JPH02275372A - Ground fault current sensor and localization of ground fault point - Google Patents

Ground fault current sensor and localization of ground fault point

Info

Publication number
JPH02275372A
JPH02275372A JP1095961A JP9596189A JPH02275372A JP H02275372 A JPH02275372 A JP H02275372A JP 1095961 A JP1095961 A JP 1095961A JP 9596189 A JP9596189 A JP 9596189A JP H02275372 A JPH02275372 A JP H02275372A
Authority
JP
Japan
Prior art keywords
ground fault
fault current
current sensor
point
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1095961A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Okawa
大川 良泰
Atsuo Ito
伊藤 淳夫
Ryuichi Okura
龍一 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kandenko Co Ltd
Koyo Electric Co Ltd
Original Assignee
Kandenko Co Ltd
Koyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kandenko Co Ltd, Koyo Electric Co Ltd filed Critical Kandenko Co Ltd
Priority to JP1095961A priority Critical patent/JPH02275372A/en
Publication of JPH02275372A publication Critical patent/JPH02275372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Locating Faults (AREA)

Abstract

PURPOSE:To enable location of a fault point by a method wherein a plurality of terminals are provided in an electromagnetic direction of a ground fault current path and current between terminals is checked to detect a ground fault current easily with handy construction. CONSTITUTION:A transmission wire is arranged near center axes of gas insulated switch (GIS) tanks 11 and 15 made up of a conductor of a low impedance and filled with SF6 gas. Then, terminals 17 are connected to a nut connected to flanges 12 and 16 and ground fault current sensors S11-S15 are provided between the respective terminals 17. In such a condition, when a ground fault occurs at a point P, a ground fault current flows through the tanks 11 and 15 in a direction of earth centered on the point P, thereby enabling detection thereof with the sensors S11-S15. When phases of the sensors S11-S15 are compared, any ground fault point P can be located when existing within a detection section of a ground fault current sensor with normal and opposite phases adjacent to each other.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、たとえば配変電所におけるガス絶縁開閉装置
(GrS)の地絡電流センサおよび地絡点標定方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a ground fault current sensor and a ground fault point locating method for a gas insulated switchgear (GrS) in, for example, a power distribution substation.

(従来の技術) 一般に開閉装置に地絡等の事故が発生した場合、系統の
早期復旧を図るため、狭い範囲で事故点を検出する必要
があるため地絡点を標定している。
(Prior art) Generally, when an accident such as a ground fault occurs in a switchgear, it is necessary to detect the fault point within a narrow range in order to restore the system quickly, so the ground fault point is located.

従来の絶縁開閉装置の地絡の検出および地絡点の標定は
、開放形の絶縁開閉装置の場合、たとえば1760秒毎
に撮像を行ない、地絡が生じたとき撮像した画面を目視
等することにより、地絡および地絡点を標定している。
To detect ground faults and locate the ground fault point in conventional insulated switchgear, in the case of open type insulated switchgear, images are taken every 1,760 seconds, and the imaged screen is visually inspected when a ground fault occurs. Ground faults and ground fault points are located using this method.

ところが、密閉形であるガス絶縁開閉装置の場合は、密
封されているため、目視等により内部の地絡点を標定す
るのは困難である。このため、GISタンクに、光セン
サを設けてアークによる光の発生を検知したり、衝撃圧
力リレーで衝撃的なガス圧の発生を検知したりして、地
絡の発生および地絡点の標定を行なっている。
However, in the case of a gas-insulated switchgear, which is a closed type, it is difficult to visually locate the ground fault point inside the switchgear because it is sealed. For this reason, a light sensor is installed in the GIS tank to detect the generation of light due to an arc, and an impact pressure relay is used to detect the generation of shocking gas pressure, thereby identifying the occurrence of a ground fault and locating the ground fault point. is being carried out.

(発明が解決しようとする課題) しかしながら、光センサや、衝撃圧力リレーは、GIS
タンク内に設置しなければならず、既設の場合にはGI
Sタンクの大幅な改造、新設の場合には気密性等および
保守が煩雑となる等の問題を有している。
(Problem to be solved by the invention) However, optical sensors and impact pressure relays are
It must be installed inside the tank, and if it is already installed, the GI
In the case of major modification or new installation of the S tank, there are problems such as airtightness and complicated maintenance.

そこで、たとえば第12図に示すように、間隔を有して
複数の変成器CTI 、 CT2 、 CT3 、 C
T4の一次巻線をGISタンク1の周囲に巻装し、地絡
電流を検出するものが考えられている。
Therefore, as shown in FIG. 12, for example, a plurality of transformers CTI, CT2, CT3, C are connected at intervals.
It has been considered that a T4 primary winding is wound around the GIS tank 1 to detect ground fault current.

そして、負荷電流1.が2点で地絡が発生したとすると
地絡電流■、は、GISタンク1を地絡経路として、電
源Eの方向および負荷の方向にそれぞれ分流され、地絡
電流I、lは変成器CT2 。
And load current 1. If a ground fault occurs at two points, the ground fault current ■, will be shunted in the direction of the power supply E and the load, respectively, using the GIS tank 1 as the ground fault path, and the ground fault currents I and l will be shunted to the direction of the power supply E and the load, respectively, using the GIS tank 1 as the ground fault path, and the ground fault currents .

CHを通過し、地絡電流1.2は変成器CT3 、 C
T4を通過する。
The earth fault current 1.2 passes through the transformer CT3, C
Pass T4.

また、変成器CT2に流れる電流I CT2は、Icy
z =1.  I−+ (A) 変成器CT3に流れる電流I CT3は、Ictv =
1.  I、+I、2(A)ここで、(w =11+ 
I I 2なので、Icti=1.   1.+(A) となる。
Furthermore, the current ICT2 flowing through the transformer CT2 is Icy
z=1. I-+ (A) The current I CT3 flowing through the transformer CT3 is Ictv =
1. I, +I, 2(A) where (w = 11+
Since I I 2, Icti=1. 1. +(A).

ところが、実際は各変成器CTI 、 CT2 、 C
T3 。
However, in reality, each transformer CTI, CT2, C
T3.

CT4の一次巻線には負荷電流I。も通過しているので
、地絡点を確実に検出することは困難である。
A load current I is applied to the primary winding of CT4. , it is difficult to reliably detect the ground fault point.

本発明は上記問題点に鑑みなされたもので、既設、新設
のいずれの設備に対しても適応が容易であり、かつ、安
価で確実な検出を行なえる地絡電流センサおよび地絡点
標定方法を提供することを目的とする。
The present invention has been made in view of the above problems, and is a ground fault current sensor and ground fault point locating method that can be easily applied to both existing and newly installed equipment, and that can perform reliable detection at low cost. The purpose is to provide

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 請求項1の地絡電流センサは、地絡電流経路を形成する
導電体と、この導電体の地絡電流の流れる方向に複数設
けられた端子と、これら端子間の出力を検出する検出手
段とを具備したものである。
(Means for Solving the Problems) A ground fault current sensor according to claim 1 comprises: a conductor forming a ground fault current path; a plurality of terminals of the conductor provided in a direction in which a ground fault current flows; and these terminals. and detection means for detecting an output between the two.

請求項2の地絡点標定方法は、地絡電流経路に、請求項
1の地絡電流センサを複数設け、これら地絡電流センサ
の出力の位相を比較し、出力が正相を示す地絡電流セン
サおよび出力が逆相を示す地絡電流センサが隣合った地
絡電流センサのいずれかの検出区間で地絡事故が発生し
たことを標定するものである。
The ground fault point locating method according to claim 2 provides a plurality of ground fault current sensors according to claim 1 on a ground fault current path, compares the phases of the outputs of these ground fault current sensors, and detects a ground fault where the output shows a positive phase. The current sensor and the ground fault current sensor whose outputs are in the opposite phase locate the occurrence of a ground fault accident in any detection section of adjacent ground fault current sensors.

(作用) 請求項1の地絡電流センサは、導電体の地絡電流経路に
地絡電流が流れたとき、検出手段で、端子間の出力を検
出するものである。
(Function) In the ground fault current sensor according to the first aspect, when a ground fault current flows through a ground fault current path of a conductor, the detection means detects an output between the terminals.

請求項2の地絡点標定方法は、複数設けられた地絡電流
センサで検出される出力の位相を比較し、出力が正相を
示す地絡電流センサおよび出力が逆相を示す地絡電流セ
ンサが隣合った地絡電流センサのいずれかの端子間で地
絡が発生したことを標定するものである。
The ground fault point locating method according to claim 2 compares the phases of outputs detected by a plurality of ground fault current sensors, and detects ground fault current sensors whose outputs are in positive phase and ground fault current sensors whose outputs are in reverse phase. The sensor locates the occurrence of a ground fault between any terminals of adjacent ground fault current sensors.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において、11は地絡電流経路を形成する低イン
ピーダンスの導電体である鉄またはアルミニウム製のガ
ス絶縁開閉装置(G I S)タンクで、このGISタ
ンク11は、円筒がT字状に組合わされ、3つの端部に
はそれぞれフランジ12.12゜13が形成されている
In Fig. 1, numeral 11 is a gas insulated switchgear (GIS) tank made of iron or aluminum, which is a low impedance conductor that forms a ground fault current path.This GIS tank 11 has a T-shaped cylinder. In combination, the three ends are each formed with a flange 12.12.degree. 13.

また、15は直線状の円筒のGISタンクで、このGI
Sタンク15も同様に両端にフランジ16が形成されて
いる。そして、GISタンク11のフランジ12と、G
ISタンク15のフランジ16がボルト・ナツトにて締
着されている。
In addition, 15 is a straight cylindrical GIS tank, and this GI
Similarly, flanges 16 are formed at both ends of the S tank 15. Then, the flange 12 of the GIS tank 11 and the G
The flange 16 of the IS tank 15 is fastened with bolts and nuts.

さらに、GISタンク11およびGISタンク15のそ
れぞれの中心軸の近傍には、電源Eに接続された送電線
が軸方向に沿って配設され、また、これらGISタンク
11およびGISタンク15内には、六フッ化硫黄ガス
(SF6)が充填されている。
Further, a power transmission line connected to the power source E is arranged along the axial direction near the center axis of each of the GIS tank 11 and the GIS tank 15, and inside the GIS tank 11 and the GIS tank 15, , filled with sulfur hexafluoride gas (SF6).

そして、接続されているフランジ12.16を接続する
図示しないナツトに端子17を接続し、端子17、17
間に、それぞれ地絡電流センサ311.  SI2゜S
13. 314. 815を、必要に応じて任意に設け
る。
Then, connect the terminal 17 to a nut (not shown) that connects the connected flanges 12.16, and
In between, each ground fault current sensor 311. SI2゜S
13. 314. 815 is optionally provided as necessary.

なお、端子17.17の間隔が広いときは、GISタン
ク11. 15の外周面に、端子17を設け、端子17
゜17間距離を短かくしたり、反対に端子17.17間
距離が短かいときは、2つまたはそれ以上のGISタン
ク12.16毎の端子17.17間に地絡電流センサS
を接続するようにし、端子17.17間距離を長くして
もよい。
Note that when the distance between the terminals 17 and 17 is wide, the GIS tank 11. A terminal 17 is provided on the outer peripheral surface of the terminal 15.
If the distance between terminals 17 and 17 is shortened, or conversely, the distance between terminals 17 and 17 is short, connect the ground fault current sensor S between terminals 17 and 17 of every two or more GIS tanks 12.
The distance between the terminals 17 and 17 may be increased.

そして、地絡電流センサSには、第2図に示すようにた
とえばトランス18を用いる。この場合、端子17.1
7間にトランス18の一次巻線19の両端を接続し、二
次巻線20の出力により、地絡電流を検出するものであ
る。このように、絶縁形のトランス18を用いると、第
3図に示すように、二次巻線2θ側をたとえば一線共通
とすることができるので、二次側の回路構成が容易にな
り、処理容易な出力として処理できる。
As the ground fault current sensor S, for example, a transformer 18 is used as shown in FIG. In this case, terminal 17.1
Both ends of a primary winding 19 of a transformer 18 are connected between 7 and 7, and ground fault current is detected from the output of a secondary winding 20. In this way, when the insulated transformer 18 is used, the secondary winding 2θ side can be made common to one line, for example, as shown in FIG. 3, so the circuit configuration on the secondary side is simplified and the processing Can be easily processed as output.

また、第4図に示すように地絡電流センサSには、変成
器21を用いてもよい。この場合、端子17、17間を
短絡し、この短絡した部分に変成器21の一次巻線を通
過させる。
Further, as shown in FIG. 4, a transformer 21 may be used for the ground fault current sensor S. In this case, the terminals 17, 17 are short-circuited, and the primary winding of the transformer 21 is passed through this short-circuited portion.

次に、第1図に示す構造で、点Pにおいて地絡が発生し
た場合について説明する。
Next, a case where a ground fault occurs at point P in the structure shown in FIG. 1 will be described.

通常時は、GISタンクIf、 15内の図示しない送
電線には、図面左方向から右方向に負荷電流が流れてい
る。
Normally, a load current flows through a power transmission line (not shown) in the GIS tank If, 15 from the left to the right in the drawing.

この状態でP点に地絡が発生すると、GISタンク11
. 15はP点を中心にアース方向に地絡電流が流れる
(すなわち破線矢印方向)。このとき、地絡電流センサ
Sllおよび地絡電流センサ812は、位相が反転し、
地絡電流センサS13、地絡電流センサS14および地
絡電流センサS15の示す位相と逆相になろう そうして、これら地絡電流センサ311〜S15の位相
を比較し、正相と逆相が隣合った地絡電流センサS12
または地絡電流センサS13のいずれかの検出区間内に
地絡点Pがあることを標定することができる。
If a ground fault occurs at point P in this state, the GIS tank 11
.. 15, a ground fault current flows in the direction of the ground around point P (that is, in the direction of the dashed arrow). At this time, the phases of the ground fault current sensor Sll and the ground fault current sensor 812 are reversed,
The phases indicated by the ground fault current sensor S13, ground fault current sensor S14, and ground fault current sensor S15 are reversed. Then, the phases of these ground fault current sensors 311 to S15 are compared, and the positive phase and reverse phase are determined. Adjacent ground fault current sensor S12
Alternatively, it is possible to locate the ground fault point P within any detection section of the ground fault current sensor S13.

次に、実施例に模擬地絡電流を印加した場合の実験結果
を第5図を参照して説明する。
Next, the experimental results when a simulated ground fault current was applied to the example will be explained with reference to FIG.

第5図に示すGIS装置は、8つのGISタンク21〜
28にて形成されたもので、それぞれのGIsタンク2
1〜28には、それぞれ第2図に示すような地絡電流セ
ンサS1〜S8が設けれられ、これら地絡電流センサS
1〜S8は電圧波形をアナログ処理し、位相を表わする
ようになっている。
The GIS device shown in FIG. 5 has eight GIS tanks 21 to
28, each GIs tank 2
1 to 28 are respectively provided with ground fault current sensors S1 to S8 as shown in FIG.
1 to S8 perform analog processing on the voltage waveform to represent the phase.

そして、GISタンク21の端部に地絡地点PI、GI
Sタンク23のGISタンク22側に地絡地点P2、G
ISタンク23の中央に地路地点P3、GISタンク2
3のGISタンク24側に地絡地点P4、GISタンク
25に地絡地点P5、GISタンク27に地絡地点P6
およびGISタンク28の端部に地絡地点P7をそれぞ
れ設定し、GISタンク内部から模擬地絡電流を流すと
、各センサには表1に示す電圧位相が表われる。
Then, ground fault points PI and GI are placed at the ends of the GIS tank 21.
Ground fault points P2 and G on the GIS tank 22 side of the S tank 23
Ground point P3 in the center of IS tank 23, GIS tank 2
3, ground fault point P4 on the GIS tank 24 side, ground fault point P5 on the GIS tank 25, and ground fault point P6 on the GIS tank 27 side.
When a ground fault point P7 is set at the end of the GIS tank 28 and a simulated ground fault current is passed from inside the GIS tank, the voltage phases shown in Table 1 appear in each sensor.

(以下次頁) 表1に示すように、実験によれば、模擬地格電流を流し
たGISタンクに現われる位相(下線部)は隣接するG
ISタンクに現われる位相とはほぼ逆相となり大きく異
なるので、容易に地絡点を標定することができる。
(See next page) As shown in Table 1, according to experiments, the phase (underlined part) that appears in a GIS tank through which a simulated earth-rated current flows is
Since this phase is substantially opposite to the phase appearing in the IS tank and is significantly different, the ground fault point can be easily located.

次に、GISタンク内に流れる負荷電流がセンサに与え
る影響を調べるために、GISタンク外部から地絡電流
を流した。場合と、表1に示すGIsタンク内部から地
絡電流を流した場合とを比較した実験結果を表2に示す
。この場合、GISタンク2】の端部に地絡地点pH,
GISタンク22およびGISタンク23のフランジに
地絡地点P12、GISタンク23およびGISタンク
24のフランジに地絡地点P14、GISタンク24お
よびGISタンク25のフランジに地絡地点P15、G
ISタンク27およびGISタンク28のフランジに地
絡地点P16およびGISタンク28の端部に地絡地点
P17をそれぞれ設定し、GISタンクの内部に地絡さ
せた場合とを表2にて比較して説明する。
Next, in order to investigate the effect of the load current flowing inside the GIS tank on the sensor, a ground fault current was applied from outside the GIS tank. Table 2 shows the experimental results comparing the case where the ground fault current was caused to flow from inside the GIs tank shown in Table 1. In this case, the ground fault point pH,
Ground fault point P12 on the flange of GIS tank 22 and GIS tank 23, ground fault point P14 on the flange of GIS tank 23 and GIS tank 24, ground fault point P15 on the flange of GIS tank 24 and GIS tank 25, G
A ground fault point P16 is set at the flange of the IS tank 27 and the GIS tank 28, and a ground fault point P17 is set at the end of the GIS tank 28, respectively, and a comparison is made in Table 2 with a case where a ground fault is caused inside the GIS tank. explain.

表2に示すように、GISタンク内部で地絡電流を流し
た場合も、GISタンク内に流れる負荷電流の影響を無
視できるGISタンク外部で電流を流した場合に、各地
絡電流センサS1〜S8に現われる位相が似ているので
、GISタンク内部に流れる負荷電流はセンサに影響を
与えないことがわかる。
As shown in Table 2, even when a ground fault current is passed inside the GIS tank, the influence of the load current flowing inside the GIS tank can be ignored. It can be seen that the load current flowing inside the GIS tank does not affect the sensor because the phases appearing in the GIS tank are similar.

次に、第6図および第7図を参照して、接地線の地絡電
流の位相と各地絡電流センサの位相とを比較して地絡点
を標定する装置を説明する第6図に示す装置は、第5図
に示す装置の各地絡電流センサ5l−88に、地絡線に
接続されたクランプ変成器Cで検出された位相と、地絡
電流センサS1〜S8で検出された位相とを比較する位
相比較装置F1〜F8をそれぞれの地絡電流センサS1
〜S8に接続したものである。
Next, referring to FIG. 6 and FIG. 7, a device for locating a ground fault point by comparing the phase of the ground fault current of the grounding wire and the phase of each fault current sensor will be explained. The device transmits to each fault current sensor 5l-88 of the device shown in FIG. 5 the phase detected by the clamp transformer C connected to the ground fault line and the phase detected by the ground fault current sensors S1 to S8. The phase comparison devices F1 to F8 that compare the ground fault current sensor S1
~S8 is connected.

そして、これらの位相比較装置F1〜F8は、第7図に
示すように、地絡電流センサSと、クランプする地絡電
流センサS1〜S8毎の位相を比較する位相比較装置F
1〜F7がそれぞれ接続されている。
These phase comparison devices F1 to F8 are, as shown in FIG.
1 to F7 are connected to each other.

そして、これらの位相比較装置F1〜F7は、第9図に
示すように、隣接する地絡電流センサS。
These phase comparators F1 to F7 are connected to adjacent ground fault current sensors S, as shown in FIG.

Sをアンプ31を介して波形整形器32に接続している
。さらに、この波形整形器32には、各地絡電流センサ
S、S、変成器Cとを増幅用のアンプ31に接続し、こ
のアンプ31を波形整形用の波形整形器32に接続して
いる。また、この波形整形器32には、地絡電流センサ
Sの位相を計測する位相計33および地絡電流センサS
とクランプ変成器Cとの位相を比較する位相比較器34
が接続されている。さらに、この位相比較器34には、
逆相の箇所をたとえば発光ダイオードで表示する表示器
35および地絡電流センサSとクランプ変成器Cとの位
相差をデジタルで表示するデジタル指示計36が接続さ
れている。また、これら表示器35およびデジタル指示
計36は、たとえば、操作盤のパネル等に設けられてい
る。
S is connected to a waveform shaper 32 via an amplifier 31. Furthermore, in this waveform shaper 32, each fault current sensor S, S, and transformer C are connected to an amplifier 31 for amplification, and this amplifier 31 is connected to a waveform shaper 32 for waveform shaping. The waveform shaper 32 also includes a phase meter 33 that measures the phase of the ground fault current sensor S, and a phase meter 33 that measures the phase of the ground fault current sensor S.
and the clamp transformer C.
is connected. Furthermore, this phase comparator 34 has
A display 35 that displays the location of the opposite phase using, for example, a light emitting diode, and a digital indicator 36 that digitally displays the phase difference between the ground fault current sensor S and the clamp transformer C are connected. Further, the display 35 and the digital indicator 36 are provided, for example, on a panel of an operation panel.

そうして、通常時は一般にすべて正相状態であるので、
表示器35は表示を行なわず、デジタル指示計36はそ
れぞれクランプ変成器Cとの位相差を表示する。地絡事
故が発生した場合には、地絡により、逆相を表わす地絡
電流センサSが現われ、位相比較器34で、逆相と判断
された地絡電流センサに対応する発光ダイオードを点灯
させ、逆相である旨を表示する。
Then, in normal times, everything is in normal phase, so
The display 35 does not display, and the digital indicators 36 each display the phase difference with the clamp transformer C. When a ground fault occurs, the ground fault current sensor S indicating the reverse phase appears due to the ground fault, and the phase comparator 34 lights up the light emitting diode corresponding to the ground fault current sensor that is determined to have the reverse phase. , indicates that the phase is reversed.

そして、正相を示す地絡電流センサおよび逆相を示す地
絡電流センサが隣合った、いずれか−方の検出区間で、
地絡事故が発生したことを標定することができる。
Then, in one of the detection sections where the ground fault current sensor indicating the positive phase and the ground fault current sensor indicating the negative phase are adjacent,
It is possible to locate that a ground fault has occurred.

なお、比較の対象となる位相は接地線に流れる地絡電流
に限らず、GISタンク内の負荷電流としてもよい。
Note that the phase to be compared is not limited to the ground fault current flowing through the ground wire, but may also be the load current in the GIS tank.

また、第8図および第9図を参照して、隣接する地絡電
流センサの位相を比較して地絡点を標定する装置を説明
する。
Further, with reference to FIGS. 8 and 9, a device for locating a ground fault point by comparing the phases of adjacent ground fault current sensors will be described.

第8図に示す装置は、第5図に示す装置の各隣接する地
絡電流センサS、S間に、各隣接の位相を計測する位相
計33および隣接する地絡電流センサS、S間の位相を
比較する位相比較器34が接続され、この位相比較器3
4には、隣接する地絡電流センサS、Sの逆相の箇所を
検出する表示器35および隣接する地絡電流センサS、
Sとの位相差をデジタルで表示するデジタル指示計36
が接続されている。
The device shown in FIG. 8 includes a phase meter 33 for measuring the phase of each adjacent ground fault current sensor S, and a phase meter 33 between each adjacent ground fault current sensor S, S of the device shown in FIG. A phase comparator 34 is connected to compare the phases, and this phase comparator 3
4 includes an adjacent ground fault current sensor S, an indicator 35 for detecting a location where the phase of S is reversed, and an adjacent ground fault current sensor S,
Digital indicator 36 that digitally displays the phase difference with S
is connected.

そうして、通常時は一般にすべて正相状態であるので、
表示器35は表示を行なわず、デジタル指示計36はそ
れぞれ隣接する地絡電流センサS。
Then, in normal times, everything is in normal phase, so
The display 35 does not display any information, and the digital indicators 36 are connected to adjacent ground fault current sensors S, respectively.

8間の位相差を表示する。地絡事故が発生した場合には
、一部の地絡電流センサSは逆相を表わす。
Displays the phase difference between 8. When a ground fault occurs, some of the ground fault current sensors S exhibit reverse phase.

そして、隣接する地絡電流センサS、S間で逆相と判断
されたときは、隣合って逆相を表示する地絡電流センサ
Sに対応する発光ダイオードを点灯させ、隣接する地絡
電流センサSが逆相である旨を表示する。
When it is determined that the phase is reversed between the adjacent ground fault current sensors S, the light emitting diode corresponding to the adjacent ground fault current sensor S that displays the reverse phase is turned on, and the adjacent ground fault current sensor Displays that S is in reverse phase.

そして、隣接して正相および逆相を示す地絡電流センサ
S、Sのいずれか一方の検出区間で、地絡事故が発生し
たことを標定することができる。
Then, it is possible to locate that a ground fault has occurred in the detection section of either one of the ground fault current sensors S, S which show the positive phase and negative phase adjacent to each other.

さらに第10図および第11図を参照して、地絡電流セ
ンサのピーク値を検出して地絡点を標定する装置を説明
する。
Furthermore, with reference to FIGS. 10 and 11, a device for detecting the peak value of a ground fault current sensor and locating a ground fault point will be described.

第10図に示す装置は、第5図に示す装置のすべての地
絡電流センサSが、電圧出力値の最も高い地絡電流セン
サSを判別するレベル判定装置りに接続されているもの
である。なお、各GISタンク21〜28の固有インピ
ーダンスは同じではなく、また、各GISタンク21〜
28の固有インピーダンスは異なっている。また、レベ
ル判定袋ff1i[Lは、各地絡電流センサSがアンプ
31に接続され、波形整形器32を介して、電圧のピー
ク値を検出するピーク値検出器37に接続され、このピ
ーク値検出器37には、表示器35が接続されている。
In the device shown in FIG. 10, all the ground fault current sensors S of the device shown in FIG. 5 are connected to a level determination device that determines the ground fault current sensor S with the highest voltage output value. . Note that the specific impedance of each GIS tank 21 to 28 is not the same, and each GIS tank 21 to
The 28 characteristic impedances are different. In addition, each fault current sensor S is connected to the amplifier 31, and connected to a peak value detector 37 that detects the peak value of the voltage via the waveform shaper 32, and the level determination bag ff1i [L is connected to the peak value detector 37 that detects the peak value of the voltage. A display device 35 is connected to the device 37 .

そうして、地絡事故が発生した場合には、地絡事故が発
生した部分を検出区間に有する地絡電流センサSの電圧
が最も上昇し、ピーク値検出器37により最高電圧が検
出され、表示器35の地絡事故が発生した区間に対応す
る発光ダイオードが点灯して、地絡事故点を標定するこ
とができる。
Then, when a ground fault occurs, the voltage of the ground fault current sensor S whose detection section includes the part where the ground fault occurred rises the most, and the peak value detector 37 detects the highest voltage. The light emitting diode corresponding to the section where the ground fault occurred on the display 35 lights up, and the point of the ground fault can be located.

なお、GISタンクには、GISタンク内の負荷電流お
よびその他の原因によって、電流が流れている場合があ
る。そして、この場合、地絡が発生すると地絡電流に平
常時の電流が重畳された電流が流れ真の地絡電流のみを
検出できない。そこで、このように重畳された電流の場
合には、各センサの出力を常時監視記録して、一定時間
毎に書換え、地絡事故発生時には地絡事故直前すなわち
平常時の電流を差引けば、真の地絡電流の位相を知るこ
とができる。
Note that current may flow through the GIS tank due to the load current within the GIS tank and other causes. In this case, when a ground fault occurs, a current in which a normal current is superimposed on the ground fault current flows, making it impossible to detect only the true ground fault current. Therefore, in the case of superimposed currents like this, the output of each sensor is constantly monitored and recorded, rewritten at regular intervals, and when a ground fault occurs, the current immediately before the fault occurs, that is, during normal times, is subtracted. You can know the phase of the true ground fault current.

また、地絡電流センサは、高圧送電線の鉄塔の脚等に設
ければ短絡電流検知用のセンサとして用いることもでき
る。
Further, the ground fault current sensor can be used as a sensor for detecting short circuit current if it is installed on a leg of a tower of a high-voltage power transmission line.

〔発明の効果〕〔Effect of the invention〕

請求項1の地絡電流センサによれば、地絡電流経路の電
流方向に端子を設け、端子間の出力を検出するようにし
たので、簡易な構成で容易に地絡電流を検出できる。
According to the ground fault current sensor of the first aspect, since the terminals are provided in the current direction of the ground fault current path and the output between the terminals is detected, the ground fault current can be easily detected with a simple configuration.

請求項2の地絡点標定方法によれば、請求項1の地絡電
流センサの端子間の出力の位相を検出することにより、
地絡事故の地点を標定するので、容易に地絡事故の地点
を標定することができる。
According to the ground fault point locating method of claim 2, by detecting the phase of the output between the terminals of the ground fault current sensor of claim 1,
Since the point of the ground fault is located, the point of the ground fault can be easily located.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す説明図、第2図は同上
地絡電流センサを示すブロック図、第3図は同上地絡電
流センサの接続図、第4図は同上能の地絡電流センサを
示すブロック図、第5図は同上地絡実験装置を示す説明
図、第6図は地絡地点標定装置を示す説明図、第7図は
同上標定装置を示すブロック図、第8図は他の地絡地点
標定装置を示す説明図、第9図は同上標定装置を示すブ
ロック図、第10図はまた他の地絡地点標定装置を示す
説明図、第11図は同上標定装置を示す説明図、第12
図は従来例を示す理論図である。 Il、 15・・地絡電流経路を形成する導電体のGI
Sタンク、17・・端子、S・・検出手段としてのセン
サ。
Fig. 1 is an explanatory diagram showing one embodiment of the present invention, Fig. 2 is a block diagram showing the ground fault current sensor of the above, Fig. 3 is a connection diagram of the ground fault current sensor of the above, and Fig. 4 is a diagram of the ground fault current sensor of the above. A block diagram showing the fault current sensor, Fig. 5 is an explanatory diagram showing the ground fault test device as above, Fig. 6 is an explanatory diagram showing the ground fault point locating device, Fig. 7 is a block diagram showing the locating device as above, Fig. 8 The figure is an explanatory diagram showing another ground fault point locating device, FIG. 9 is a block diagram showing the same locating device, FIG. 10 is an explanatory diagram showing another ground fault point locating device, and FIG. 11 is an explanatory diagram showing the same locating device. Explanatory diagram showing 12th
The figure is a theoretical diagram showing a conventional example. Il, 15... GI of the conductor forming the ground fault current path
S tank, 17...terminal, S...sensor as a detection means.

Claims (2)

【特許請求の範囲】[Claims] (1)地絡電流経路を形成する導電体と、 この導電体の地絡電流の流れる方向に複数設けられた端
子と、 これら端子間の出力を検出する検出手段と を具備したことを特徴とする地絡電流センサ。
(1) A conductor that forms a ground fault current path, a plurality of terminals provided in the direction in which the ground fault current flows in this conductor, and a detection means that detects the output between these terminals. Ground fault current sensor.
(2)地絡電流経路に、請求項1の地絡電流センサを複
数設け、これら地絡電流センサの出力の位相を比較し、
出力が正相を示す地絡電流センサおよび出力が逆相を示
す地絡電流センサが隣合った地絡電流センサのいずれか
の検出区間で地絡事故が発生したことを標定することを
特徴とする地絡点標定方法。
(2) A plurality of ground fault current sensors according to claim 1 are provided in the ground fault current path, and the phases of the outputs of these ground fault current sensors are compared,
A ground fault current sensor whose output shows a positive phase and a ground fault current sensor whose output shows a negative phase locate the occurrence of a ground fault accident in any detection section of adjacent ground fault current sensors. Ground fault point location method.
JP1095961A 1989-04-15 1989-04-15 Ground fault current sensor and localization of ground fault point Pending JPH02275372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1095961A JPH02275372A (en) 1989-04-15 1989-04-15 Ground fault current sensor and localization of ground fault point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1095961A JPH02275372A (en) 1989-04-15 1989-04-15 Ground fault current sensor and localization of ground fault point

Publications (1)

Publication Number Publication Date
JPH02275372A true JPH02275372A (en) 1990-11-09

Family

ID=14151820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1095961A Pending JPH02275372A (en) 1989-04-15 1989-04-15 Ground fault current sensor and localization of ground fault point

Country Status (1)

Country Link
JP (1) JPH02275372A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016224050A (en) * 2015-05-29 2016-12-28 アーベーベー テクノロジー アクチエンゲゼルシャフトABB Technology AG Fault location in dc distribution systems
JP2019045192A (en) * 2017-08-30 2019-03-22 株式会社東芝 One-line ground fault current sensor and switch gear
EP3961832A4 (en) * 2019-04-22 2022-05-04 Mitsubishi Electric Corporation Fault-point-locating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166527A (en) * 1984-09-07 1986-04-05 株式会社東芝 Method of detecting ground-fault point in gas insulated bus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166527A (en) * 1984-09-07 1986-04-05 株式会社東芝 Method of detecting ground-fault point in gas insulated bus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016224050A (en) * 2015-05-29 2016-12-28 アーベーベー テクノロジー アクチエンゲゼルシャフトABB Technology AG Fault location in dc distribution systems
JP2019045192A (en) * 2017-08-30 2019-03-22 株式会社東芝 One-line ground fault current sensor and switch gear
EP3961832A4 (en) * 2019-04-22 2022-05-04 Mitsubishi Electric Corporation Fault-point-locating device

Similar Documents

Publication Publication Date Title
KR0172603B1 (en) Apparatus for monitoring degradation of insulation of electrical installation
US8717721B2 (en) High impedance fault isolation system
EA022653B1 (en) Directional detection of an earth fault with a single sensor
KR200401675Y1 (en) Low Voltage On-Line Insulation Monitoring System
JP4068624B2 (en) Electrostatic high voltage synchronous phase detection method and apparatus
JPH02275372A (en) Ground fault current sensor and localization of ground fault point
US4249126A (en) On-line fault locator for gas-insulated conductors with plural detectors
CN110231539A (en) A kind of monopolar grounding fault detection system for true bipolar DC electric line
JP2958594B2 (en) Insulation deterioration diagnosis device
JPH03128471A (en) Monitoring device for insulation deterioration of electric equipment
KR101487901B1 (en) Apparatus using detecting technology of faulted section for underground distribution line
RU2394249C1 (en) Method of determining overhead electric power line tower with single-phase earthing and earthing fault
JP3161757B2 (en) Power system insulation deterioration detection method, insulation deterioration detection device, insulation deterioration detection system, and insulation deterioration determination device
JPS6215473A (en) Locating method for fault point of transmission line
KR20070024361A (en) Low voltage on-line insulation monitoring system
KR20070027481A (en) On-line low-voltage cable fault locating system
JP2728422B2 (en) Abnormal location system for gas insulation equipment
KR200401672Y1 (en) Low Voltage On-Line Insulation Monitoring System
JP2007057471A (en) Method and device for monitoring insulation
JPS63294214A (en) Monitor system of insulation of power distribution facility
JPS59110303A (en) Shortcircuit defect detector for enclosed electric device
JPH075219A (en) Continuous insulation monitoring system for high voltage equipment
US3031613A (en) Systems for localizing leakage in electric networks
JP3042768U (en) Instantaneous ground fault detector
JP2508391B2 (en) Gas insulation switchgear fault location method