S50 and S110), and when the balancing is necessary, the battery monitoring device By transmitting a discharge request command to BM1 (step S80), the state of the battery module 9 is managed in the assembled battery AB1. Since it did in this way, a battery state can be managed appropriately in the stage before incorporating in a vehicle etc.
  • the battery state management device 40 requests the battery monitoring device BM1 for a seed that is unique identification information for each individual battery monitoring device. Based on the seed transmitted from the battery monitoring device BM1 in response to this request and the key generation table stored in advance, the battery state management device 40 generates key information for use in authentication to generate the battery monitoring device BM1. Send to.
  • the authentication circuit 33 performs authentication based on the key information transmitted from the battery state management device 40. Since it did in this way, authentication whether the battery state management apparatus 40 is a valid communication destination can be reliably performed in the authentication circuit 33 of the battery monitoring apparatus BM1.
  • the battery monitoring device BM1 measures the cell voltage of each battery cell of the connected cell group (steps S240 and S280), and wirelessly transmits the measurement result to the battery state management device 40 as the monitoring result of the cell group. Transmit (steps S250 and S290).
  • the battery state management device 40 transmits a discharge request command based on the measurement result of the cell voltage wirelessly transmitted from the battery monitoring device BM1 (step S80), determines whether there is an abnormality, and discharges if there is an abnormality.
  • An operation for managing the state of the battery module 9 is instructed to the battery monitoring device BM1 by transmitting a stop command (steps S110 and S140). Thereby, an appropriate operation instruction according to the state of the battery module 9 can be given to the battery monitoring device BM1.
  • the battery state management device 40 determines whether or not each battery cell in the cell group is to be an adjustment cell to be balanced based on the measurement result of the cell voltage wirelessly transmitted from the battery monitoring device BM1. At the same time, the target voltage of the battery cell to be balanced is determined (step S70). Then, by transmitting a discharge request command corresponding to these in step S80, the battery monitoring device BM1 is instructed to discharge the battery cell until the voltage of the adjustment cell targeted for balancing reaches the target voltage. . Since it did in this way, when dispersion
  • the battery monitoring device BM1 measures the temperature of each battery cell of the connected cell group (step S280), and uses the measurement result as the monitoring result of the cell group to the battery state management device 40. Wireless transmission is performed (step S290).
  • the battery state management device 40 determines whether or not the state of the battery module 9 is abnormal based on the temperature measurement result wirelessly transmitted from the battery monitoring device BM1 (step S110), Is sent to the battery monitoring device BM1 (step S140), thereby instructing the battery monitoring device BM1 to stop discharging the battery cells targeted for balancing. In this way, since discharge is stopped when an abnormality occurs during balancing, the occurrence of an accident or the like can be prevented in advance.
  • the battery monitoring device BM1 measures the temperature of each battery cell of the connected cell group (steps S240 and S280), and wirelessly transmits the measurement result to the battery state management device 40 as the monitoring result of the cell group. (Steps S250 and S290).
  • the battery state management device 40 determines whether or not the state of the battery module 9 is abnormal based on the temperature measurement result wirelessly transmitted from the battery monitoring device BM1 (steps S50 and S110), and determines that it is abnormal. If this occurs, a warning is given (step S150). Since it did in this way, when abnormality generate
  • the battery state management device 40 determines whether there is an abnormality during balancing by executing the process of step S110 of FIG. 6, but this is performed in the battery monitoring device BM1. You may do it. In that case, the battery monitoring apparatus BM1 executes the process of step S110 instead of step S300 of FIG. 7 and transmits the discharge stop report to the battery state management apparatus 40 after executing the process of step S330. It is preferable. Note that the process of step S290 may be omitted. On the other hand, it is preferable that the battery state management device 40 omits the processes of steps S100 and S140, and in step S110, determines whether or not there is an abnormality depending on whether or not a discharge stop report is transmitted from the battery monitoring device BM1.

Abstract

A battery cell group is connected to a battery monitor configured to monitor the state of the batteries for each battery cell group and to wirelessly transmit the monitoring results to a battery state management device. This battery monitoring device is provided with an identification circuit which performs identification for determining whether or not the battery state management device is a legitimate communication partner. If the identification circuit determines that the battery state management device is a legitimate communication partner, then the battery monitoring device wirelessly transmits to the battery state management device the monitoring results of the battery cell groups that the battery monitoring device is connected to. The battery state management device manages the states of the batteries on the basis of monitoring results wirelessly transmitted from battery monitoring devices.

Description

電池状態管理装置、電池状態管理方法Battery state management device and battery state management method
 本発明は、電池状態管理装置および電池状態管理方法に関する。 The present invention relates to a battery state management device and a battery state management method.
 従来、管理ユニットから無線送信される指示信号に応じて、起動回路によりスイッチをオンして電池情報取得回路や無線回路を起動させ、電池情報取得回路により取得した電池情報を無線回路から管理ユニットへ無線送信する電池情報管理システムが知られている(特許文献1参照)。 Conventionally, in response to an instruction signal transmitted wirelessly from the management unit, the activation circuit turns on the switch to activate the battery information acquisition circuit or the wireless circuit, and the battery information acquired by the battery information acquisition circuit is transferred from the wireless circuit to the management unit. A battery information management system for wireless transmission is known (see Patent Document 1).
日本国特開2010-81716号公報Japanese Unexamined Patent Publication No. 2010-81716
 しかしながら、上記特許文献1に記載のシステムでは、管理ユニットが動作していないときには電池情報を取得できないため、車両等に組み込まれる前の段階で行う電池状態の管理において用いるのには不十分であった。 However, since the battery information cannot be acquired when the management unit is not operating in the system described in Patent Document 1, it is not sufficient for use in the management of the battery state performed in a stage before being incorporated in a vehicle or the like. It was.
 本発明の一態様による電池状態管理装置は、1つまたは直列接続された複数の電池セルによってそれぞれ構成される1つまたは複数の電池セルグループが直列接続されて構成された電池の状態を管理するものであって、電池セルグループは、電池の状態を電池セルグループごとにそれぞれ監視して監視結果を電池状態管理装置へ無線送信するように構成されている電池監視装置と接続されており、電池監視装置は、電池状態管理装置が正当な通信先であるか否かを判定するための認証を行う認証回路を備え、認証回路により電池状態管理装置が正当な通信先であると判定された場合、電池監視装置は、接続されている電池セルグループの監視結果を電池状態管理装置へ無線送信し、電池状態管理装置は、電池監視装置から無線送信された監視結果に基づいて、電池の状態を管理するものである。
 本発明の一態様による電池状態管理方法は、1つまたは直列接続された複数の電池セルによってそれぞれ構成される1つまたは複数の電池セルグループが直列接続されて構成された電池の状態を管理するための電池状態管理装置を用いたものであって、電池セルグループは、電池の状態を電池セルグループごとにそれぞれ監視して監視結果を電池状態管理装置へ無線送信するように構成されている電池監視装置と接続されており、電池監視装置により、電池状態管理装置が正当な通信先であるか否かを判定するための認証を行い、認証によって電池状態管理装置が正当な通信先であると判定された場合、電池監視装置が接続されている電池セルグループの監視結果を電池監視装置から電池状態管理装置へ無線送信し、電池状態管理装置により、電池監視装置から無線送信された監視結果に基づいて、電池の状態を管理するものである。
A battery state management device according to an aspect of the present invention manages a state of a battery configured by connecting one or a plurality of battery cell groups each configured by one or a plurality of battery cells connected in series. The battery cell group is connected to a battery monitoring device configured to monitor a battery state for each battery cell group and wirelessly transmit a monitoring result to the battery state management device. The monitoring device includes an authentication circuit that performs authentication for determining whether or not the battery state management device is a valid communication destination, and when the battery state management device is determined to be a valid communication destination by the authentication circuit The battery monitoring device wirelessly transmits the monitoring result of the connected battery cell group to the battery state management device, and the battery state management device is wirelessly transmitted from the battery monitoring device. Based on the result, and manages the state of the battery.
A battery state management method according to an aspect of the present invention manages a state of a battery configured by connecting one or a plurality of battery cell groups each configured by one or a plurality of battery cells connected in series. The battery cell group is configured to monitor a battery state for each battery cell group and wirelessly transmit a monitoring result to the battery state management device. It is connected to the monitoring device, and the battery monitoring device performs authentication for determining whether or not the battery state management device is a valid communication destination, and the battery state management device is a valid communication destination by the authentication. When the determination is made, the monitoring result of the battery cell group to which the battery monitoring device is connected is wirelessly transmitted from the battery monitoring device to the battery state management device. Based from the battery monitoring device to a wireless transmitted monitoring result, and manages the state of the battery.
 本発明によれば、電池監視装置と上位コントローラとの間で無線信号を用いて情報を授受する電池監視システムを車両等に組み込む前の段階において、電池状態の管理を適切に行うことができる。 According to the present invention, it is possible to appropriately manage the battery state at a stage before the battery monitoring system that transmits and receives information between the battery monitoring device and the host controller using a wireless signal is incorporated in a vehicle or the like.
車両用回転電機の駆動システムを示すブロック図である。It is a block diagram which shows the drive system of the rotary electric machine for vehicles. 電池監視装置BM1のブロック図である。It is a block diagram of battery monitoring apparatus BM1. 電池監視回路35のブロック図である。3 is a block diagram of a battery monitoring circuit 35. FIG. 電池状態管理システムの概略構成を示す図である。It is a figure which shows schematic structure of a battery state management system. 電池状態管理方法を説明する図である。It is a figure explaining a battery state management method. 電池状態管理装置の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of a battery state management apparatus. 電池監視装置の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of a battery monitoring apparatus. 認証処理の手順の一例を示す図である。It is a figure which shows an example of the procedure of an authentication process.
 以下、図を参照して本発明による電池監視システムを採用した車両用回転電機の駆動システムについて説明する。図1は、本発明による電池監視システムを採用した車両用回転電機の駆動システムを示すブロック図である。図1に示す駆動システムは、電池モジュール9、電池モジュール9を監視する電池監視システム100、電池モジュール9からの直流電力を3相交流電力に変換するインバータ装置220、および車両駆動用のモータ230を備えている。モータ230は、インバータ装置220からの3相交流電力により駆動される。インバータ装置220と電池監視システム100とはCAN通信で結ばれており、インバータ装置220は電池監視システム100に対して上位コントローラとして機能する。また、インバータ装置220は、さらに上位のコントローラ(不図示)からの指令情報に基づいて動作する。 Hereinafter, a drive system for a rotating electrical machine for a vehicle employing a battery monitoring system according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a drive system for a rotating electrical machine for a vehicle that employs a battery monitoring system according to the present invention. The drive system shown in FIG. 1 includes a battery module 9, a battery monitoring system 100 that monitors the battery module 9, an inverter device 220 that converts DC power from the battery module 9 into three-phase AC power, and a motor 230 for driving the vehicle. I have. Motor 230 is driven by the three-phase AC power from inverter device 220. The inverter device 220 and the battery monitoring system 100 are connected by CAN communication, and the inverter device 220 functions as a host controller for the battery monitoring system 100. Further, the inverter device 220 operates based on command information from a host controller (not shown).
 インバータ装置220は、パワーモジュール226と、パワーモジュール226を駆動するためのドライバ回路224と、ドライバ回路224を制御するためのMCU222とを有している。パワーモジュール226は、電池モジュール9から供給される直流電力を、モータ230を駆動するための3相交流電力に変換する。なお、図示していないが、パワーモジュール226が電池モジュール9に接続される強電ラインHV+,HV-間には、約700μF~約2000μF程度の大容量の平滑キャパシタが設けられている。この平滑キャパシタは、電池監視システム100に設けられた集積回路に加わる電圧ノイズを低減する働きをする。 The inverter device 220 includes a power module 226, a driver circuit 224 for driving the power module 226, and an MCU 222 for controlling the driver circuit 224. The power module 226 converts the DC power supplied from the battery module 9 into three-phase AC power for driving the motor 230. Although not shown, a large-capacity smoothing capacitor of about 700 μF to about 2000 μF is provided between the high voltage lines HV + and HV− where the power module 226 is connected to the battery module 9. The smoothing capacitor serves to reduce voltage noise applied to the integrated circuit provided in the battery monitoring system 100.
 インバータ装置220の動作開始状態では平滑キャパシタの電荷は略ゼロであるため、後述する電池ディスコネクトユニットBDUのリレーRLを閉じると、大きな初期電流が電池モジュール9から平滑キャパシタへ流れ込む。この大電流のために、リレーRLが融着して破損するおそれがある。この問題を解決するために、MCU222は、さらに上位のコントローラからの命令に従い、モータ230の駆動開始時に、まずプリチャージリレーRLPを開状態から閉状態にして平滑キャパシタを充電する。このとき、抵抗RPを介して最大電流を制限しながら平滑キャパシタの充電を行う。その後にリレーRLを開状態から閉状態として、電池モジュール9からインバータ装置220への電力の供給を開始する。このような動作を行うことで、リレー回路を保護すると共に、電池モジュール9やインバータ装置220を流れる最大電流を所定値以下に低減でき、高い安全性を維持できる。 Since the charge of the smoothing capacitor is substantially zero in the operation start state of the inverter device 220, when a relay RL of a battery disconnect unit BDU described later is closed, a large initial current flows from the battery module 9 to the smoothing capacitor. Due to this large current, the relay RL may be fused and damaged. In order to solve this problem, the MCU 222 charges the smoothing capacitor by first changing the precharge relay RLP from the open state to the closed state at the start of driving of the motor 230 in accordance with a command from a higher-order controller. At this time, the smoothing capacitor is charged while limiting the maximum current via the resistor RP. Thereafter, the relay RL is changed from the open state to the closed state, and supply of electric power from the battery module 9 to the inverter device 220 is started. By performing such an operation, it is possible to protect the relay circuit, reduce the maximum current flowing through the battery module 9 and the inverter device 220 to a predetermined value or less, and maintain high safety.
 なお、インバータ装置220は、モータ230の回転子に対してパワーモジュール226により発生する交流電力の位相を制御して、車両制動時にはモータ230を発電機として動作させる。すなわち回生制動制御を行い、発電機運転により発電された電力を電池モジュール9に回生して電池モジュール9を充電する。電池モジュール9の充電状態が基準状態より低下した場合にも、インバータ装置220はモータ230を発電機として運転する。モータ230で発電された3相交流電力は、パワーモジュール226により直流電力に変換されて電池モジュール9に供給される。その結果、電池モジュール9は充電される。 The inverter device 220 controls the phase of the AC power generated by the power module 226 with respect to the rotor of the motor 230, and operates the motor 230 as a generator during vehicle braking. That is, regenerative braking control is performed, and the battery module 9 is charged by regenerating the power generated by the generator operation to the battery module 9. Even when the state of charge of the battery module 9 falls below the reference state, the inverter device 220 operates using the motor 230 as a generator. The three-phase AC power generated by the motor 230 is converted into DC power by the power module 226 and supplied to the battery module 9. As a result, the battery module 9 is charged.
 回生制動制御により電池モジュール9を充電する場合には、MCU222は、モータ230の回転子の回転に対して遅れ方向の回転磁界を発生するようにドライバ回路224を制御する。この制御に応じて、ドライバ回路224はパワーモジュール226のスイッチング動作を制御する。これにより、モータ230からの交流電力がパワーモジュール226に供給され、パワーモジュール226により直流電力に変換されて電池モジュール9へ供給される。その結果、モータ230は発電機として作用することとなる。 When charging the battery module 9 by regenerative braking control, the MCU 222 controls the driver circuit 224 so as to generate a rotating magnetic field that is delayed with respect to the rotation of the rotor of the motor 230. In response to this control, the driver circuit 224 controls the switching operation of the power module 226. Thus, AC power from the motor 230 is supplied to the power module 226, converted into DC power by the power module 226, and supplied to the battery module 9. As a result, the motor 230 acts as a generator.
 一方、モータ230を力行運転する場合には、MCU222は、上位コントローラの命令に従い、モータ230の回転子の回転に対して進み方向の回転磁界を発生するようにドライバ回路224を制御する。この制御に応じて、ドライバ回路224はパワーモジュール226のスイッチング動作を制御する。これにより、電池モジュール9からの直流電力がパワーモジュール226に供給され、パワーモジュール226により交流電力に変換されてモータ230へ供給される。 On the other hand, when powering the motor 230, the MCU 222 controls the driver circuit 224 so as to generate a rotating magnetic field in the advancing direction with respect to the rotation of the rotor of the motor 230, in accordance with a command from the host controller. In response to this control, the driver circuit 224 controls the switching operation of the power module 226. Thereby, DC power from the battery module 9 is supplied to the power module 226, converted into AC power by the power module 226, and supplied to the motor 230.
 インバータ装置220のパワーモジュール226は、導通および遮断動作を高速で行い直流電力と交流電力間の電力変換を行う。このとき、大電流を高速で遮断するので、直流回路の有するインダクタンスにより大きな電圧変動が発生する。この電圧変動を抑制するため、インバータ装置220には上述した大容量の平滑キャパシタが設けられている。 The power module 226 of the inverter device 220 performs conduction and interruption operations at high speed and performs power conversion between DC power and AC power. At this time, since a large current is interrupted at a high speed, a large voltage fluctuation occurs due to the inductance of the DC circuit. In order to suppress this voltage fluctuation, the inverter device 220 is provided with the above-described large-capacity smoothing capacitor.
 電池モジュール9は、複数の電池モジュールブロックによって構成されている。図1に示す例では、直列接続された2つの電池モジュールブロック9A、9Bで電池モジュール9が構成されている。各電池モジュールブロック9A、9Bは、複数の電池セルを直列接続したセルグループをさらに複数直列に接続されたものを備えている。電池モジュールブロック9Aと電池モジュールブロック9Bとは、スイッチとヒューズとが直列接続された保守・点検用のサービスディスコネクトSDを介して直列接続される。このサービスディスコネクトSDが開くことで電池モジュールブロック9Aと9Bの直列回路が遮断されるため、仮に電池モジュールブロック9A、9Bのどこかで車両との間に1箇所接続回路ができたとしても電流が流れることはない。このような構成により高い安全性を維持できる。また、点検時にサービスディスコネクトSDを開くことで、作業者がHV+とHV-の間を触っても、高電圧が人体に印加されないので安全である。 The battery module 9 is composed of a plurality of battery module blocks. In the example shown in FIG. 1, the battery module 9 is composed of two battery module blocks 9A and 9B connected in series. Each of the battery module blocks 9A and 9B includes a plurality of cell groups in which a plurality of battery cells are connected in series and further connected in series. The battery module block 9A and the battery module block 9B are connected in series via a maintenance / inspection service disconnect SD in which a switch and a fuse are connected in series. When the service disconnect SD is opened, the series circuit of the battery module blocks 9A and 9B is interrupted. Therefore, even if a connection circuit is formed at one location between the battery module blocks 9A and 9B and the vehicle, Will not flow. With such a configuration, high safety can be maintained. Also, by opening the service disconnect SD at the time of inspection, even if an operator touches between HV + and HV−, it is safe because a high voltage is not applied to the human body.
 電池モジュール9とインバータ装置220との間の強電ラインHV+には、リレーRL,抵抗RPおよびプリチャージリレーRLPを備えた電池ディスコネクトユニットBDUが設けられている。抵抗RPとプリチャージリレーRLPとの直列回路は、リレーRLと並列に接続されている。 A battery disconnect unit BDU including a relay RL, a resistor RP, and a precharge relay RLP is provided in the high-voltage line HV + between the battery module 9 and the inverter device 220. A series circuit of the resistor RP and the precharge relay RLP is connected in parallel with the relay RL.
 電池監視システム100は、電池モジュール9の状態を監視するための監視動作として、主に電池モジュール9の各セルに対する電圧の測定、総電圧の測定、電流の測定、セル温度およびセルの容量調整等を行う。そのために、電池監視システム100は、複数の電池監視装置BM1~BM4と、各電池監視装置BM1~BM4を制御するためのマイコン30とを有している。各電池モジュールブロック9A、9B内に設けられた複数の電池セルは、複数のセルグループに分けられている。電池監視システム100には、この各セルグループ毎に、各セルグループに含まれる電池セルを監視する電池監視装置BM1~BM4が1つずつ設けられている。マイコン30は、電池監視装置BM1~BM4に対して上位コントローラとして機能する。 The battery monitoring system 100 mainly includes voltage measurement, total voltage measurement, current measurement, cell temperature and cell capacity adjustment, etc., for each cell of the battery module 9 as a monitoring operation for monitoring the state of the battery module 9. I do. For this purpose, the battery monitoring system 100 includes a plurality of battery monitoring devices BM1 to BM4 and a microcomputer 30 for controlling the battery monitoring devices BM1 to BM4. The plurality of battery cells provided in each of the battery module blocks 9A and 9B are divided into a plurality of cell groups. The battery monitoring system 100 is provided with one battery monitoring device BM1 to BM4 for monitoring the battery cells included in each cell group for each cell group. The microcomputer 30 functions as a host controller for the battery monitoring devices BM1 to BM4.
 以下では説明を簡単にするため、各セルグループは直列接続された4個の電池セルで構成されているとする。また各電池モジュールブロック9A、9Bは、2つのセルグループでそれぞれ構成されているとする。しかしながら、各セルグループに含まれる電池セルは4個に限定するものでなく、5個あるいはこれ以上であってもよく、また3個以下であってもよい。1つの電池セルにより1つのセルグループを構成してもよい。すなわち、1つまたは直列接続された複数の電池セルによって構成されるセルグループの各々は、電池監視装置BM1~BM4が監視対象とする電池にそれぞれ相当するものである。また、異なる電池セル数のセルグループ、例えば4個の電池セルによるセルグループと6個の電池セルによるセルグループとが組み合わされていてもよい。各セルグループに対応して設けられる電池監視装置BM1~BM4は、これらのセルグループに含まれる電池セルの数が任意の数、例えば4個であっても、また5個以上であっても使用できるように設計したものを使用することができる。 For the sake of simplicity, assume that each cell group is composed of four battery cells connected in series. Each battery module block 9A, 9B is assumed to be composed of two cell groups. However, the number of battery cells included in each cell group is not limited to four, but may be five or more, or may be three or less. One cell group may be constituted by one battery cell. That is, each of the cell groups constituted by one or a plurality of battery cells connected in series corresponds to a battery to be monitored by the battery monitoring devices BM1 to BM4. In addition, cell groups having different numbers of battery cells, for example, a cell group including four battery cells and a cell group including six battery cells may be combined. The battery monitoring devices BM1 to BM4 provided corresponding to each cell group are used regardless of the number of battery cells included in these cell groups, for example, four or five or more. The one designed to do so can be used.
 また、電気自動車やハイブリッド自動車で必要とされる電圧および電流を得るために、上記のように各電池モジュールブロックではセルグループを複数個直列または直並列に接続してもよい。さらに、複数の電池モジュールブロックを直列または直並列に接続してもよい。 In addition, as described above, a plurality of cell groups may be connected in series or series-parallel in each battery module block in order to obtain the voltage and current required for electric vehicles and hybrid vehicles. Further, a plurality of battery module blocks may be connected in series or in series and parallel.
 電池監視装置BM1~BM4は、各々がマイコン30との間で無線通信を行うためのアンテナを備えている。マイコン30は、アンテナを備えた無線通信部RFと接続されている。この無線通信部RFを介して、マイコン30は各電池監視装置BM1~BM4と無線通信を行い、各電池監視装置BM1~BM4に対してそれぞれ対応するセルグループの状態を監視するように指示する。また、各電池監視装置BM1~BM4から送信される各セルグループの状態の監視結果を受信する。 The battery monitoring devices BM1 to BM4 each include an antenna for performing wireless communication with the microcomputer 30. The microcomputer 30 is connected to a radio communication unit RF having an antenna. Through this wireless communication unit RF, the microcomputer 30 performs wireless communication with each of the battery monitoring devices BM1 to BM4, and instructs each of the battery monitoring devices BM1 to BM4 to monitor the state of the corresponding cell group. Further, the monitoring result of the state of each cell group transmitted from each of the battery monitoring devices BM1 to BM4 is received.
 マイコン30から無線通信部RFを介して電池監視装置BM1~BM4へ送信される無線信号には、電池監視装置BM1~BM4の中でどの電池監視装置に監視動作を実行させるかを指定するためのID情報と、ID情報で指定された電池監視装置が対応するセルグループに対して実行する監視動作の内容を指定するためのコマンド情報とを含む。無線通信部RFは、マイコン30から出力されるこれらの情報を所定の変調方式で変調することにより無線信号を生成し、電池監視装置BM1~BM4へ送信する。 A wireless signal transmitted from the microcomputer 30 to the battery monitoring devices BM1 to BM4 via the wireless communication unit RF is used to designate which battery monitoring device in the battery monitoring devices BM1 to BM4 is to execute the monitoring operation. ID information and command information for designating the content of the monitoring operation to be performed on the cell group corresponding to the battery monitoring device designated by the ID information are included. The radio communication unit RF generates radio signals by modulating the information output from the microcomputer 30 by a predetermined modulation method, and transmits the radio signals to the battery monitoring devices BM1 to BM4.
 電池監視装置BM1~BM4には、互いに異なる固有のIDが製造時に予め設定されている。マイコン30から無線信号が送信されると、各電池監視装置BM1~BM4は、その無線信号に含まれるID情報を設定されているIDと比較することで、その無線信号が自身に対して送信されたものであるか否かを判断する。 In the battery monitoring devices BM1 to BM4, different unique IDs are set in advance at the time of manufacture. When the wireless signal is transmitted from the microcomputer 30, each of the battery monitoring devices BM1 to BM4 compares the ID information included in the wireless signal with the set ID, so that the wireless signal is transmitted to itself. It is judged whether it is a thing.
 なお、電池モジュール9と電池監視装置BM1~BM4とは、図1の駆動システムに搭載されて車両に組み込まれる前には、互いに接続された状態で組電池として所定の保管場所に保管される。この保管時の電池状態を管理するために、後述する電池状態管理装置と電池監視装置BM1~BM4との間で無線通信が行われる。このときの具体的な動作については、後で説明する。 It should be noted that the battery module 9 and the battery monitoring devices BM1 to BM4 are stored in a predetermined storage location as an assembled battery in a state of being connected to each other before being mounted on the drive system of FIG. In order to manage the battery state at the time of storage, wireless communication is performed between a battery state management device described later and the battery monitoring devices BM1 to BM4. A specific operation at this time will be described later.
 電池ディスコネクトユニットBDU内にはホール素子等の電流センサSiが設置されている。電流センサSiの出力はマイコン30に入力される。電池モジュール9の総電圧および温度に関する信号もマイコン30に入力され、それぞれマイコン30のAD変換器(ADC)によって測定される。温度センサは電池モジュールブロック9A,9B内の複数箇所に設けられている。 A current sensor Si such as a Hall element is installed in the battery disconnect unit BDU. The output of the current sensor Si is input to the microcomputer 30. Signals relating to the total voltage and temperature of the battery module 9 are also input to the microcomputer 30 and are measured by an AD converter (ADC) of the microcomputer 30. The temperature sensor is provided at a plurality of locations in the battery module blocks 9A and 9B.
 図2は、本発明による電池監視装置BM1の構成を示すブロック図である。なお、説明は省略するが、他の電池監視装置BM2~BM4に関しても同様の構成となっている。 FIG. 2 is a block diagram showing the configuration of the battery monitoring device BM1 according to the present invention. Although not described, the other battery monitoring devices BM2 to BM4 have the same configuration.
 図2に示すように、電池監視装置BM1は、受信部31、認証回路33、電源回路34、電池監視回路35および送信部36を有する。 As shown in FIG. 2, the battery monitoring device BM1 includes a receiving unit 31, an authentication circuit 33, a power supply circuit 34, a battery monitoring circuit 35, and a transmitting unit 36.
 受信部31は、マイコン30や前述の電池状態管理装置から送信される無線信号を受信すると、その無線信号が電池監視装置BM1に対して送信されたものである否かを確認する。この確認は、無線信号に含まれる前述のID情報が示すIDと、電池監視装置BM1に対して割り当てられたIDとを比較し、これらが一致するか否かを判別することで行うことができる。その結果、両IDが一致していれば、受信した無線信号が電池監視装置BM1に対して送信されたものであると判断し、その無線信号を復調して得られた復調信号に含まれる前述のコマンド情報に基づくコマンドを電池監視回路35へ出力する。 When receiving the wireless signal transmitted from the microcomputer 30 or the above-described battery state management device, the receiving unit 31 checks whether or not the wireless signal is transmitted to the battery monitoring device BM1. This confirmation can be performed by comparing the ID indicated by the ID information included in the wireless signal with the ID assigned to the battery monitoring device BM1 and determining whether or not they match. . As a result, if both IDs match, it is determined that the received radio signal is transmitted to the battery monitoring device BM1, and the above-mentioned demodulated signal obtained by demodulating the radio signal includes A command based on the command information is output to the battery monitoring circuit 35.
 認証回路33は、マイコン30や電池状態管理装置との間で無線通信を開始する前に、受信部31からの認証要求に応じて、その通信先が正当な通信先であるか否かを判定するための認証を行う。その結果、正当な通信先であると判定された場合にのみ、電池監視装置BM1と当該通信先との間で無線通信を開始することができる。認証回路33による認証結果は送信部36へ出力され、送信部36から当該通信先へと送信される。 The authentication circuit 33 determines whether or not the communication destination is a valid communication destination in response to an authentication request from the reception unit 31 before starting wireless communication with the microcomputer 30 or the battery state management device. Authentication to do As a result, wireless communication can be started between the battery monitoring device BM1 and the communication destination only when it is determined that the communication destination is a valid communication destination. The authentication result by the authentication circuit 33 is output to the transmission unit 36 and transmitted from the transmission unit 36 to the communication destination.
 電源回路34は、認証回路33、電池監視回路35および送信部36への電源供給を行う。電源回路34からの電源供給は、電池監視装置BM1が接続されている電池セルBC1~BC4の電力を用いて行われる。 The power supply circuit 34 supplies power to the authentication circuit 33, the battery monitoring circuit 35, and the transmission unit 36. The power supply from the power supply circuit 34 is performed using the power of the battery cells BC1 to BC4 to which the battery monitoring device BM1 is connected.
 電池監視回路35は、電池監視装置BM1に対応するセルグループを構成する電池セルBC1~BC4と接続されており、受信部31からのコマンドに応じて、電池セルBC1~BC4の状態を監視するための監視動作を行う。このとき電池監視回路35は、前述のような様々な監視動作のうち、受信部31から出力されるコマンドによって指定された内容の監視動作を電池セルBC1~BC4に対して行う。すなわち、マイコン30からの無線信号に含まれるコマンド情報に基づいて、受信部31から電池監視回路35へコマンドが出力されることにより、電池監視回路35が行う監視動作の内容が決定される。電池監視回路35は、電池セルBC1~BC4に対して監視動作を行ったら、その結果をセル状態監視結果として送信部36へ出力する。 The battery monitoring circuit 35 is connected to the battery cells BC1 to BC4 constituting the cell group corresponding to the battery monitoring device BM1, and monitors the state of the battery cells BC1 to BC4 according to a command from the receiving unit 31. The monitoring operation is performed. At this time, the battery monitoring circuit 35 performs the monitoring operation of the content specified by the command output from the receiving unit 31 among the various monitoring operations as described above on the battery cells BC1 to BC4. That is, based on the command information included in the radio signal from the microcomputer 30, the content of the monitoring operation performed by the battery monitoring circuit 35 is determined by outputting a command from the receiving unit 31 to the battery monitoring circuit 35. When the battery monitoring circuit 35 performs a monitoring operation on the battery cells BC1 to BC4, the battery monitoring circuit 35 outputs the result to the transmitting unit 36 as a cell state monitoring result.
 送信部36は、電池監視回路35から出力されたセル状態監視結果を所定の変調方式で変調することにより無線信号を生成し、図1のマイコン30へ送信する。マイコン30では、送信部36から送信された無線信号を無線通信部RFを介して受信することにより、電池セルBC1~BC4に対する監視結果を電池監視装置BM1から取得することができる。 The transmitting unit 36 generates a radio signal by modulating the cell state monitoring result output from the battery monitoring circuit 35 by a predetermined modulation method, and transmits the wireless signal to the microcomputer 30 in FIG. The microcomputer 30 can obtain the monitoring results for the battery cells BC1 to BC4 from the battery monitoring device BM1 by receiving the wireless signal transmitted from the transmitting unit 36 via the wireless communication unit RF.
 図3は、電池監視装置BM1における電池監視回路35の内部ブロックを示す図である。なお、説明は省略するが、他の電池監視装置BM2~BM4の電池監視回路35に関してもこれと同様である。 FIG. 3 is a diagram showing an internal block of the battery monitoring circuit 35 in the battery monitoring device BM1. Although not described, the same applies to the battery monitoring circuits 35 of the other battery monitoring devices BM2 to BM4.
 図1の電池モジュール9は、電池監視装置BM1~BM4に対応して4つのセルグループに分かれている。電池監視装置BM1に対応するセルグループGB1には、図2に示した4つの電池セルBC1~BC4が含まれている。 The battery module 9 in FIG. 1 is divided into four cell groups corresponding to the battery monitoring devices BM1 to BM4. The cell group GB1 corresponding to the battery monitoring device BM1 includes the four battery cells BC1 to BC4 shown in FIG.
 電池監視回路35の各入力側端子は、セルグループGB1を構成する電池セルBC1~BC4にそれぞれ接続されている。電池セルBC1の正極端子は、入力端子V1を介して入力回路116に接続されている。この入力回路116はマルチプレクサを含む。電池セルBC1の負極端子であって電池セルBC2の正極端子は入力端子V2を介して、電池セルBC2の負極端子であって電池セルBC3の正極端子は入力端子V3を介して、電池セルBC3の負極端子であって電池セルBC4の正極端子は入力端子V4を介して、それぞれ入力回路116に接続されている。電池セルBC4の負極端子は、電池監視回路35の端子GNDに接続されている。 Each input terminal of the battery monitoring circuit 35 is connected to each of the battery cells BC1 to BC4 constituting the cell group GB1. The positive terminal of the battery cell BC1 is connected to the input circuit 116 via the input terminal V1. The input circuit 116 includes a multiplexer. The negative terminal of the battery cell BC1 and the positive terminal of the battery cell BC2 are connected via the input terminal V2. The negative terminal of the battery cell BC2 and the positive terminal of the battery cell BC3 are connected via the input terminal V3 of the battery cell BC3. The positive terminal of the battery cell BC4, which is a negative terminal, is connected to the input circuit 116 via the input terminal V4. The negative terminal of the battery cell BC4 is connected to the terminal GND of the battery monitoring circuit 35.
 電圧検出回路122は、各電池セルBC1~BC4のそれぞれの端子間電圧をデジタル値に変換する回路を有している。デジタル値に変換された各端子間電圧はIC制御回路123に送られ、内部の記憶回路125に保持される。これらの電圧は自己診断などに利用されたり、図1に示すマイコン30に送信されたりする。 The voltage detection circuit 122 has a circuit that converts the voltage between the terminals of each of the battery cells BC1 to BC4 into a digital value. Each terminal voltage converted to a digital value is sent to the IC control circuit 123 and held in the internal storage circuit 125. These voltages are used for self-diagnosis or transmitted to the microcomputer 30 shown in FIG.
 IC制御回路123は、演算機能を有すると共に、記憶回路125と、各種電圧の検知や状態診断を周期的に行うタイミング制御回路252を有している。記憶回路125は、例えばレジスタ回路で構成されている。電圧検出回路122で検出した各電池セルBC1~BC4の各端子間電圧は、IC制御回路123の記憶回路125において、各電池セルBC1~BC4に対応づけて記憶される。また、その他の様々な検出値についても、記憶回路125において予め定められたアドレスに読出し可能に保持することができる。 The IC control circuit 123 has an arithmetic function and also includes a storage circuit 125 and a timing control circuit 252 that periodically detects various voltages and performs state diagnosis. The memory circuit 125 is constituted by a register circuit, for example. The voltages between the terminals of the battery cells BC1 to BC4 detected by the voltage detection circuit 122 are stored in the storage circuit 125 of the IC control circuit 123 in association with the battery cells BC1 to BC4. Further, various other detection values can also be held in the memory circuit 125 so as to be readable at a predetermined address.
 IC制御回路123には、通信回路127が接続されている。IC制御回路123は、この通信回路127を介して、図2の受信部31により出力されたマイコン30からのコマンドが入力されると共に、セル状態監視結果を送信部36へ出力して送信部36によりマイコン30へ送信する。受信部31からコマンドが送られると、IC制御回路123はそのコマンドの内容を解読し、コマンド内容に応じた処理を行う。マイコン30からのコマンドは、たとえば、各電池セルBC1~BC4の端子間電圧の計測値を要求するコマンド、各電池セルBC1~BC4の充電状態を調整するための放電動作を要求するコマンド、電池監視装置BM1の動作を開始するコマンド(Wake UP)、動作を停止するコマンド(スリープ)、アドレス設定を要求するコマンド、等を含む。 A communication circuit 127 is connected to the IC control circuit 123. The IC control circuit 123 receives a command from the microcomputer 30 output by the receiving unit 31 of FIG. 2 via the communication circuit 127 and outputs a cell state monitoring result to the transmitting unit 36 to transmit the transmitting unit 36. To the microcomputer 30. When a command is sent from the receiving unit 31, the IC control circuit 123 decodes the content of the command and performs processing according to the command content. The command from the microcomputer 30 is, for example, a command for requesting a measured value of the inter-terminal voltage of each battery cell BC1 to BC4, a command for requesting a discharge operation for adjusting the charging state of each battery cell BC1 to BC4, battery monitoring A command for starting the operation of the device BM1 (Wake UP), a command for stopping the operation (sleep), a command for requesting address setting, and the like are included.
 電池セルBC1の正極端子は、抵抗R1を介して電池監視回路35の端子B1に接続されている。この端子B1と端子V2との間にはバランシングスイッチ129Aが設けられている。バランシングスイッチ129Aには、このスイッチの動作状態を検出するための動作状態検出回路128Aが並列接続されている。このバランシングスイッチ129Aは放電制御回路132によって開閉が制御される。同様に、電池セルBC2の正極端子は抵抗R2を介して端子B2に接続され、この端子B2と端子V3との間にはバランシングスイッチ129Bが設けられている。バランシングスイッチ129Bには、このスイッチの動作状態を検出するための動作状態検出回路128Bが並列接続されている。このバランシングスイッチ129Aは放電制御回路132によって開閉が制御される。 The positive terminal of the battery cell BC1 is connected to the terminal B1 of the battery monitoring circuit 35 via the resistor R1. A balancing switch 129A is provided between the terminal B1 and the terminal V2. The balancing switch 129A is connected in parallel with an operation state detection circuit 128A for detecting the operation state of the switch. The balancing switch 129A is controlled to be opened and closed by the discharge control circuit 132. Similarly, the positive terminal of the battery cell BC2 is connected to the terminal B2 via the resistor R2, and a balancing switch 129B is provided between the terminal B2 and the terminal V3. The balancing switch 129B is connected in parallel with an operation state detection circuit 128B for detecting the operation state of the switch. The balancing switch 129A is controlled to be opened and closed by the discharge control circuit 132.
 電池セルBC3の正極端子は抵抗R3を介して端子B3に接続され、この端子B3はと端子V4との間にはバランシングスイッチ129Cが設けられている。バランシングスイッチ129Cには、このスイッチの動作状態を検出するための動作状態検出回路128Cが並列接続されている。このバランシングスイッチ129Cは放電制御回路132によって開閉制御される。電池セルBC4の正極端子は抵抗R4を介して端子B4に接続され、この端子B4と端子GNDとの間にはバランシングスイッチ129Dが設けられている。バランシングスイッチ129Dには、このスイッチの動作状態を検出するための動作状態検出回路128Dが並列接続されている。このバランシングスイッチ129Dは放電制御回路132によって開閉が制御される。 The positive terminal of the battery cell BC3 is connected to the terminal B3 via the resistor R3, and a balancing switch 129C is provided between the terminal B3 and the terminal V4. The balancing switch 129C is connected in parallel with an operation state detection circuit 128C for detecting the operation state of the switch. The balancing switch 129C is controlled to open and close by the discharge control circuit 132. The positive terminal of the battery cell BC4 is connected to the terminal B4 via the resistor R4, and a balancing switch 129D is provided between the terminal B4 and the terminal GND. An operation state detection circuit 128D for detecting the operation state of the switch is connected in parallel to the balancing switch 129D. The balancing switch 129D is controlled to be opened and closed by the discharge control circuit 132.
 動作状態検出回路128A~128Dは、それぞれ各バランシングスイッチ129A~129Dの両端電圧を所定周期で繰り返し検出し、各バランシングスイッチ129A~129Dが正常であるかどうかを検出する。バランシングスイッチ129A~129Dは電池セルBC1~電池セルBC4の充電状態を調整するスイッチである。これらスイッチが異常の場合、電池セルの充電状態を制御できなくなり、一部の電池セルが過充電あるいは過放電になる恐れがある。たとえば、あるバランシングスイッチが導通している状態であるにもかかわらず、その端子間電圧が対応する電池セルの端子電圧を示す場合に、当該バランシングスイッチが異常であると検出する。この場合は、当該バランシングスイッチが制御信号に基づく導通状態になっていないこととなる。また、あるバランシングスイッチが開放状態であるにもかかわらず、その端子間電圧が対応する電池セルの端子電圧に比べて低い値である場合にも、当該バランシングスイッチが異常であると検出する。この場合は、当該バランシングスイッチは制御信号に関係なく導通していることとなる。このようにしてバランシングスイッチ129A~129Dの異常検出を行う動作状態検出回路128A~128Dには、たとえば差動アンプ等で構成される電圧検出回路が用いられる。 The operation state detection circuits 128A to 128D repeatedly detect the voltages across the balancing switches 129A to 129D at a predetermined period, respectively, and detect whether the balancing switches 129A to 129D are normal. The balancing switches 129A to 129D are switches that adjust the charging states of the battery cells BC1 to BC4. If these switches are abnormal, the state of charge of the battery cells cannot be controlled, and some battery cells may be overcharged or overdischarged. For example, even when a certain balancing switch is in a conductive state, when the voltage between the terminals indicates the terminal voltage of the corresponding battery cell, it is detected that the balancing switch is abnormal. In this case, the balancing switch is not in a conductive state based on the control signal. Further, even when a certain balancing switch is in an open state, when the voltage between the terminals is lower than the terminal voltage of the corresponding battery cell, it is detected that the balancing switch is abnormal. In this case, the balancing switch is conductive regardless of the control signal. As the operation state detection circuits 128A to 128D for detecting the abnormality of the balancing switches 129A to 129D in this way, a voltage detection circuit composed of, for example, a differential amplifier is used.
 バランシングスイッチ129A~129Dは、たとえばMOS型FETで構成され、それぞれ対応する電池セルBC1~BC4に蓄積された電力を放電させる作用をする。多数の電池セルが直列接続されている電池モジュール9に対してインバータなどの電気負荷が接続されると、その電気負荷に対する電流の供給は、直列接続された多数の電池セルの全体で行われる。このとき、各電池セルが互いに異なる充電状態(SOC)にあると、電池モジュール9において最も放電されている電池セルの状態により電流が制限されてしまうこととなる。一方、電池モジュール9が充電される状態では、電池モジュール9への電流の供給は、直列接続された多数の電池セルの全体に対して行われる。このとき、各電池セルが互いに異なる充電状態(SOC)にあると、電池モジュール9において最も充電されている電池セルの状態により電流が制限されてしまうこととなる。 Balancing switches 129A to 129D are made of, for example, MOS FETs, and act to discharge the electric power stored in the corresponding battery cells BC1 to BC4, respectively. When an electric load such as an inverter is connected to the battery module 9 in which a large number of battery cells are connected in series, the supply of current to the electric load is performed by the entire number of battery cells connected in series. At this time, if each battery cell is in a different state of charge (SOC), the current is limited by the state of the battery cell that is most discharged in the battery module 9. On the other hand, in the state where the battery module 9 is charged, the current is supplied to the battery module 9 with respect to the whole of a large number of battery cells connected in series. At this time, if each battery cell is in a different state of charge (SOC), the current is limited by the state of the battery cell that is most charged in the battery module 9.
 そこで、上記のように各電池セルの充電状態の違いによって電流が制限されてしまうのを解消するため、以下のようなバランシングを必要に応じて行う。具体的には、電池モジュール9において直列接続されている多数の電池セルのうち、所定の充電状態、たとえば各電池セルの充電状態の平均値を越えた充電状態にある電池セルに対して、当該電池セルに接続されているバランシングスイッチを導通状態とする。これにより、導通状態としたバランシングスイッチに直列接続されている抵抗を介して、当該電池セルから放電電流を流す。その結果、各電池セルの充電状態が互いに近づく方向に制御されることとなる。また他の方法として、電池モジュール9において最も放電状態にある電池セルを基準セルとし、この基準セルとの充電状態の差に基づき放電時間を決める方法もある。その他にも、各電池セルの充電状態を調整するために様々なバランシング方法を用いることができる。なお、各電池セルの充電状態は、各電池セルの端子電圧を基に演算で求めることができる。各電池セルの充電状態と端子電圧には相関関係が有るので、各電池セルの端子電圧を互いに近づけるようにバランシングスイッチ129A~129Dを制御することで、各電池セルの充電状態を互いに近づけることができる。 Therefore, in order to eliminate the current limitation due to the difference in the charge state of each battery cell as described above, the following balancing is performed as necessary. Specifically, among a large number of battery cells connected in series in the battery module 9, for a battery cell in a predetermined charged state, for example, a charged state exceeding the average value of the charged state of each battery cell, The balancing switch connected to the battery cell is turned on. As a result, a discharge current is caused to flow from the battery cell via a resistor connected in series to the balancing switch in a conductive state. As a result, the state of charge of each battery cell is controlled to approach each other. As another method, there is a method in which the battery cell in the battery module 9 that is in the most discharged state is used as a reference cell, and the discharge time is determined based on the difference in the charged state with the reference cell. In addition, various balancing methods can be used to adjust the state of charge of each battery cell. In addition, the charge state of each battery cell can be calculated | required by calculation based on the terminal voltage of each battery cell. Since there is a correlation between the charge state of each battery cell and the terminal voltage, it is possible to bring the charge state of each battery cell close to each other by controlling the balancing switches 129A to 129D so that the terminal voltage of each battery cell is close to each other. it can.
 バランシングスイッチ129A~129Dの端子間電圧、すなわちバランシングスイッチ129A~129Dを構成する各FETのソースとドレイン間の電圧は、動作状態検出回路128A~128Dによって検出され、電位変換回路130に出力される。ここで、各FETのソースとドレイン間の電位は、基準電位に対してそれぞれ異なっているため、このままでは比較判断が難しい。そこで、電位変換回路130でこれらの電位をそろえ、次に異常判定回路131で異常判定する。また、電位変換回路130は、バランシングスイッチ129A~129Dの中で診断すべきバランシングスイッチをIC制御回路123からの制御信号に基づき選択する機能も有している。選択されたバランシングスイッチの端子間電圧が電位変換回路130から異常判定回路131に送られると、異常判定回路131はIC制御回路123から制御信号に基づき、その端子間電圧を所定の判定電圧と比較する。これにより、異常判定回路131はバランシングスイッチ129A~129Dが異常か否かを判定することができる。 The voltage between the terminals of the balancing switches 129A to 129D, that is, the voltage between the source and drain of each FET constituting the balancing switches 129A to 129D is detected by the operation state detection circuits 128A to 128D and output to the potential conversion circuit 130. Here, since the potential between the source and drain of each FET is different from the reference potential, it is difficult to make a comparative determination as it is. Therefore, the potential conversion circuit 130 matches these potentials, and then the abnormality determination circuit 131 determines abnormality. The potential conversion circuit 130 also has a function of selecting a balancing switch to be diagnosed among the balancing switches 129A to 129D based on a control signal from the IC control circuit 123. When the voltage between the terminals of the selected balancing switch is sent from the potential conversion circuit 130 to the abnormality determination circuit 131, the abnormality determination circuit 131 compares the voltage between the terminals with a predetermined determination voltage based on the control signal from the IC control circuit 123. To do. Thereby, the abnormality determination circuit 131 can determine whether or not the balancing switches 129A to 129D are abnormal.
 放電制御回路132には、IC制御回路123から放電させるべき電池セルに対応したバランシングスイッチを導通させるための指令信号が送られる。この指令信号に基づき、放電制御回路132は、上述したようにMOS型FETから構成されるバランシングスイッチ129A~129Dの導通を行うゲート電圧に相当する信号を出力する。 The discharge control circuit 132 is supplied with a command signal for making the balancing switch corresponding to the battery cell to be discharged from the IC control circuit 123 conductive. Based on this command signal, the discharge control circuit 132 outputs a signal corresponding to the gate voltage for conducting the balancing switches 129A to 129D composed of MOS type FETs as described above.
 IC制御回路123は、図1のマイコン30からのコマンドにより、電池セルに対応した放電時間の指令を受け、上記のような放電の動作を実行する。またIC制御回路123は、バランシングスイッチ129A~129Dの異常を検出すると、その検出結果を図2に示したセル状態監視結果として送信部36へ出力することにより、送信部36からマイコン30へ無線送信する。 The IC control circuit 123 receives a discharge time command corresponding to the battery cell in response to a command from the microcomputer 30 shown in FIG. 1, and executes the discharge operation as described above. Further, when detecting an abnormality in the balancing switches 129A to 129D, the IC control circuit 123 outputs the detection result to the transmission unit 36 as the cell state monitoring result shown in FIG. To do.
 次に、保管時における電池状態の管理について説明する。図4は、本実施形態による電池状態管理システムの概略構成を示す図である。この電池状態管理システムは、図1の駆動システムに搭載されて車両に組み込まれる前の組電池AB1と、電池状態管理装置40によって構成される。 Next, the management of the battery state during storage will be described. FIG. 4 is a diagram showing a schematic configuration of the battery state management system according to the present embodiment. This battery state management system includes an assembled battery AB1 that is mounted on the drive system of FIG.
 組電池AB1は、電池モジュール9と電池監視装置BM1~BM4とが互いに接続されることによって構成される。この組電池AB1は、たとえば工場、船舶等の輸送機関、流通拠点などにおいて、倉庫などの所定の保管場所に保管される。各電池監視装置BM1~BM4には、予め固有のID_A1~ID_D1がそれぞれ設定されている。 The assembled battery AB1 is configured by connecting the battery module 9 and the battery monitoring devices BM1 to BM4 to each other. This assembled battery AB1 is stored in a predetermined storage location such as a warehouse in a transportation facility such as a factory or a ship, a distribution base, or the like. Unique ID_A1 to ID_D1 are set in advance in each of the battery monitoring devices BM1 to BM4.
 なお、上記の保管場所には、組電池AB1以外にも多数の組電池が一緒に保管されるが、図4では組電池AB1を代表例として示している。他の組電池も、組電池AB1と同様の構成を有している。 In addition, many assembled batteries other than the assembled battery AB1 are stored together in the above-mentioned storage location, but FIG. 4 shows the assembled battery AB1 as a representative example. Other assembled batteries also have the same configuration as the assembled battery AB1.
 電池状態管理装置40は、上記保管場所に組電池AB1として保管されている電池モジュール9の状態を管理するための装置であり、管理対象とする組電池の各電池監視装置との間で無線通信を行う。電池状態管理装置40には、予め固有のID_CBが設定されている。電池状態管理装置40が管理対象とする組電池は、電池状態管理装置40に記憶されている固有IDによって定められる。図4に示した例では、N個の組電池ABx(x=1~N)について、それぞれに含まれる各電池監視装置の固有ID_Ax~ID_Dxが電池状態管理装置40に記憶されている。なお、これらの固有IDを電池状態管理装置40に記憶させる方法については、後で説明する。 The battery state management device 40 is a device for managing the state of the battery module 9 stored as the assembled battery AB1 in the storage location, and wirelessly communicates with each battery monitoring device of the assembled battery to be managed. I do. A unique ID_CB is set in advance in the battery state management device 40. The assembled battery to be managed by the battery state management device 40 is determined by the unique ID stored in the battery state management device 40. In the example shown in FIG. 4, the unique ID_Ax to ID_Dx of each battery monitoring device included in each of N assembled batteries ABx (x = 1 to N) is stored in the battery state management device 40. A method for storing these unique IDs in the battery state management device 40 will be described later.
 電池状態管理装置40にはまた、認証用の鍵情報を生成するためのテーブル情報である鍵生成テーブルが記憶されている。電池状態管理装置40は、管理対象である組電池AB1の各電池監視装置BM1~BM4との間で無線通信を開始する際には、鍵生成テーブルを参照して鍵情報を生成し、その鍵情報を各電池監視装置BM1~BM4へ送信する。すると、各電池監視装置BM1~BM4では、電池状態管理装置40から受信した鍵情報に基づいて、認証回路33(図2参照)により認証が行われ、電池状態管理装置40が正当な通信先であるか否かが判断される。その結果、正当な通信先であると判断されると、電池状態管理装置40と各電池監視装置BM1~BM4との間で無線通信が開始される。 The battery state management device 40 also stores a key generation table that is table information for generating key information for authentication. When starting wireless communication with each of the battery monitoring devices BM1 to BM4 of the battery pack AB1 to be managed, the battery state management device 40 generates key information by referring to the key generation table, and the key Information is transmitted to each of the battery monitoring devices BM1 to BM4. Then, in each of the battery monitoring devices BM1 to BM4, authentication is performed by the authentication circuit 33 (see FIG. 2) based on the key information received from the battery state management device 40, so that the battery state management device 40 is a valid communication destination. It is determined whether or not there is. As a result, when it is determined that the communication destination is valid, wireless communication is started between the battery state management device 40 and each of the battery monitoring devices BM1 to BM4.
 以上説明したような電池状態管理装置40は、たとえば、パソコンと無線機器をUSB等により接続したもので構成される。すなわち、パソコン上で所定のプログラムを実行して無線機器を制御し、無線機器に対して管理対象とする組電池の各電池監視装置との間で無線通信を行わせることにより、電池状態管理装置40が実現される。 The battery state management device 40 as described above is configured, for example, by connecting a personal computer and a wireless device by USB or the like. That is, a battery state management device is configured by controlling a wireless device by executing a predetermined program on a personal computer and causing the wireless device to perform wireless communication with each battery monitoring device of an assembled battery to be managed. 40 is realized.
 以上説明した電池状態管理システムによる電池状態管理方法を図5を用いて説明する。組電池AB1は、たとえば工場からの出荷検査時などに、出荷検査装置50によって電池監視装置BM1~BM4の固有ID_A1~ID_D1が読み出され、これらの固有IDに関する情報が出荷検査装置50に吸い上げられる。出荷検査装置50に吸い上げられた固有ID_A1~ID_D1の情報は、検査結果ファイルサーバ60に登録される。 The battery state management method by the battery state management system described above will be described with reference to FIG. In the assembled battery AB1, for example, at the time of shipping inspection from the factory, the unique ID_A1 to ID_D1 of the battery monitoring devices BM1 to BM4 are read by the shipping inspection device 50, and information related to these unique IDs is taken up by the shipping inspection device 50. . Information of the unique ID_A1 to ID_D1 sucked up by the shipping inspection device 50 is registered in the inspection result file server 60.
 検査結果ファイルサーバ60に登録された固有ID_A1~ID_D1の情報は、組電池AB1を管理対象として電池モジュール9の状態を管理するときに、事前に電池状態管理装置40によって読み出され、電池状態管理装置40において記憶される。同様にして、倉庫内に保管されている梱包状態の組電池AB1~AB6を管理対象として電池状態の管理を行うときには、これらに含まれる電池監視装置の固有IDが検査結果ファイルサーバ60からそれぞれ事前に読み出され、電池状態管理装置40に記憶される。このようにして、管理対象とする組電池AB1~AB6に含まれる各電池監視装置の固有IDを電池状態管理装置40に記憶させておくことで、電池状態管理装置40は各組電池AB1~AB6との間で無線通信を行い、これらの状態管理を行うことができる。 The information of the unique ID_A1 to ID_D1 registered in the inspection result file server 60 is read by the battery state management device 40 in advance when managing the state of the battery module 9 with the assembled battery AB1 as a management target, and the battery state management Stored in device 40. Similarly, when the battery status is managed for the assembled batteries AB1 to AB6 in the packed state stored in the warehouse, the unique IDs of the battery monitoring devices included in these are preliminarily obtained from the inspection result file server 60 in advance. And stored in the battery state management device 40. In this way, the battery state management device 40 stores the unique IDs of the battery monitoring devices included in the battery packs AB1 to AB6 to be managed in the battery state management device 40, so that the battery state management device 40 can store the battery packs AB1 to AB6. The wireless communication can be performed between these and the state management.
 続いて、本実施形態の電池状態管理システムにおける電池状態管理の処理手順について説明する。図6は、電池状態管理装置40の処理手順を示すフローチャートであり、図7は、組電池AB1を管理対象としたときの電池監視装置BM1の処理手順を示すフローチャートである。なお、以下では組電池AB1を管理対象としたときの処理手順を例として説明するが、他の組電池を管理対象としたときも同様である。また、組電池AB1の電池監視装置BM1~BM4のうち、電池監視装置BM1の処理手順を例として説明するが、他の電池監視装置BM2~BM4でも同様である。 Subsequently, a battery state management processing procedure in the battery state management system of the present embodiment will be described. FIG. 6 is a flowchart showing a processing procedure of the battery state management device 40, and FIG. 7 is a flowchart showing a processing procedure of the battery monitoring device BM1 when the assembled battery AB1 is a management target. In the following, a processing procedure when the assembled battery AB1 is a management target will be described as an example, but the same applies to a case where another assembled battery is a management target. The processing procedure of the battery monitoring device BM1 among the battery monitoring devices BM1 to BM4 of the assembled battery AB1 will be described as an example, but the same applies to the other battery monitoring devices BM2 to BM4.
 図6のステップS10において、電池状態管理装置40は、検査結果ファイルサーバ60に登録されている固有IDの一覧を取得する。こうして取得された固有IDの一覧から、管理対象とする組電池AB1に含まれる電池監視装置BM1~BM4に対する固有ID_A1~ID_D1を選択すると、その情報が検査結果ファイルサーバ60から読み出され、電池状態管理装置40において記憶される。 6, the battery state management device 40 acquires a list of unique IDs registered in the inspection result file server 60. When the unique IDs_A1 to ID_D1 for the battery monitoring devices BM1 to BM4 included in the battery pack AB1 to be managed are selected from the list of unique IDs acquired in this way, the information is read from the inspection result file server 60, and the battery state It is stored in the management device 40.
 ステップS20において、電池状態管理装置40は、管理対象とする組電池AB1の各電池監視装置BM1~BM4との間で所定の認証処理を行う。ここで認証処理が行われることにより、電池状態管理装置40が正当な通信先であるか否かの判定が各電池監視装置BM1~BM4において行われ、その判定の結果が認証結果として各電池監視装置BM1~BM4から電池状態管理装置40へ送信される。なお、認証処理の具体的な手順については、後で図8を用いて説明する。 In step S20, the battery state management device 40 performs a predetermined authentication process with each of the battery monitoring devices BM1 to BM4 of the assembled battery AB1 to be managed. By performing the authentication process here, it is determined in each of the battery monitoring devices BM1 to BM4 whether or not the battery state management device 40 is a valid communication destination, and the result of the determination is the battery monitoring as the authentication result. The data is transmitted from the devices BM1 to BM4 to the battery state management device 40. The specific procedure of the authentication process will be described later with reference to FIG.
 ステップS30において、電池状態管理装置40は、各電池監視装置BM1~BM4から送信された認証結果に基づいて、認証OKであるか否かを判定する。認証OKである場合、すなわち電池監視装置BM1~BM4の全てにおいて電池状態管理装置40が正当な通信先であるとそれぞれ判定された場合は、ステップS40へ進む。一方、認証OKでない場合、すなわち電池監視装置BM1~BM4のいずれか少なくとも1つにおいて電池状態管理装置40が正当な通信先ではないと判定された場合は、図6のフローチャートに示す処理を終了する。 In step S30, the battery state management device 40 determines whether or not the authentication is OK based on the authentication result transmitted from each of the battery monitoring devices BM1 to BM4. If authentication is OK, that is, if it is determined that the battery state management device 40 is a valid communication destination in all of the battery monitoring devices BM1 to BM4, the process proceeds to step S40. On the other hand, when the authentication is not OK, that is, when it is determined that at least one of the battery monitoring devices BM1 to BM4 is not a valid communication destination, the processing shown in the flowchart of FIG. .
 ステップS40において、電池状態管理装置40は、各電池監視装置BM1~BM4から、それぞれが接続されているセルグループの各電池セルにおけるセル電圧および温度の測定結果を取得する。このとき電池状態管理装置40は、後述する図7のステップS250の処理によって各電池監視装置BM1~BM4からセル状態監視結果として送信されるセル電圧および温度の測定結果を受信する。これにより、電池監視装置BM1~BM4に接続されている各セルグループの各電池セルにおけるセル電圧および温度の測定結果を取得する。 In step S40, the battery state management device 40 acquires the cell voltage and temperature measurement results in each battery cell of the cell group to which each of the battery monitoring devices BM1 to BM4 is connected. At this time, the battery state management device 40 receives the cell voltage and temperature measurement results transmitted as cell state monitoring results from each of the battery monitoring devices BM1 to BM4 by the process of step S250 in FIG. As a result, the cell voltage and temperature measurement results in each battery cell of each cell group connected to the battery monitoring devices BM1 to BM4 are acquired.
 ステップS50において、電池状態管理装置40は、ステップS40で取得したセル電圧および温度の測定結果に基づいて、電池監視装置BM1~BM4が接続されているセルグループの各電池セルの状態が異常であるか否かを判定する。この判定は、たとえば、測定されたセル電圧や温度が予め設定された所定の範囲にあるか否かにより行うことができる。すなわち、セル電圧や温度が所定の範囲内にあれば正常であると判定し、範囲外にあれば異常であると判定する。なお、これ以外の判定方法を用いて電池セルの状態が異常であるか否かを判定してもよい。電池監視装置BM1~BM4の全ての電池セルが異常なしの場合はステップS60へ進み、いずれか少なくとも1つの電池セルに異常がある場合はステップS150へ進む。 In step S50, the battery state management device 40 has an abnormal state of each battery cell in the cell group to which the battery monitoring devices BM1 to BM4 are connected based on the cell voltage and temperature measurement results obtained in step S40. It is determined whether or not. This determination can be made, for example, based on whether or not the measured cell voltage and temperature are within a predetermined range set in advance. That is, if the cell voltage or temperature is within a predetermined range, it is determined to be normal, and if it is outside the range, it is determined to be abnormal. In addition, you may determine whether the state of a battery cell is abnormal using determination methods other than this. If all the battery cells of the battery monitoring devices BM1 to BM4 are not abnormal, the process proceeds to step S60, and if any one of the battery cells is abnormal, the process proceeds to step S150.
 ステップS60において、電池状態管理装置40は、ステップS40で取得したセル電圧の測定結果に基づいて、各電池監視装置BM1~BM4に対してバランシングの必要があるか否かを判定する。この判定は、たとえば、測定されたセルグループの各セル電圧に基づいて各電池セルの充電状態を推測し、その中に前述のようなバランシングの条件を満たすものがあるか否かにより行うことができる。電池監視装置BM1~BM4の全てについてバランシングの必要がないと判定した場合は図6のフローチャートに示す処理を終了し、いずれか少なくとも1つの電池監視装置についてバランシングの必要があると判定した場合はステップS70へ進む。 In step S60, the battery state management device 40 determines whether balancing is required for each of the battery monitoring devices BM1 to BM4 based on the measurement result of the cell voltage acquired in step S40. This determination can be made, for example, by estimating the state of charge of each battery cell based on each cell voltage of the measured cell group, and whether or not there is a battery that satisfies the balancing condition as described above. it can. If it is determined that balancing is not necessary for all of the battery monitoring devices BM1 to BM4, the process shown in the flowchart of FIG. 6 is terminated, and if it is determined that balancing is required for at least one of the battery monitoring devices, a step is performed. Proceed to S70.
 ステップS70において、電池状態管理装置40は、ステップS60でバランシングの必要があると判定した電池監視装置に対して、当該電池監視装置が接続されているセルグループの電池セルの中でバランシング対象とする電池セル(調整セル)を決定すると共に、その調整セルの目標電圧を決定する。これらの決定は、ステップS40で取得したセル電圧の測定結果のうち、当該電池監視装置に対応するセルグループの各セル電圧の測定結果に基づいて行うことができる。 In step S70, the battery state management device 40 makes the balancing target among the battery cells of the cell group to which the battery monitoring device is connected with respect to the battery monitoring device determined to be balanced in step S60. A battery cell (adjustment cell) is determined, and a target voltage of the adjustment cell is determined. These determinations can be made based on the cell voltage measurement results of the cell group corresponding to the battery monitoring device among the cell voltage measurement results acquired in step S40.
 ステップS80において、電池状態管理装置40は、ステップS60でバランシングの必要があると判定した電池監視装置に対して、ステップS70で決定した調整セルおよび目標電圧に応じた放電要求コマンドを送信する。これにより、当該電池監視装置に対して、対応するセルグループにおける調整セルのセル電圧が目標電圧に達するまで調整セルを放電させるように指示を行う。 In step S80, the battery state management device 40 transmits a discharge request command corresponding to the adjusted cell determined in step S70 and the target voltage to the battery monitoring device determined to be balanced in step S60. This instructs the battery monitoring device to discharge the adjustment cell until the cell voltage of the adjustment cell in the corresponding cell group reaches the target voltage.
 ステップS90において、電池状態管理装置40は、内部に保有するタイマーを初期化し、タイマーによる時間測定を開始する。 In step S90, the battery state management device 40 initializes an internal timer and starts time measurement using the timer.
 ステップS100において、電池状態管理装置40は、ステップS80で放電要求コマンドを送信した電池監視装置から、対応するセルグループの各電池セルにおけるセル電圧および温度の測定結果を取得する。このとき電池状態管理装置40は、後述する図7のステップS290の処理によって当該電池監視装置からセル状態監視結果として送信されるセル電圧および温度の測定結果を受信する。これにより、当該電池監視装置に接続されているセルグループの各電池セルにおけるセル電圧および温度の測定結果を取得する。 In step S100, the battery state management device 40 acquires the cell voltage and temperature measurement results in each battery cell of the corresponding cell group from the battery monitoring device that transmitted the discharge request command in step S80. At this time, the battery state management device 40 receives the cell voltage and temperature measurement results transmitted as cell state monitoring results from the battery monitoring device by the process of step S290 in FIG. 7 described later. Thereby, the measurement result of the cell voltage and temperature in each battery cell of the cell group connected to the battery monitoring device is acquired.
 ステップS110において、電池状態管理装置40は、ステップS100で取得したセル電圧および温度の測定結果に基づいて、当該電池監視装置が接続されているセルグループの各電池セルの状態が異常であるか否かを判定する。この判定は、前述のステップS50と同様の判定方法により行うことができる。当該電池監視装置の全ての電池セルが異常なしの場合はステップS120へ進み、いずれか少なくとも1つの電池セルに異常がある場合はステップS140へ進む。 In step S110, the battery state management device 40 determines whether or not the state of each battery cell in the cell group to which the battery monitoring device is connected is abnormal based on the measurement result of the cell voltage and temperature acquired in step S100. Determine whether. This determination can be performed by the same determination method as in step S50 described above. When all the battery cells of the battery monitoring apparatus are not abnormal, the process proceeds to step S120, and when any one of the battery cells is abnormal, the process proceeds to step S140.
 ステップS120において、電池状態管理装置40は、ステップS80で放電要求コマンドを送信した電池監視装置においてバランシングが完了したか否かを判定する。この判定は、後述する図7のステップS340の処理によって当該電池監視装置からバランシング完了報告が送信されたか否かにより行うことができる。すなわち、当該電池監視装置からバランシング完了報告が送信された場合は、バランシング完了と判定して図6のフローチャートに示す処理を終了し、バランシング完了報告が送信されない場合は、ステップS130へ進む。 In step S120, the battery state management device 40 determines whether balancing has been completed in the battery monitoring device that has transmitted the discharge request command in step S80. This determination can be made based on whether or not a balancing completion report has been transmitted from the battery monitoring apparatus in the process of step S340 in FIG. That is, when a balancing completion report is transmitted from the battery monitoring apparatus, it is determined that balancing is complete, and the process shown in the flowchart of FIG. 6 is terminated. When the balancing completion report is not transmitted, the process proceeds to step S130.
 ステップS130において、電池状態管理装置40は、タイマーによる測定時間が予め設定された所定のタイムアウト時間を経過したか否かを判定する。タイマーによる測定時間がタイムアウト時間未満であればステップS100へ戻り、前述のステップS100~S130の処理を継続する。一方、タイムアウト時間以上であればステップS70へ戻る。この場合、直前に実行したステップS100において取得したセル電圧および温度の測定結果に基づいて、調整セルおよび目標電圧を再度決定し、その結果に応じた放電要求コマンドを当該電池監視装置に対して再送信する。 In step S130, the battery state management device 40 determines whether or not a predetermined time-out time set in advance by a timer is measured. If the measurement time by the timer is less than the timeout time, the process returns to step S100, and the processes of steps S100 to S130 described above are continued. On the other hand, if it is longer than the timeout time, the process returns to step S70. In this case, the adjustment cell and the target voltage are determined again based on the measurement result of the cell voltage and temperature acquired in step S100 executed immediately before, and a discharge request command corresponding to the result is retransmitted to the battery monitoring device. Send.
 ステップS140において、電池状態管理装置40は、ステップS80で放電要求コマンドを送信した後にステップS110で電池セルの状態が異常であると判定した電池監視装置に対して、バランシングを停止させるための放電停止コマンドを送信する。これにより、バランシング中に電池セルの状態に異常があると判定された電池監視装置に対して、調整セルの放電を停止させるような指示を行う。 In step S140, the battery state management device 40 stops discharging to stop balancing for the battery monitoring device that has determined that the state of the battery cell is abnormal in step S110 after transmitting the discharge request command in step S80. Send a command. As a result, an instruction is issued to stop the discharge of the adjustment cell to the battery monitoring device that is determined to have an abnormality in the state of the battery cell during balancing.
 ステップS150において、電池状態管理装置40は、ステップS50またはS1100で電池セルの状態が異常であると判定した電池監視装置について、その異常を電池状態管理装置40の操作者に知らせるための警告を行う。この警告は、たとえば所定の警告メッセージを電池状態管理装置40において画面表示したり音声出力したりすることにより行われる。 In step S150, the battery state management device 40 issues a warning for notifying the operator of the battery state management device 40 of the abnormality of the battery monitoring device determined to be abnormal in step S50 or S1100. . This warning is performed by, for example, displaying a predetermined warning message on the screen of the battery state management device 40 or outputting a voice.
 ステップS160において、電池状態管理装置40は、ステップS150で行った警告に応じた異常結果を記録する。 In step S160, the battery state management device 40 records an abnormality result corresponding to the warning made in step S150.
 ステップS160を実行したら、電池状態管理装置40は図6のフローチャートに示す処理を終了する。 If step S160 is performed, the battery state management apparatus 40 will complete | finish the process shown to the flowchart of FIG.
 図7のステップS210において、電池監視装置BM1は、受信部31、認証回路33および送信部36を用いて、電池状態管理装置40との間で所定の認証処理を行う。この認証処理は、前述の図6のステップS20で電池状態管理装置40によって行われるものに対応しており、その具体的な手順については後で図8を用いて説明する。 7, the battery monitoring device BM1 performs predetermined authentication processing with the battery state management device 40 using the reception unit 31, the authentication circuit 33, and the transmission unit 36. This authentication process corresponds to that performed by the battery state management device 40 in step S20 of FIG. 6 described above, and the specific procedure will be described later with reference to FIG.
 ステップS220において、電池監視装置BM1は、受信部31、認証回路33および送信部36を用いて、ステップS210で行った認証処理の結果を電池状態管理装置40へ送信する。 In step S220, the battery monitoring apparatus BM1 transmits the result of the authentication process performed in step S210 to the battery state management apparatus 40 using the reception unit 31, the authentication circuit 33, and the transmission unit 36.
 ステップS230において、電池監視装置BM1は、認証回路33により、ステップS210で行った認証処理の結果がOKであるか否かを判定する。認証OKである場合、すなわち認証処理において電池状態管理装置40が正当な通信先であると判定した場合は、ステップS240へ進む。一方、認証OKでない場合、すなわち認証処理において電池状態管理装置40が正当な通信先ではないと判定した場合は、図7のフローチャートに示す処理を終了する。 In step S230, the battery monitoring apparatus BM1 determines whether or not the result of the authentication process performed in step S210 is OK by the authentication circuit 33. If the authentication is OK, that is, if it is determined in the authentication process that the battery state management device 40 is a valid communication destination, the process proceeds to step S240. On the other hand, if the authentication is not OK, that is, if the battery state management device 40 determines that the communication destination is not a valid communication destination in the authentication process, the process shown in the flowchart of FIG. 7 ends.
 ステップS240において、電池監視装置BM1は、電池監視回路35を用いて、接続されているセルグループの各電池セルにおけるセル電圧および温度を測定する。 In step S240, the battery monitoring device BM1 uses the battery monitoring circuit 35 to measure the cell voltage and temperature in each battery cell of the connected cell group.
 ステップS250において、電池監視装置BM1は、ステップS240で測定したセル電圧および温度をセル状態監視結果として電池監視回路35から送信部36へ出力し、これらの監視結果を送信部36により電池状態管理装置40へ送信する。これにより、電池監視装置BM1が接続されているセルグループの各電池セルにおけるセル電圧および温度の測定結果が、当該各電池セルに対するセル状態監視結果として電池監視装置BM1から電池状態管理装置40に送信される。 In step S250, the battery monitoring device BM1 outputs the cell voltage and temperature measured in step S240 as cell state monitoring results from the battery monitoring circuit 35 to the transmission unit 36, and these monitoring results are transmitted by the transmission unit 36 to the battery state management device. 40. As a result, the cell voltage and temperature measurement results in each battery cell of the cell group to which the battery monitoring device BM1 is connected are transmitted from the battery monitoring device BM1 to the battery state management device 40 as the cell state monitoring result for each battery cell. Is done.
 ステップS260において、電池監視装置BM1は、受信部31により、図6のステップS80で電池状態管理装置40から送信された放電要求コマンドを受信したか否かを判定する。電池監視装置BM1に対する放電要求コマンドを電池状態管理装置40から受信した場合はステップS270へ進み、受信していない場合は図7のフローチャートに示す処理を終了する。 In step S260, the battery monitoring device BM1 determines whether the receiving unit 31 has received the discharge request command transmitted from the battery state management device 40 in step S80 of FIG. If a discharge request command for the battery monitoring device BM1 is received from the battery state management device 40, the process proceeds to step S270, and if not received, the process shown in the flowchart of FIG.
 ステップS270において、電池監視装置BM1は、電池状態管理装置40から受信した放電要求コマンドに応じて、図3のバランシングスイッチ129A~129Dの開閉を制御する。ここでは、受信部31により放電要求コマンドを受信すると、その放電要求コマンドを受信部31から電池監視回路35へ出力する。電池監視回路35は、放電制御回路132により、バランシングスイッチ129A~129Dのうち放電要求コマンドで指定された調整セルに対応するバランシングスイッチを閉じるように制御する。 In step S270, the battery monitoring device BM1 controls the opening and closing of the balancing switches 129A to 129D in FIG. 3 in accordance with the discharge request command received from the battery state management device 40. Here, when the discharge request command is received by the reception unit 31, the discharge request command is output from the reception unit 31 to the battery monitoring circuit 35. The battery monitoring circuit 35 controls the discharge control circuit 132 to close the balancing switch corresponding to the adjustment cell specified by the discharge request command among the balancing switches 129A to 129D.
 ステップS280において、電池監視装置BM1は、ステップS240と同様に、電池監視回路35を用いて、接続されているセルグループの各電池セルにおけるセル電圧および温度を測定する。 In step S280, the battery monitoring device BM1 measures the cell voltage and temperature in each battery cell of the connected cell group using the battery monitoring circuit 35, as in step S240.
 ステップS290において、電池監視装置BM1は、ステップS280で測定したセル電圧および温度をセル状態監視結果として電池監視回路35から送信部36へ出力し、これらの監視結果を送信部36により電池状態管理装置40へ送信する。これにより、ステップS250と同様に、電池監視装置BM1が接続されているセルグループの各電池セルにおけるセル電圧および温度の測定結果が、当該各電池セルに対するセル状態監視結果として電池監視装置BM1から電池状態管理装置40に送信される。 In step S290, the battery monitoring device BM1 outputs the cell voltage and temperature measured in step S280 as cell state monitoring results from the battery monitoring circuit 35 to the transmission unit 36, and these monitoring results are transmitted by the transmission unit 36 to the battery state management device. 40. As a result, as in step S250, the cell voltage and temperature measurement results in each battery cell of the cell group to which the battery monitoring device BM1 is connected are transferred from the battery monitoring device BM1 as the cell state monitoring result for each battery cell. It is transmitted to the state management device 40.
 ステップS300において、電池監視装置BM1は、受信部31により、図6のステップS140で電池状態管理装置40から送信された放電停止コマンドを受信したか否かを判定する。電池監視装置BM1に対する放電停止コマンドを電池状態管理装置40から受信した場合はステップS330へ進み、受信していない場合はステップS310へ進む。 In step S300, the battery monitoring device BM1 determines whether the receiving unit 31 has received the discharge stop command transmitted from the battery state management device 40 in step S140 of FIG. If a discharge stop command for the battery monitoring device BM1 is received from the battery state management device 40, the process proceeds to step S330, and if not received, the process proceeds to step S310.
 ステップS310において、電池監視装置BM1は、電池監視回路35により、電池状態管理装置40から受信した放電要求コマンドで指定された調整セルの目標電圧と、ステップS280で測定したセル電圧とを比較し、その比較結果に基づいて、調整セルのセル電圧が目標電圧に達したか否かを判定する。調整セルの目標電圧とセル電圧の差が所定値未満の場合は、目標電圧に達したと判定してステップS340へ進み、所定値以上の場合は、目標電圧に達していないと判定してステップS320へ進む。 In step S310, the battery monitoring device BM1 compares the target voltage of the adjustment cell specified by the discharge request command received from the battery state management device 40 with the cell voltage measured in step S280 by the battery monitoring circuit 35. Based on the comparison result, it is determined whether or not the cell voltage of the adjustment cell has reached the target voltage. If the difference between the target voltage of the adjustment cell and the cell voltage is less than the predetermined value, it is determined that the target voltage has been reached, and the process proceeds to step S340. If the difference is greater than the predetermined value, it is determined that the target voltage has not been reached. Proceed to S320.
 ステップS320において、電池監視装置BM1は、受信部31により、電池状態管理装置40からの放電要求コマンドを再受信したか否かを判定する。電池状態管理装置40が図6のステップS80の処理を再度実行して電池監視装置BM1に対する放電要求コマンドを再送信したために、放電要求コマンドを再受信した場合はステップS270へ戻る。この場合、ステップS270では、再受信した放電要求コマンドに応じて、バランシングスイッチ129A~129Dの開閉制御をやり直す。一方、放電要求コマンドを再受信していない場合はステップS280へ戻り、前述のステップS280~S320の処理を継続する。 In step S320, the battery monitoring device BM1 determines whether or not the receiving unit 31 has re-received the discharge request command from the battery state management device 40. Since the battery state management device 40 re-transmits the discharge request command to the battery monitoring device BM1 by executing the process of step S80 in FIG. 6 again, the process returns to step S270. In this case, in step S270, the switching control of the balancing switches 129A to 129D is performed again according to the re-received discharge request command. On the other hand, if the discharge request command has not been received again, the process returns to step S280, and the processes of steps S280 to S320 described above are continued.
 ステップS330において、電池監視装置BM1は、電池状態管理装置40から受信した放電停止コマンドに応じて、調整セルの放電を停止する。ここでは、受信部31により放電停止コマンドを受信すると、その放電停止コマンドを受信部31から電池監視回路35へ出力する。電池監視回路35は、放電制御回路132により、調整セルに対応するバランシングスイッチを含め、バランシングスイッチ129A~129Dを全て開放するように制御する。 In step S330, the battery monitoring device BM1 stops the discharge of the adjustment cell in response to the discharge stop command received from the battery state management device 40. Here, when a discharge stop command is received by the receiving unit 31, the discharge stop command is output from the receiving unit 31 to the battery monitoring circuit 35. The battery monitoring circuit 35 controls the discharge control circuit 132 to open all the balancing switches 129A to 129D including the balancing switch corresponding to the adjustment cell.
 ステップS330を実行したら、電池監視装置BM1は図7のフローチャートに示す処理を終了する。 When step S330 is executed, the battery monitoring device BM1 ends the process shown in the flowchart of FIG.
 ステップS340において、電池監視装置BM1は、調整セルの放電を終えてバランシングを完了した旨の報告を電池監視回路35から送信部36へ出力し、これを送信部36により電池状態管理装置40へ送信する。 In step S340, the battery monitoring device BM1 outputs a report indicating that balancing has been completed after the discharge of the adjustment cell from the battery monitoring circuit 35 to the transmission unit 36, and this is transmitted to the battery state management device 40 by the transmission unit 36. To do.
 ステップS340を実行したら、電池監視装置BM1は図7のフローチャートに示す処理を終了する。 When step S340 is executed, the battery monitoring device BM1 ends the process shown in the flowchart of FIG.
 ここで電池状態管理装置40と電池監視装置BM1との間で行われる認証処理について説明する。前述のように、電池状態管理装置40は図6のステップS20において、電池監視装置BM1は図7のステップS210において、それぞれ認証処理を行う。図8は、この認証処理の手順の一例を示す図である。なお、以下では組電池AB1の電池監視装置BM1~BM4のうち、電池監視装置BM1を例に挙げて説明するが、他の電池監視装置BM2~BM4についても同様である。 Here, an authentication process performed between the battery state management device 40 and the battery monitoring device BM1 will be described. As described above, the battery state management device 40 performs authentication processing in step S20 of FIG. 6, and the battery monitoring device BM1 performs authentication processing in step S210 of FIG. FIG. 8 is a diagram showing an example of the procedure of this authentication process. Hereinafter, the battery monitoring device BM1 will be described as an example of the battery monitoring devices BM1 to BM4 of the assembled battery AB1, but the same applies to the other battery monitoring devices BM2 to BM4.
 認証処理を開始すると、まず電池状態管理装置40は、電池監視装置BM1に対して、認証用の鍵情報を生成するためのシードの要求を行う。電池状態管理装置40から送信されたシードの要求は、電池監視装置BM1において受信部31により受信され、認証回路33へ出力される。すると、この要求に応じて認証回路33から送信部36へシードが出力されて送信部36により送信されることで、電池監視装置BM1から電池状態管理装置40へシードが返信される。なお、シードとは、電池監視装置の個体ごとに固有に割り当てられた識別情報であり、たとえば固有IDなどを用いることができる。 When the authentication process is started, first, the battery state management device 40 requests the battery monitoring device BM1 for a seed for generating key information for authentication. The seed request transmitted from the battery state management device 40 is received by the reception unit 31 in the battery monitoring device BM1 and output to the authentication circuit 33. Then, in response to this request, the seed is output from the authentication circuit 33 to the transmission unit 36 and transmitted by the transmission unit 36, whereby the seed is returned from the battery monitoring device BM 1 to the battery state management device 40. The seed is identification information uniquely assigned to each individual battery monitoring device, and for example, a unique ID can be used.
 電池監視装置BM1からシードが返信されると、電池状態管理装置40は、そのシードに基づいて前述の鍵生成テーブルを参照し、シードに対応する鍵情報を取得する。そして、取得した鍵情報を電池監視装置BM1に対して送信する。 When the seed is returned from the battery monitoring device BM1, the battery state management device 40 refers to the above-described key generation table based on the seed, and acquires key information corresponding to the seed. Then, the acquired key information is transmitted to the battery monitoring device BM1.
 なお、鍵生成テーブル以外の情報、たとえば所定のアルゴリズムや関数の情報を電池状態管理装置40に記憶させておき、その情報に基づいて鍵情報を生成するようにしてもよい。シードに対応する鍵情報を生成できるものであれば、電池状態管理装置40はどのような情報を用いてもよい。 Note that information other than the key generation table, for example, information on a predetermined algorithm or function, may be stored in the battery state management device 40, and key information may be generated based on the information. As long as the key information corresponding to the seed can be generated, the battery state management device 40 may use any information.
 電池状態管理装置40から送信された鍵情報は、電池監視装置BM1において受信部31により受信され、認証回路33へ出力される。認証回路33は、この鍵情報が電池状態管理装置40に対して返信したシードに対応するものであるか否かを確認することで、電池状態管理装置40が正当な通信先であるか否かを判定する。判定を終えると、その判定結果を認証回路33から送信部36へ出力して電池状態管理装置40へ送信することで、電池監視装置BM1から電池状態管理装置40に対して認証可否の返信を行う。なお、この認証可否の返信は、図7のステップS220の処理に対応する。 The key information transmitted from the battery state management device 40 is received by the reception unit 31 in the battery monitoring device BM1 and output to the authentication circuit 33. The authentication circuit 33 confirms whether or not this key information corresponds to the seed returned to the battery state management device 40, thereby determining whether or not the battery state management device 40 is a valid communication destination. Determine. When the determination is completed, the determination result is output from the authentication circuit 33 to the transmission unit 36 and transmitted to the battery state management device 40, so that the battery monitoring device BM1 returns a response indicating whether or not authentication is possible. . Note that this reply indicating whether authentication is possible corresponds to the processing in step S220 in FIG.
 電池監視装置BM1から認証可否の返信が行われると、電池状態管理装置40は、その内容に基づいて図6のステップS30の判定を行う。その結果、認証可であった場合は、ステップS40以降の処理を実行することで、電池状態管理の動作を開始する。 When the battery monitoring device BM1 returns the authentication permission / inhibition, the battery state management device 40 performs the determination in step S30 of FIG. 6 based on the content. As a result, when the authentication is possible, the battery state management operation is started by executing the processing after step S40.
 以上説明した本発明の実施形態によれば、以下の作用効果を奏する。 According to the embodiment of the present invention described above, the following operational effects are obtained.
(1)電池監視装置BM1は、電池状態管理装置40が正当な通信先であるか否かを判定するための認証を行う認証回路33を備える。この認証回路33が行う認証処理(ステップS210)によって電池状態管理装置40が正当な通信先であると判定された場合、電池監視装置BM1は、電池モジュール9のうちで接続されているセルグループの監視結果を電池状態管理装置40へ無線送信する(ステップS250、S290)。電池状態管理装置40は、電池監視装置BM1から無線送信された監視結果に基づいて、電池監視装置BM1における異常の有無を判断したり(ステップS50、S110)、バランシングが必要な場合に電池監視装置BM1へ放電要求コマンドを送信したり(ステップS80)することで、組電池AB1において電池モジュール9の状態を管理する。このようにしたので、車両等に組み込む前の段階において電池状態の管理を適切に行うことができる。 (1) The battery monitoring device BM1 includes an authentication circuit 33 that performs authentication for determining whether or not the battery state management device 40 is a valid communication destination. When it is determined by the authentication process (step S210) performed by the authentication circuit 33 that the battery state management device 40 is a valid communication destination, the battery monitoring device BM1 includes the cell group connected in the battery module 9. The monitoring result is wirelessly transmitted to the battery state management device 40 (steps S250 and S290). The battery state management device 40 determines whether or not there is an abnormality in the battery monitoring device BM1 based on the monitoring result wirelessly transmitted from the battery monitoring device BM1 (steps S50 and S110), and when the balancing is necessary, the battery monitoring device By transmitting a discharge request command to BM1 (step S80), the state of the battery module 9 is managed in the assembled battery AB1. Since it did in this way, a battery state can be managed appropriately in the stage before incorporating in a vehicle etc.
(2)ステップS20の認証処理において、電池状態管理装置40は、電池監視装置の個体ごとに固有の識別情報であるシードを電池監視装置BM1へ要求する。この要求に応じて電池監視装置BM1から送信されたシードと、予め記憶された鍵生成テーブルとに基づいて、電池状態管理装置40は、認証に用いるための鍵情報を生成して電池監視装置BM1へ送信する。電池監視装置BM1では、電池状態管理装置40から送信された鍵情報に基づいて、認証回路33により認証を行う。このようにしたので、電池状態管理装置40が正当な通信先であるか否かの認証を電池監視装置BM1の認証回路33において確実に行うことができる。 (2) In the authentication process in step S20, the battery state management device 40 requests the battery monitoring device BM1 for a seed that is unique identification information for each individual battery monitoring device. Based on the seed transmitted from the battery monitoring device BM1 in response to this request and the key generation table stored in advance, the battery state management device 40 generates key information for use in authentication to generate the battery monitoring device BM1. Send to. In the battery monitoring device BM1, the authentication circuit 33 performs authentication based on the key information transmitted from the battery state management device 40. Since it did in this way, authentication whether the battery state management apparatus 40 is a valid communication destination can be reliably performed in the authentication circuit 33 of the battery monitoring apparatus BM1.
(3)電池監視装置BM1は、接続されているセルグループの各電池セルのセル電圧を測定し(ステップS240、S280)、その測定結果を当該セルグループの監視結果として電池状態管理装置40へ無線送信する(ステップS250、S290)。電池状態管理装置40は、電池監視装置BM1から無線送信されたセル電圧の測定結果に基づいて、放電要求コマンドを送信したり(ステップS80)、異常の有無を判定し、異常がある場合は放電停止コマンドを送信したり(ステップS110、S140)することで、電池モジュール9の状態を管理するための動作を電池監視装置BM1に対して指示する。これにより、電池モジュール9の状態に応じた適切な動作指示を電池監視装置BM1に対して行うことができる。 (3) The battery monitoring device BM1 measures the cell voltage of each battery cell of the connected cell group (steps S240 and S280), and wirelessly transmits the measurement result to the battery state management device 40 as the monitoring result of the cell group. Transmit (steps S250 and S290). The battery state management device 40 transmits a discharge request command based on the measurement result of the cell voltage wirelessly transmitted from the battery monitoring device BM1 (step S80), determines whether there is an abnormality, and discharges if there is an abnormality. An operation for managing the state of the battery module 9 is instructed to the battery monitoring device BM1 by transmitting a stop command (steps S110 and S140). Thereby, an appropriate operation instruction according to the state of the battery module 9 can be given to the battery monitoring device BM1.
(4)電池状態管理装置40は、電池監視装置BM1から無線送信されたセル電圧の測定結果に基づいて、当該セルグループの各電池セルについてバランシング対象である調整セルとするか否かをそれぞれ判断すると共に、バランシング対象とした電池セルの目標電圧を決定する(ステップS70)。そして、これらに応じた放電要求コマンドをステップS80において送信することにより、電池監視装置BM1に対して、バランシング対象とした調整セルの電圧が目標電圧に達するまで当該電池セルを放電させるように指示する。このようにしたので、保管中に各電池セルの充電状態にばらつきが生じた場合、そのばらつきを解消することができる。 (4) The battery state management device 40 determines whether or not each battery cell in the cell group is to be an adjustment cell to be balanced based on the measurement result of the cell voltage wirelessly transmitted from the battery monitoring device BM1. At the same time, the target voltage of the battery cell to be balanced is determined (step S70). Then, by transmitting a discharge request command corresponding to these in step S80, the battery monitoring device BM1 is instructed to discharge the battery cell until the voltage of the adjustment cell targeted for balancing reaches the target voltage. . Since it did in this way, when dispersion | variation arises in the charging state of each battery cell during storage, the dispersion | variation can be eliminated.
(5)バランシング開始後、電池監視装置BM1は、接続されているセルグループの各電池セルの温度を測定し(ステップS280)、その測定結果を当該セルグループの監視結果として電池状態管理装置40へ無線送信する(ステップS290)。電池状態管理装置40は、電池監視装置BM1から無線送信された温度測定結果に基づいて、電池モジュール9の状態が異常であるか否かを判定し(ステップS110)、異常であると判定した場合に放電停止コマンドを送信する(ステップS140)ことで、電池監視装置BM1に対して、バランシング対象とした電池セルの放電を停止するように指示する。このようにして、バランシング中に異常が発生したときには放電を停止するようにしたので、事故の発生等を未然に防止することができる。 (5) After starting the balancing, the battery monitoring device BM1 measures the temperature of each battery cell of the connected cell group (step S280), and uses the measurement result as the monitoring result of the cell group to the battery state management device 40. Wireless transmission is performed (step S290). When the battery state management device 40 determines whether or not the state of the battery module 9 is abnormal based on the temperature measurement result wirelessly transmitted from the battery monitoring device BM1 (step S110), Is sent to the battery monitoring device BM1 (step S140), thereby instructing the battery monitoring device BM1 to stop discharging the battery cells targeted for balancing. In this way, since discharge is stopped when an abnormality occurs during balancing, the occurrence of an accident or the like can be prevented in advance.
(6)電池監視装置BM1は、接続されているセルグループの各電池セルの温度を測定し(ステップS240、S280)、その測定結果を当該セルグループの監視結果として電池状態管理装置40へ無線送信する(ステップS250、S290)。電池状態管理装置40は、電池監視装置BM1から無線送信された温度測定結果に基づいて、電池モジュール9の状態が異常であるか否かを判定し(ステップS50、S110)、異常であると判定した場合に警告を行う(ステップS150)。このようにしたので、異常が発生したときには、そのことを直ちに電池状態管理装置40の操作者に知らせることができる。 (6) The battery monitoring device BM1 measures the temperature of each battery cell of the connected cell group (steps S240 and S280), and wirelessly transmits the measurement result to the battery state management device 40 as the monitoring result of the cell group. (Steps S250 and S290). The battery state management device 40 determines whether or not the state of the battery module 9 is abnormal based on the temperature measurement result wirelessly transmitted from the battery monitoring device BM1 (steps S50 and S110), and determines that it is abnormal. If this occurs, a warning is given (step S150). Since it did in this way, when abnormality generate | occur | produces, it can notify to the operator of the battery state management apparatus 40 immediately.
 なお、以上説明した実施の形態では、電池状態管理装置40が図6のステップS110の処理を実行することでバランシング中の異常の有無を判定するようにしたが、これを電池監視装置BM1において行うようにしてもよい。その場合、電池監視装置BM1は、図7のステップS300に替えてステップS110の処理を実行すると共に、ステップS330の処理を実行した後には、電池状態管理装置40に対して放電停止報告を送信することが好ましい。なお、ステップS290の処理は省略してもよい。一方、電池状態管理装置40は、ステップS100およびS140の処理を省略すると共に、ステップS110では、電池監視装置BM1から放電停止報告が送信された否かにより異常の有無を判定することが好ましい。 In the embodiment described above, the battery state management device 40 determines whether there is an abnormality during balancing by executing the process of step S110 of FIG. 6, but this is performed in the battery monitoring device BM1. You may do it. In that case, the battery monitoring apparatus BM1 executes the process of step S110 instead of step S300 of FIG. 7 and transmits the discharge stop report to the battery state management apparatus 40 after executing the process of step S330. It is preferable. Note that the process of step S290 may be omitted. On the other hand, it is preferable that the battery state management device 40 omits the processes of steps S100 and S140, and in step S110, determines whether or not there is an abnormality depending on whether or not a discharge stop report is transmitted from the battery monitoring device BM1.
 以上説明した実施形態や各種の変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。 The embodiments and various modifications described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired.
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2011年第223167号(2011年10月7日出願)
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application No. 2011-223167 (filed on Oct. 7, 2011)

Claims (12)

  1.  1つまたは直列接続された複数の電池セルによってそれぞれ構成される1つまたは複数の電池セルグループが直列接続されて構成された電池の状態を管理する電池状態管理装置であって、
     前記電池セルグループは、前記電池の状態を前記電池セルグループごとにそれぞれ監視して監視結果を前記電池状態管理装置へ無線送信するように構成されている電池監視装置と接続されており、
     前記電池監視装置は、前記電池状態管理装置が正当な通信先であるか否かを判定するための認証を行う認証回路を備え、
     前記認証回路により前記電池状態管理装置が正当な通信先であると判定された場合、前記電池監視装置は、接続されている電池セルグループの監視結果を前記電池状態管理装置へ無線送信し、
     前記電池状態管理装置は、前記電池監視装置から無線送信された前記監視結果に基づいて、前記電池の状態を管理する電池状態管理装置。
    A battery state management device for managing a state of a battery configured by connecting one or a plurality of battery cell groups each configured by one or a plurality of battery cells connected in series,
    The battery cell group is connected to a battery monitoring device configured to monitor the state of the battery for each of the battery cell groups and wirelessly transmit a monitoring result to the battery state management device,
    The battery monitoring device includes an authentication circuit that performs authentication for determining whether or not the battery state management device is a valid communication destination,
    When the authentication circuit determines that the battery state management device is a valid communication destination, the battery monitoring device wirelessly transmits a monitoring result of the connected battery cell group to the battery state management device,
    The battery state management device is a battery state management device that manages the state of the battery based on the monitoring result wirelessly transmitted from the battery monitoring device.
  2.  請求項1に記載の電池状態管理装置において、
     前記電池監視装置の個体ごとに固有の識別情報を前記電池監視装置へ要求し、
     前記要求に応じて前記電池監視装置から送信された前記識別情報と、予め記憶された鍵生成情報とに基づいて、前記認証に用いるための鍵情報を生成して前記電池監視装置へ送信する電池状態管理装置。
    The battery state management device according to claim 1,
    Requesting the battery monitoring device for specific identification information for each individual battery monitoring device,
    A battery that generates key information for use in the authentication and transmits it to the battery monitoring apparatus based on the identification information transmitted from the battery monitoring apparatus in response to the request and key generation information stored in advance. State management device.
  3.  請求項1または2に記載の電池状態管理装置において、
     前記電池監視装置は、接続されている電池セルグループの各電池セルの電圧測定結果を前記監視結果として前記電池状態管理装置へ無線送信し、
     前記電池状態管理装置は、前記電池監視装置から無線送信された前記電圧測定結果に基づいて、前記電池の状態を管理するための動作を前記電池監視装置に対して指示する電池状態管理装置。
    The battery state management device according to claim 1 or 2,
    The battery monitoring device wirelessly transmits a voltage measurement result of each battery cell of a connected battery cell group to the battery state management device as the monitoring result,
    The battery state management device instructs the battery monitoring device to perform an operation for managing the state of the battery based on the voltage measurement result wirelessly transmitted from the battery monitoring device.
  4.  請求項3に記載の電池状態管理装置において、
     前記電池監視装置から無線送信された前記電圧測定結果に基づいて、前記各電池セルについてバランシング対象とするか否かをそれぞれ判断すると共に、バランシング対象とした電池セルの目標電圧を決定し、
     前記電池監視装置に対して、前記バランシング対象とした電池セルの電圧が前記目標電圧に達するまで当該電池セルを放電させるように指示する電池状態管理装置。
    In the battery state management device according to claim 3,
    Based on the voltage measurement result wirelessly transmitted from the battery monitoring device, each of the battery cells to determine whether to be a balancing target, determine the target voltage of the battery cell to be balanced,
    A battery state management device that instructs the battery monitoring device to discharge the battery cell until the voltage of the battery cell targeted for balancing reaches the target voltage.
  5.  請求項4に記載の電池状態管理装置において、
     前記電池監視装置は、接続されている電池セルグループの温度測定結果をさらに前記監視結果として前記電池状態管理装置へ無線送信し、
     前記電池状態管理装置は、前記電池監視装置から無線送信された前記温度測定結果に基づいて、前記電池の状態が異常であるか否かを判定し、異常であると判定した場合に前記電池監視装置に対して、前記バランシング対象とした電池セルの放電を停止するように指示する電池状態管理装置。
    In the battery state management device according to claim 4,
    The battery monitoring device wirelessly transmits the temperature measurement result of the connected battery cell group to the battery state management device as the monitoring result,
    The battery state management device determines whether or not the state of the battery is abnormal based on the temperature measurement result wirelessly transmitted from the battery monitoring device, and determines that the battery state is abnormal. A battery state management device that instructs the device to stop discharging of the battery cells targeted for balancing.
  6.  請求項1乃至5のいずれか一項に記載の電池状態管理装置において、
     前記電池監視装置は、接続されている電池セルグループの温度測定結果を前記監視結果として前記電池状態管理装置へ無線送信し、
     前記電池状態管理装置は、前記電池監視装置から無線送信された前記温度測定結果に基づいて、前記電池の状態が異常であるか否かを判定し、異常であると判定した場合に警告を行う電池状態管理装置。
    In the battery state management device according to any one of claims 1 to 5,
    The battery monitoring device wirelessly transmits a temperature measurement result of a connected battery cell group as the monitoring result to the battery state management device,
    The battery state management device determines whether or not the state of the battery is abnormal based on the temperature measurement result wirelessly transmitted from the battery monitoring device, and issues a warning when determining that the state is abnormal Battery state management device.
  7.  1つまたは直列接続された複数の電池セルによってそれぞれ構成される1つまたは複数の電池セルグループが直列接続されて構成された電池の状態を管理するための電池状態管理装置を用いた電池状態管理方法であって、
     前記電池セルグループは、前記電池の状態を前記電池セルグループごとにそれぞれ監視して監視結果を前記電池状態管理装置へ無線送信するように構成されている電池監視装置と接続されており、
     前記電池監視装置により、前記電池状態管理装置が正当な通信先であるか否かを判定するための認証を行い、
     前記認証によって前記電池状態管理装置が正当な通信先であると判定された場合、前記電池監視装置が接続されている電池セルグループの監視結果を前記電池監視装置から前記電池状態管理装置へ無線送信し、
     前記電池状態管理装置により、前記電池監視装置から無線送信された前記監視結果に基づいて、前記電池の状態を管理する電池状態管理方法。
    Battery state management using a battery state management device for managing the state of a battery formed by connecting one or a plurality of battery cell groups each constituted by one or a plurality of battery cells connected in series A method,
    The battery cell group is connected to a battery monitoring device configured to monitor the state of the battery for each of the battery cell groups and wirelessly transmit a monitoring result to the battery state management device,
    The battery monitoring device performs authentication to determine whether the battery state management device is a valid communication destination,
    When it is determined by the authentication that the battery status management device is a valid communication destination, the monitoring result of the battery cell group to which the battery monitoring device is connected is wirelessly transmitted from the battery monitoring device to the battery status management device. And
    A battery state management method for managing a state of the battery based on the monitoring result wirelessly transmitted from the battery monitoring device by the battery state management device.
  8.  請求項7に記載の電池状態管理方法において、
     前記電池監視装置の個体ごとに固有の識別情報を前記電池監視装置から前記電池状態管理装置へ送信し、
     前記電池状態管理装置により、前記電池監視装置から送信された前記識別情報と、予め記憶された鍵生成情報とに基づいて、前記認証に用いるための鍵情報を生成し、
     前記鍵情報を前記電池状態管理装置から前記電池監視装置へ送信し、
     前記電池監視装置により、前記電池状態管理装置から送信された前記鍵情報に基づいて前記認証を行う電池状態管理方法。
    The battery state management method according to claim 7,
    Transmitting identification information unique to each individual battery monitoring device from the battery monitoring device to the battery status management device,
    The battery state management device generates key information for use in the authentication based on the identification information transmitted from the battery monitoring device and key generation information stored in advance.
    Transmitting the key information from the battery state management device to the battery monitoring device;
    A battery state management method for performing the authentication based on the key information transmitted from the battery state management apparatus by the battery monitoring apparatus.
  9.  請求項7または8に記載の電池状態管理方法において、
     前記電池監視装置が接続されている電池セルグループの各電池セルの電圧測定結果を前記監視結果として前記電池監視装置から前記電池状態管理装置へ無線送信し、
     前記電池状態管理装置により、前記電池監視装置から無線送信された前記電圧測定結果に基づいて、前記電池の状態を管理するための動作を前記電池監視装置に対して指示する電池状態管理方法。
    The battery state management method according to claim 7 or 8,
    Wirelessly transmitting the voltage measurement result of each battery cell of the battery cell group to which the battery monitoring device is connected as the monitoring result from the battery monitoring device to the battery state management device;
    A battery state management method for instructing the battery monitoring device to perform an operation for managing the state of the battery based on the voltage measurement result wirelessly transmitted from the battery monitoring device by the battery state management device.
  10.  請求項9に記載の電池状態管理方法において、
     前記電池状態管理装置により、前記電池監視装置から無線送信された前記電圧測定結果に基づいて、前記各電池セルについてバランシング対象とするか否かをそれぞれ判断すると共に、バランシング対象とした電池セルの目標電圧を決定し、
     前記電池状態管理装置により、前記電池監視装置に対して、前記バランシング対象とした電池セルの電圧が前記目標電圧に達するまで当該電池セルを放電させるように指示し、
     前記電池監視装置により、前記指示に応じて、前記バランシング対象とした電池セルの電圧が前記目標電圧に達するまで当該電池セルを放電させる電池状態管理方法。
    The battery state management method according to claim 9,
    Based on the voltage measurement result wirelessly transmitted from the battery monitoring device, the battery state management device determines whether or not each of the battery cells is a balancing target, and the target of the battery cell as a balancing target Determine the voltage,
    The battery status management device instructs the battery monitoring device to discharge the battery cell until the voltage of the battery cell targeted for balancing reaches the target voltage,
    A battery state management method in which the battery monitoring device discharges the battery cell until the voltage of the balancing target battery cell reaches the target voltage in accordance with the instruction.
  11.  請求項10に記載の電池状態管理方法において、
     前記電池監視装置が接続されている電池セルグループの温度測定結果をさらに前記監視結果として前記電池監視装置から前記電池状態管理装置へ無線送信し、
     前記電池状態管理装置により、前記電池監視装置から無線送信された前記温度測定結果に基づいて、前記電池の状態が異常であるか否かを判定し、異常であると判定した場合に前記電池監視装置に対して、前記バランシング対象とした電池セルの放電を停止するように指示する電池状態管理方法。
    The battery state management method according to claim 10,
    The wireless monitoring device transmits the temperature measurement result of the battery cell group to which the battery monitoring device is connected as the monitoring result from the battery monitoring device to the battery state management device,
    The battery state management device determines whether or not the state of the battery is abnormal based on the temperature measurement result wirelessly transmitted from the battery monitoring device, and the battery monitoring when it is determined that the battery state is abnormal A battery state management method for instructing an apparatus to stop discharging of a battery cell targeted for balancing.
  12.  請求項7乃至11のいずれか一項に記載の電池状態管理方法において、
     前記電池監視装置が接続されている電池セルグループの温度測定結果を前記監視結果として前記電池監視装置から前記電池状態管理装置へ無線送信し、
     前記電池状態管理装置により、前記電池監視装置から無線送信された前記温度測定結果に基づいて、前記電池の状態が異常であるか否かを判定し、異常であると判定した場合に警告を行う電池状態管理方法。
    The battery state management method according to any one of claims 7 to 11,
    The temperature measurement result of the battery cell group to which the battery monitoring device is connected is wirelessly transmitted as the monitoring result from the battery monitoring device to the battery state management device,
    The battery state management device determines whether or not the battery state is abnormal based on the temperature measurement result wirelessly transmitted from the battery monitoring device, and issues a warning when it is determined that the battery state is abnormal Battery state management method.
PCT/JP2012/075917 2011-10-07 2012-10-05 Battery state management device, battery state management method WO2013051688A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-223167 2011-10-07
JP2011223167A JP2013085363A (en) 2011-10-07 2011-10-07 Battery state management device, battery state management method

Publications (1)

Publication Number Publication Date
WO2013051688A1 true WO2013051688A1 (en) 2013-04-11

Family

ID=48043841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075917 WO2013051688A1 (en) 2011-10-07 2012-10-05 Battery state management device, battery state management method

Country Status (2)

Country Link
JP (1) JP2013085363A (en)
WO (1) WO2013051688A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651625B2 (en) 2011-10-07 2017-05-16 Hitachi Automotive Systems, Ltd. Battery monitoring apparatus and battery monitoring system
US9696383B2 (en) 2011-10-07 2017-07-04 Hitachi Automotive Systems, Ltd. Battery monitoring system, host controller, and battery monitoring device
CN107923944A (en) * 2015-07-08 2018-04-17 艾格利昂有限公司 Lithium-ions battery safety monitoring
US10193190B2 (en) 2013-11-01 2019-01-29 Hitachi, Ltd. Battery control system
CN111163432A (en) * 2019-08-07 2020-05-15 上海钧正网络科技有限公司 Battery anti-theft method, management equipment, battery and server
CN113016117A (en) * 2018-11-22 2021-06-22 日立安斯泰莫株式会社 Cell controller, battery management system, and battery system
WO2022200907A1 (en) * 2021-03-26 2022-09-29 株式会社半導体エネルギー研究所 Battery management system, vehicle, and server device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102035307B1 (en) 2013-12-30 2019-10-22 주식회사 위츠 Power charging apparatus and battery apparatus
JP5928509B2 (en) * 2014-03-12 2016-06-01 トヨタ自動車株式会社 Battery monitoring device
JP2016127740A (en) 2015-01-06 2016-07-11 東芝テック株式会社 Information processor and peripheral unit
WO2019171680A1 (en) * 2018-03-09 2019-09-12 住友電気工業株式会社 Battery monitoring device, battery module device, and battery monitoring system
JP7028146B2 (en) 2018-12-03 2022-03-02 株式会社デンソー Battery system
CN113491050A (en) * 2019-02-27 2021-10-08 株式会社杰士汤浅国际 Storage battery monitoring device and storage battery monitoring method
US11828809B2 (en) 2019-02-27 2023-11-28 Gs Yuasa International Ltd. Storage battery monitoring apparatus and storage battery monitoring method
WO2020184513A1 (en) * 2019-03-13 2020-09-17 株式会社デンソー Battery monitoring apparatus
JP7031648B2 (en) * 2019-03-13 2022-03-08 株式会社デンソー Battery monitoring device
KR20210040721A (en) * 2019-10-04 2021-04-14 주식회사 엘지화학 System and method for diagnosing battery
JP7081710B1 (en) 2021-04-21 2022-06-07 株式会社デンソー Battery management system
JP2023035198A (en) * 2021-08-31 2023-03-13 株式会社デンソー battery monitoring system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289630A (en) * 2002-03-27 2003-10-10 Mitsubishi Heavy Ind Ltd Voltage equalizer in capacitor and power storage system equipped with the device
JP2009538112A (en) * 2006-05-15 2009-10-29 エイ 123 システムズ,インク. Multi-configurable scalable redundant battery module with multiple fault tolerance
JP2010081716A (en) * 2008-09-25 2010-04-08 Toshiba Corp Battery information obtaining device
JP2010172186A (en) * 2008-12-26 2010-08-05 Panasonic Corp Electronic equipment and method for calculating remaining usable time of battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086469A (en) * 2009-10-15 2011-04-28 Sony Corp Battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289630A (en) * 2002-03-27 2003-10-10 Mitsubishi Heavy Ind Ltd Voltage equalizer in capacitor and power storage system equipped with the device
JP2009538112A (en) * 2006-05-15 2009-10-29 エイ 123 システムズ,インク. Multi-configurable scalable redundant battery module with multiple fault tolerance
JP2010081716A (en) * 2008-09-25 2010-04-08 Toshiba Corp Battery information obtaining device
JP2010172186A (en) * 2008-12-26 2010-08-05 Panasonic Corp Electronic equipment and method for calculating remaining usable time of battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651625B2 (en) 2011-10-07 2017-05-16 Hitachi Automotive Systems, Ltd. Battery monitoring apparatus and battery monitoring system
US9696383B2 (en) 2011-10-07 2017-07-04 Hitachi Automotive Systems, Ltd. Battery monitoring system, host controller, and battery monitoring device
US10193190B2 (en) 2013-11-01 2019-01-29 Hitachi, Ltd. Battery control system
CN107923944A (en) * 2015-07-08 2018-04-17 艾格利昂有限公司 Lithium-ions battery safety monitoring
CN107923944B (en) * 2015-07-08 2021-03-09 艾格利昂有限公司 Lithium ion battery safety monitoring
CN113016117A (en) * 2018-11-22 2021-06-22 日立安斯泰莫株式会社 Cell controller, battery management system, and battery system
CN111163432A (en) * 2019-08-07 2020-05-15 上海钧正网络科技有限公司 Battery anti-theft method, management equipment, battery and server
CN111163432B (en) * 2019-08-07 2022-07-26 上海钧正网络科技有限公司 Battery anti-theft method, management equipment, battery and server
WO2022200907A1 (en) * 2021-03-26 2022-09-29 株式会社半導体エネルギー研究所 Battery management system, vehicle, and server device

Also Published As

Publication number Publication date
JP2013085363A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
WO2013051688A1 (en) Battery state management device, battery state management method
JP5808418B2 (en) Battery monitoring device, battery monitoring system
EP2765643B1 (en) Controller and battery monitoring system
US8981722B2 (en) Cell control device and electricity storage device incorporating the same
US8513918B2 (en) Vehicle battery control system having a voltage sensor that measures a voltage between a contactor and an inverter equipment
US7830126B2 (en) Hybrid vehicle control system and method
JP5552218B2 (en) Power supply
JP5854242B2 (en) Electric power supply device using electric vehicle
US20130271146A1 (en) Battery system
WO2012169062A1 (en) Battery control device and battery system
WO2013094057A1 (en) Battery control device and battery system
JP5670556B2 (en) Battery control device
JP5448661B2 (en) Battery control device and power device
JP2011166867A (en) Battery control device and battery system
WO2015093188A1 (en) Diagnostic device that identifies anomalies in electrical-power transmission path
WO2013084353A1 (en) Cell controller
JP2018186670A (en) Charging system or charger
JP2012182881A (en) Secondary battery device and vehicle
JP2013243790A (en) Apparatus for controlling power source
JP2020022332A (en) On-vehicle charger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838660

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838660

Country of ref document: EP

Kind code of ref document: A1