JP4068624B2 - Electrostatic high voltage synchronous phase detection method and apparatus - Google Patents

Electrostatic high voltage synchronous phase detection method and apparatus Download PDF

Info

Publication number
JP4068624B2
JP4068624B2 JP2005033000A JP2005033000A JP4068624B2 JP 4068624 B2 JP4068624 B2 JP 4068624B2 JP 2005033000 A JP2005033000 A JP 2005033000A JP 2005033000 A JP2005033000 A JP 2005033000A JP 4068624 B2 JP4068624 B2 JP 4068624B2
Authority
JP
Japan
Prior art keywords
voltage
electrostatic
phase
low
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005033000A
Other languages
Japanese (ja)
Other versions
JP2006220481A (en
Inventor
袈裟文 松本
Original Assignee
株式会社興研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社興研 filed Critical 株式会社興研
Priority to JP2005033000A priority Critical patent/JP4068624B2/en
Publication of JP2006220481A publication Critical patent/JP2006220481A/en
Application granted granted Critical
Publication of JP4068624B2 publication Critical patent/JP4068624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

本発明は、常用発電所及び移動式発電設備等に用いられる発電設備に係る静電型高圧同期検相方法及びその実施に直接使用する静電型高圧同期検相装置に関する。   The present invention relates to an electrostatic high-voltage synchronous phase detection method according to a power generation facility used in a utility power plant, a mobile power generation facility, and the like, and an electrostatic high-voltage synchronous phase detection device used directly for the implementation.

現在、系統連係の常用発電所や、移動式発電設備における発電機の運転に際しては、低負荷時の効率を高めるために複数の小容量の高圧発電機を使用し運転を行う方法が一般的である。   Currently, when operating generators in grid-connected utility power stations and mobile power generation facilities, it is common practice to use multiple small-capacity high-voltage generators to increase efficiency at low loads. is there.

その具体的運転方法としては、個々の発電機を母線に並列する方法が用いられ、この並列運転は負荷の増加に応じて停止中の発電機が自動起動し、発電機毎に備えられた同期装置(自動並列装置)で、電圧と周波数及び位相差の三要素が規定の条件に収まると自動並列するように設定されている。そして、上記値の下降とともに解列を行い、次の起動への待機を行うようになる。   As a specific operation method, a method in which individual generators are arranged in parallel to the bus is used, and this parallel operation is performed by automatically starting a stopped generator in accordance with an increase in load, and providing synchronization with each generator. The device (automatic parallel device) is set to automatically parallel when the three elements of voltage, frequency and phase difference fall within the specified conditions. Then, as the above value decreases, the line is disconnected and the system waits for the next activation.

これまでの発電設備には、図8に示すように複数の発電機G´(1、2…n)を個別にパッケージ形状に分散し、母線Lnを三相に対応した三本の銅バーγ(1、2…n)で整然と配列されたものが使用されていたが、現在は、図9(a)の並列接続の配線図に示すように、発電機G´の個々のパッケージ間を単芯の高圧ケーブル三本を撚り合わせたトリプレックスで順次並列に接続する方法が用いられている。なお、図中Ldは負荷と、Wは電力計をそれぞれ示す。   In the conventional power generation facility, as shown in FIG. 8, a plurality of generators G ′ (1, 2,... N) are individually dispersed in a package shape, and three copper bars γ corresponding to a three-phase bus Ln. (1, 2... N) arranged in an orderly manner was used, but now, as shown in the parallel connection wiring diagram of FIG. A method is used in which three high-voltage cables of the core are sequentially connected in parallel with a triplex twisted together. In the figure, Ld indicates a load, and W indicates a power meter.

その同期時期と電圧の確認方法について同図9の(a)を用いて説明すると、発電機G´には、複合計器同期装置Dと母線電圧を検出するための計器用変圧器Vtが備えられ、計器用変圧器の二次側(図中P、P、P)には電圧要素を必要とするいずれも図示しない電圧計、電力計及び保護装置等が順次並列接続される。 The method for confirming the synchronization timing and voltage will be described with reference to FIG. 9A. The generator G ′ is provided with a composite instrument synchronizer D and an instrument transformer Vt for detecting the bus voltage. On the secondary side of the instrument transformer (P 1 , P 2 , P 3 in the figure), a voltmeter, a wattmeter, a protection device, etc. (not shown) that require voltage elements are sequentially connected in parallel.

また、学術的には、相回転はR相を基準にしてRSTもしくはUVWの順に左か右にまわすため、図9(b)に示すようにRST(UVW)が計器用変圧器Vtの二次側P、P、Pに対応し、母線側のP、P、Pの値を計測することにより、同期の確認を行っていた。 Also, academically, phase rotation is turned to the left or right in the order of RST or UVW with reference to the R phase, so that RST (UVW) is the secondary of the instrument transformer Vt as shown in FIG. 9B. corresponds to the side P 1, P 2, P 3, by measuring the values of P 1, P 2, P 3 of the bus side, has been performed to confirm the synchronization.

図10が、上記システムを抱合した従来の発電設備の配置図であり、発電設備β´は、発電機G´、並列遮断機δ´、発電機高圧線17、発電機出力ケーブル11´、母線ケーブル12´、計器用変圧器Vtを具備し、発電機G´から出力された高電圧が発電機高圧線17を通じて、並列遮断機δ´、発電機出力ケーブル11´、母線ケーブル12´に流れ、計器用変圧器Vtを介し変圧したものを計測するという一連の手段を通して、その同期時期の確認を行っていた。   FIG. 10 is a layout diagram of a conventional power generation facility combined with the above system. The power generation facility β ′ includes a generator G ′, a parallel breaker δ ′, a generator high-voltage line 17, a generator output cable 11 ′, and a bus. The cable 12 'and the instrument transformer Vt are provided, and the high voltage output from the generator G' flows through the generator high voltage line 17 to the parallel breaker δ ', the generator output cable 11', and the bus cable 12 '. The synchronization time was confirmed through a series of means of measuring the voltage transformed through the instrument transformer Vt.

ここにおいて、上記に記載する発電設備を用いる系統連係の常用発電所または移動式発電設備等が完成するまでの試験工程において発生する問題として、発電機の単機試運転が完了した後に同期装置で並列を行うと、相回転が逆になり同期失敗が生じ発電設備が瞬間短絡を引き起こすことがあるという点が挙げられる。   Here, as a problem that occurs in the test process until the completion of the grid-connected utility power station or mobile power generation equipment using the power generation equipment described above, the synchronization device is connected in parallel after the single unit test run is completed. If it does, the phase rotation will be reversed and a synchronization failure will occur, and the power generation equipment may cause an instantaneous short circuit.

瞬間短絡を引き起こした場合、例えば、ガスタービンエンジンではシャーピン(異常な負荷が加わったときに切り離す装置)の折損や、ディーゼルエンジンではクランクシャフトの折損などが重障害として引き起こされ、特に、クランクシャフトの折損においては、勢い余ったコンロッドがオイルパンを突き破り飛び出すことによって、装置の点検と調整に携わる作業員の人身事故が発生する危険性がある。   When an instantaneous short-circuit is caused, for example, a shear pin (a device that disconnects when an abnormal load is applied) in a gas turbine engine or a crankshaft in a diesel engine breaks. In the case of breakage, there is a risk of causing personal injury of workers involved in the inspection and adjustment of the device due to excessive connecting rods breaking through the oil pan and popping out.

また、電気的な保護装置で解列されたため、外見上では故障に至らなかったものでも、機械的に脆弱な部分において弊害が残っていることが予測できず、その残留弊害が後日の不具合や重故障の原因となるという品質保証や保守に関わる課題も発生する。   In addition, because it was disconnected by an electrical protection device, even if it did not cause a failure in appearance, it could not be predicted that a problem remained in the mechanically vulnerable part, and the remaining problem could not be solved in the future. There are also issues related to quality assurance and maintenance that can cause serious failures.

この瞬間短絡の原因となる同期失敗は、並列遮断機が解列するまでに発生し、母線と発電機および高圧ケーブルの接続で相回転が逆になることによって発生することが最も多い。   The synchronization failure that causes this momentary short circuit occurs most often before the parallel breaker is disconnected, and is most often caused by the phase rotation being reversed at the connection between the bus and the generator and the high-voltage cable.

まず同期失敗の原因として挙げられるのが、高圧ケーブルの識別ミスである。一般的に、各電源のRSTもしくはUVWの配線ケーブルに色を割り当て、その認識を行っている。   First, the cause of synchronization failure is a high-voltage cable identification error. In general, colors are assigned to RST or UVW wiring cables of each power source and recognized.

例えば、発電機の製造者と高圧配線作業者はRST(UVW)をそれぞれ赤、白、青もしくは黒の配置を慣習的に用いている。しかし、電気事業者と通信業者は下記表1に示すように、伝統的に独自の識別表示を用いており、ときとして両者間における高圧ケーブル両端の識別表示の認識の誤りが複合的な線路識別の混乱となり、相回転を逆にする原因となる。   For example, generator manufacturers and high voltage wiring operators customarily use RST (UVW) arrangements of red, white, blue or black, respectively. However, as shown in Table 1 below, electric utilities and telecommunications companies traditionally use their own identification display, and sometimes there is an error in the recognition of the identification display on both ends of the high-voltage cable between the two. And cause the phase rotation to be reversed.

Figure 0004068624
Figure 0004068624

また、図9(b)において説明した計器用変圧器Vtの二次側(P、P、P)において、P、Pが同期装置Dに至るまでに入れ違い相回転の逆を引き起こす場合もある。 Further, on the secondary side (P 1 , P 2 , P 3 ) of the instrument transformer Vt described in FIG. 9B, the reverse of the phase rotation is reversed until P 1 and P 2 reach the synchronizer D. May cause.

近年の同期装置においては、上記のように、高圧側(図9中点線部V’1を示す)と低圧側(図9中点線部V’2を示す)に接続違いが生じても、並列遮断機δ´両端の計器用変圧器Vtの単相の三要素である電圧、周波数、位相差が一致していれば相回転の逆が起こった場合においても、図11のように、位相差が約180゜でも並列信号を発生させることが可能となっているため、接続違いによる同期失敗となる。   In a synchronous device in recent years, as described above, even if a connection difference occurs between the high voltage side (shown by dotted line V′1 in FIG. 9) and the low voltage side (shown by dotted line V′2 in FIG. 9), If the voltage, frequency, and phase difference, which are the three phases of the single-phase instrument transformer Vt at both ends of the circuit breaker δ ′, coincide with each other, even if the phase rotation is reversed, as shown in FIG. Since it is possible to generate a parallel signal even at about 180 °, synchronization failure occurs due to a difference in connection.

しかしながら、複合計器とシーケンサーの入力ミスは丹念な事前点検をもってしても回避できない場合がある。   However, there are cases where input errors in the combined instrument and sequencer cannot be avoided even with careful pre-inspection.

そこで、最も正確に同期失敗を予防する方法として、据え付け現場で調査員が母線Lnと発電機G´を立ち上げ、並列遮断機δ´の母線Lnと発電機G´の両端の高圧三相を実測する方法が用いられている。   Therefore, as the most accurate method for preventing synchronization failure, the investigator starts up the bus Ln and the generator G ′ at the installation site, and uses the bus Ln of the parallel breaker δ ′ and the high-pressure three-phases at both ends of the generator G ′. A method of actual measurement is used.

現況では、並列遮断機δ´両端の相回転と同期時期を同時に検出できる高圧検電相器は未開発の分野のため、高圧架空線路用や地中線路用の検電検相器が用いられている   At present, a high-voltage detector phase detector that can detect the phase rotation and synchronization timing at both ends of the parallel breaker δ 'at the same time is an undeveloped field, so a voltage detector phase detector for high-voltage overhead lines and underground lines is used. ing

図12は検電検相器A(1、2、3)の例であり、その構造や形状は(a)〜(c)のように様々であるが、いずれもペン状の検電検相器Aの先端に接触部A11、A21、A31が存在し、その接触部A11、A21、A31を端子に直接接触させることにより電圧の検査を行う。   FIG. 12 shows an example of the voltage detection phase detector A (1, 2, 3), and its structure and shape are various as shown in (a) to (c). Contact portions A11, A21, A31 are present at the tip of the container A, and the voltage is inspected by directly contacting the contact portions A11, A21, A31 with the terminals.

この場合、検電検相器Aは電気的には周波数が一定で、構造的には検出部が吊り下げ型か接触型になり、調査員が線路に触れないように(c)の中継棒A32などを用いて可能な限り長く作られている。   In this case, the voltage detector / phase detector A has a constant frequency electrically, and the detection part is structurally a hanging type or a contact type, so that the investigator does not touch the track (c) It is made as long as possible using A32 or the like.

しかしながら、相回転と同期時期の検出においては図10の発電設備の配置図にも示されるように、並列遮断機δ´の周りは計器用変圧器Vtなどの高圧配線が入り組み、各々の部品はボルトで固定されるものの、固定方法のない高圧線路用検電検相器Aの先端を並列遮断機δ´の端子に接続するために、ビニールテープ等で固定し、胴を他の部分に絶縁性の紐等で括り付け固定しながら検出を行うこととなる。   However, in the detection of the phase rotation and the synchronization timing, as shown in the layout diagram of the power generation equipment in FIG. 10, high voltage wiring such as an instrument transformer Vt is intertwined around the parallel circuit breaker δ ′, and each component Is fixed with bolts, but is fixed with vinyl tape to connect the tip of voltage detector phase detector A for high-voltage lines without fixing method to the terminal of parallel breaker δ ', and the barrel to other parts Detection is performed while being tied and fixed with an insulating string or the like.

この方法では、不安定な固定になるため導通不良を起こす上に、その手直しに気をとられ、絶縁手袋をしたにもかかわらず、体が他の高圧線に誤って触れることにより感電事故を誘発する怖れがある。   This method causes unstable conduction due to unstable fixation, and attention is paid to reworking. Despite wearing insulating gloves, the body accidentally touches other high-voltage lines, resulting in an electric shock. There is a fear of triggering.

また、上記例で述べた同期失敗において、その原因として調査員のミスが最初に疑われるため、原因解明を遅らせる結果ともなる。   In addition, in the synchronization failure described in the above example, the investigator's mistake is first suspected as the cause, so that the cause elucidation is delayed.

さらに、常設の発電所においては一度、同期の連係を確立すれば調整員が高圧に曝されることがないが、発電所の増設や工場整備を行うと、その後の並列調整に同様の危険が抱合されるとともに、移動式の発電装置においては、移動した先々で並列調整を行う必要があるため、さらなる危険頻度が高まることとなる。   In addition, once a synchronous link is established in a permanent power plant, the coordinator will not be exposed to high pressure. However, if a power plant is expanded or the factory is upgraded, the same risk will arise in the subsequent parallel adjustment. In addition, in the mobile power generation device, it is necessary to perform parallel adjustment at the destination of the movement, and therefore the risk frequency is further increased.

ここにおいて、本発明の解決すべき主要な目的は、次の通りである。   Here, the main objects to be solved by the present invention are as follows.

即ち、本発明の第1の目的は、並列遮断機両端の高圧端子に調査員が近づくことなく、高圧回路の相回転と、適正な同期時期を検出し、同期装置の発生する並列信号が適正か否かを判定する同期検相方法及び装置を提供せんとするものである。   That is, the first object of the present invention is to detect the phase rotation of the high-voltage circuit and the appropriate synchronization timing without the investigators approaching the high-voltage terminals at both ends of the parallel breaker, and the parallel signal generated by the synchronizer is appropriate. It is intended to provide a synchronous phase detection method and apparatus for determining whether or not.

本発明の第2の目的は、新たに大掛かりな設備等を設置することなく、容易に同期時期の確認と高圧三相の実測を可能とする同期検相方法及び装置を提供せんとするものである。   The second object of the present invention is to provide a synchronous phase detection method and apparatus that enables easy confirmation of the synchronization timing and measurement of high-pressure three-phase without installing new large-scale equipment. is there.

本発明第3の目的は、作業上不安定危険操作のある検電検相器を使用しない、スイッチ操作のみの同期検相方法及び装置を提供せんとするものである。   The third object of the present invention is to provide a synchronous phase detection method and apparatus only with a switch operation that does not use a voltage detection phase detector having an unstable operation at work.

本発明の他の目的は、明細書、図面、特に特許請求の範囲の各請求項の記載から、自ずと明らかとなろう。   Other objects of the present invention will become apparent from the specification, drawings, and particularly the description of each claim.

本発明装置では、常用又は移動式の発電設備における静電型同期検相装置αに、高電圧を低圧微小電流に変換し、変換された低圧微小電流の発電機側と母線側の合成電流をそれぞれ算出する静電型計器用変圧器と、母線側、発電機側、合成電流の切換を行う主切換えスイッチ回路と相回転の同期状態の自己診断を行うN/Rスイッチ回路とで組合構成する低圧盤回路と、発電機側、母線側、同期状態、切状態の4パターンを、その切換え情報を下に切換操作する前記主切換スイッチ回路にて導通した電流の値を表示する電流計群Aと、を備える手段を講じる特徴を有する。   In the device of the present invention, high voltage is converted into low voltage minute current to electrostatic synchronous phase detection device α in a normal or mobile power generation facility, and the combined current on the generator side and bus side of the converted low voltage minute current is An electrostatic type instrument transformer to be calculated, a bus side, a generator side, a main changeover switch circuit for switching the combined current, and an N / R switch circuit for self-diagnosis of the phase rotation synchronization state are combined. An ammeter group A that displays the value of the current conducted by the main changeover switch circuit that switches the switching information downward among the low voltage board circuit and the four patterns of the generator side, bus side, synchronous state, and off state. And a means for providing means.

また、本発明方法においては、発電設備における発電機に接続されている介接した並列遮断機の母線側と発電機側の各三相に静電型計器用変圧器を配置し、高電圧を低圧電流に変換した三相の合計電流を電流計で計測することにより、三相の相回転と同期タイミングの確認を行うことが可能となる手法を講じる特徴を有する。   Further, in the method of the present invention, an electrostatic instrument transformer is arranged on each of the three phases on the bus side and the generator side of the connected parallel circuit breaker connected to the generator in the power generation facility, and high voltage is applied. By measuring the total current of the three phases converted into the low-voltage current with an ammeter, the method has a feature that it is possible to check the three-phase rotation and the synchronization timing.

さらに具体的詳細に述べると、当該課題の解決では、本発明が次に列挙する上位概念から下位 概念に亙る新規な特徴的構成手法又は、手段を採用することにより、前記目的を達成するよう為される。   More specifically, in order to solve the problem, the present invention achieves the above-mentioned object by adopting a novel characteristic configuration method or means ranging from the superordinate concept listed below to the subordinate concept. Is done.

即ち、本発明装置の第1の特徴は、系統連係の常用発電所もしくは移動式発電装置等の発電設備において、複数の高圧発電機の並列接続の相回転と適正な同期時期の確認を行う静電型高圧同期検相装置であって、介接した並列遮断機を中に挟んだ両側の発電機側、母線側に前記発電機を通じてそれぞれ出力された各三相RST(UVW)の高電圧を低圧微小電流に変換し、当該発電機側、母線側の当該低圧微小電流の各合成電流を算出する静電型計器用変圧器と、前記発電機側、母線側の各低圧微小電流及び、当該低圧微小電流の合成電流の前記各三相の値を切換える低圧盤回路と、当該低圧盤回路にて切り換えられた当該合成電流の値を、視覚的に表示する電流計群と、を具備し、前記低圧盤回路は、前記各三相の前記発電機側、母線側の前記低圧微小電流及び、その前記合成電流の値を切換える主切替スイッチ回路と、各相の最高値を基準にして他の相が示す値をもとに、N、Rの接点の切換により、正常に相回転が行われているか否かを自己判断するためのN/Rスイッチ回路と、からなり、前記低圧盤回路における前記発電機側、母線側、同期状態、切状態のON/OFF切換え情報に応じて前記主切換スイッチ回路を切換操作自在に構成してなる、静電型高圧同期検相装置の構成採用にある。   That is, the first feature of the device of the present invention is that in a power generation facility such as a grid-connected utility power plant or a mobile power generator, a static connection for confirming a phase rotation of a plurality of high-voltage generators connected in parallel and an appropriate synchronization timing is provided. This is an electric high-voltage synchronous phase detector, and the high voltage of each three-phase RST (UVW) output through the generator on the generator side on both sides sandwiching the connected parallel circuit breaker and the busbar side, respectively. Transform to a low-voltage micro-current, and calculate each combined current of the low-voltage micro-current on the generator side and bus side, and each low-voltage micro-current on the generator side and bus side, and A low-voltage board circuit that switches the value of each of the three phases of the combined current of the low-voltage microcurrent, and an ammeter group that visually displays the value of the combined current switched by the low-voltage board circuit, The low-voltage board circuit is connected to the generator side and bus side of each of the three phases. Normal by switching the N and R contacts based on the main changeover switch circuit that switches the low-voltage microcurrent and the value of the combined current, and the value indicated by the other phase based on the maximum value of each phase ON / OFF switching information on the generator side, bus side, synchronized state, and off state in the low-voltage panel circuit. The main changeover switch circuit is configured to be freely switchable in accordance with the configuration of an electrostatic high voltage synchronous phase detector.

本発明方法の第2の特徴は、上記本発明装置の第1の特徴における前記静電型計器用変圧器が、静電碍子であって、零相電圧検出用コンデンサを構成してなる、静電型高圧同期検相装置の構成採用にある。   A second feature of the method of the present invention is that the electrostatic instrument transformer according to the first feature of the device of the present invention is an electrostatic insulator and constitutes a zero-phase voltage detection capacitor. The configuration of the electric high-voltage synchronous phase detector is adopted.

本発明装置の第3の特徴は、上記本発明装置の第1の特徴における、前記静電碍子が、一般的に使用されている汎用碍子より中間外周に亙る山谷段数の多い以外は、外径、長さがほぼ同寸法の屋内用碍子である、静電型高圧同期検相装置の構成採用にある。   The third feature of the device according to the present invention is that the electrostatic insulator in the first feature of the device according to the present invention has an outer diameter, except that the number of ridges and valleys in the middle outer periphery is larger than that of a general-purpose insulator generally used. The configuration of the electrostatic high-voltage synchronous phase detector is an indoor insulator having almost the same length.

本発明装置の第4の特徴は、上記本発明装置の第1又は2の特徴における前記主切換スイッチ回路が、前記発電機側、前記母線側、同期状態、切状態の4つのパターンの切換情報に応じて導通した前記低圧微小電流の値を計測表示する電流計群に伝達する連動スイッチである、静電型高圧同期検相装置の構成採用にある。   A fourth feature of the device of the present invention is that the main changeover switch circuit according to the first or second feature of the device of the present invention described above is switching information of four patterns of the generator side, the busbar side, the synchronized state, and the off state. Therefore, the electrostatic high-voltage synchronous phase detection device is employed as an interlocking switch that transmits the value of the low-voltage microcurrent that has been conducted in response to the current meter group to measure and display the value.

本発明装置の第5の特徴は、上記本発明装置の第1、2、3又は第4の特徴における前記主切換スイッチ回路が、小型リレー又は、カムスイッチで形成されてなる、静電型高圧同期検相装置の構成採用にある。   A fifth feature of the device of the present invention is that the main changeover switch circuit according to the first, second, third or fourth feature of the device of the present invention is formed by a small relay or a cam switch. It is in the configuration adoption of the synchronous phase detector.

本発明装置の第6の特徴は、上記本発明装置の第1、2又は第3の特徴における前記電流計群が、前記並列遮断機付近に設置するに際し、容易に監視可能な感電の怖れのない位置に設置されてなる、静電型高圧同期検相装置の構成採用にある。   The sixth feature of the device of the present invention is the fear of electric shock that can be easily monitored when the ammeter group in the first, second or third feature of the present invention device is installed near the parallel breaker. The configuration of the electrostatic high-voltage synchronous phase detector is installed at a position where there is no gap.

即ち、本発明方法の第1の特徴は、系統連係の常用発電所もしくは移動式発電装置等の発電設備において、複数の高圧発電機の並列接続の相回転と適正な同期時期の確認を行う静電型高圧同期検相方法であって、並列遮断機を中に挟んだ両側における前記高圧発電機側と母線側のそれぞれの高圧端子RST(UVW)の各三相に静電型計器用変圧器を接続し前記発電機の各高電圧を低圧微小電流に変換し、合成電流として算出したものを、低圧盤回路内で主切換スイッチ回路を用いて、前記発電機側と前記母線側それぞれの前記低圧微小電流と算出された合成電流の切換えを行い、当該合成電流が最大値となったときを前記並列遮断機の健全な同期投入時機とした上で、前記高圧発電機の前記三相が相回転の状態が正常か異常かを判断することにより発電設備の同期状態の確認を行ってなる、静電型高圧同期検相方法の構成採用にある。   That is, the first feature of the method of the present invention is that in a power generation facility such as a grid-connected utility power plant or a mobile power generator, a static connection for confirming a phase rotation of a plurality of high-voltage generators connected in parallel and an appropriate synchronization timing is provided. Electrostatic high-voltage synchronous phase detection method, comprising electrostatic transformers for each of the three phases of the high-voltage terminal RST (UVW) on the high-voltage generator side and the bus-bar side on both sides sandwiching the parallel circuit breaker The high voltage of the generator is converted into a low-voltage microcurrent, and the calculated current is calculated as a combined current using a main changeover switch circuit in the low-voltage board circuit, and the generator side and the bus side respectively. Switching between the low-voltage microcurrent and the calculated combined current, and when the combined current reaches the maximum value is set as a healthy synchronous start-up time of the parallel breaker, the three phases of the high-voltage generator are in phase Determine whether the rotation status is normal or abnormal Comprising Confirm the synchronization state of the power plant by, in the configuration adopting the electrostatic high-voltage synchronization Kensho method.

本発明装置の第2の特徴は、上記本発明方法の第1の特徴における前記低圧微小電流の合成電流が、約1mA以内の各相電流計で測定し、相回転が正常状態の場合には三相が一致して振幅し、相回転が異常状態の場合には三相が120゜ずれて振幅することで、相回転の状態確認を行ってなる、静電型高圧同期検相方法の構成採用にある。   A second feature of the device of the present invention is that when the combined current of the low-voltage microcurrent in the first feature of the method of the present invention is measured with each phase ammeter within about 1 mA, and the phase rotation is in a normal state, The configuration of the electrostatic high-voltage synchronous phase detection method, in which when the three phases coincide and amplitude, and the phase rotation is abnormal, the three phases are offset by 120 ° and the phase rotation is confirmed. Adopted.

本発明方法の第3の特徴は、上記本発明方法の第1又は第2の特徴における、前記主切換スイッチ回路が、前記発電機側と前記母線側の前記低圧微小電流と、前記合成電流を表示する電流計群に直結し、高圧電流の誘導を防止するために、前記主切換スイッチ回路の4接点のうち2接点を常時閉路してなる、静電型高圧同期検相方法の構成採用にある。   According to a third feature of the method of the present invention, in the first or second feature of the method of the present invention, the main changeover switch circuit is configured to reduce the low-voltage microcurrent on the generator side and the busbar side, and the combined current. In order to prevent the induction of high-voltage current directly connected to the displayed ammeter group, the configuration of the electrostatic high-voltage synchronous phase detection method, in which two of the four contacts of the main changeover switch circuit are normally closed, is adopted. is there.

本発明方法の第4の特徴は、上記本発明方法の第1、2又は第3の特徴における前記電流計群が、前記主切換スイッチ回路の総ての接点群がON状態で、前記母線との接続前に前記発電機の電圧確立を行った後に前記並列遮断機を投入すると、正常であれば前記三相とも前記発電機側と前記母線側の前記低圧微小電流の和の最高値を示してなる、静電型高圧同期検相方法の構成採用にある。   A fourth feature of the method of the present invention is that the ammeter group according to the first, second or third feature of the method of the present invention is configured such that all the contact groups of the main changeover switch circuit are in an ON state, When the parallel breaker is turned on after establishing the voltage of the generator before connection of the three, if normal, the three-phase shows the highest value of the sum of the low-voltage microcurrents on the generator side and the bus side The configuration of the electrostatic high-voltage synchronous phase detection method.

本発明方法の第5の特徴は、上記本発明方法の第1、2、3又は第4の特徴における前記静電型計器用変圧器が、零相電圧検出用コンデンサを形成する静電碍子を用いる際、前記並列遮断機の周辺に設置される既設の支持碍子と置き換えるか、または新たに追加して使用してなる、静電型高圧同期検相方法の構成採用にある。   A fifth feature of the method of the present invention is that the electrostatic instrument transformer according to the first, second, third, or fourth feature of the method of the present invention includes an electrostatic insulator that forms a zero-phase voltage detection capacitor. When using, it replaces the existing support insulator installed around the parallel breaker, or adopts the configuration of the electrostatic high-voltage synchronous phase detection method that is additionally used.

本発明によれば、発電設備の並列調整の際に作業員が危険物に曝されることなく安全な同期装置の並列信号の適正を判定することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to determine the appropriateness | suitability of the parallel signal of a safe synchronizer, without an operator being exposed to a dangerous material in the case of parallel adjustment of power generation equipment.

また、低圧微小電流を計測の値として使用することにより、正確な数値が導き出され、容易に並列遮断機の同期投入領域とその時機の確認を行うことが可能となるため、電源の並列接続が安定した安全運転の確保が可能となる。   In addition, by using a low-voltage microcurrent as a measurement value, an accurate numerical value can be derived, and it is possible to easily check the synchronous on-off region of the parallel breaker and its timing. It is possible to ensure stable and safe driving.

以下、本発明の実施の形態につき、添付の図面を参照しつつ、その装置例並びにこれに対応する方法例を説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the accompanying drawings and examples of the apparatus and corresponding methods.

(装置例)
まず、本装置例の概要を図1を用いて説明する。図1は本発明に係る発電設備β内の配置構成を示した構成図である。
(Example of equipment)
First, an outline of this apparatus example will be described with reference to FIG. FIG. 1 is a configuration diagram showing an arrangement configuration in a power generation facility β according to the present invention.

同図に示すように、発電設備βは、発電機G、並列遮断機δ、静電型高圧同期検相装置αを備えており、発電機高圧線17は並列遮断機δを介して、発電機出力ケーブル11と母線ケーブル12に分かれ静電型高圧同期検相装置α内に入り静電碍子13aで高電圧が低圧微小電流に変換され、発電機側、母線側それぞれの電流の和である合成電流が算出されたのち、パネル16に実装した電流計AR、AS、AT群にその値が視覚的に表示される。   As shown in the figure, the power generation facility β includes a generator G, a parallel breaker δ, and an electrostatic high-voltage synchronous phase detector α, and the generator high-voltage line 17 generates power via the parallel breaker δ. It is divided into the machine output cable 11 and the bus cable 12 and enters the electrostatic high voltage synchronous phase detector α, and the high voltage is converted into a low voltage micro current by the electrostatic insulator 13a, which is the sum of the currents on the generator side and the bus side. After the combined current is calculated, the value is visually displayed on the ammeters AR, AS, and AT groups mounted on the panel 16.

静電型高圧同期検相装置αは、静電碍子13aと低圧盤回路14で構成され、図2(a1)、(a2)は、本発明に使用される静電碍子13aの正面図及び側面構成図であり、(b1)、(b2)は一般的に使用されている汎用碍子13bの正面図及び側面構成図である。(a)、(b)両図に記載されているように本発明で使用する静電碍子13aの外径と長さの寸法と、汎用碍子13bの外径と長さの寸法はほぼ同寸であるため、並列遮断機δに新たに静電碍子13aの設置場所を設ける必要はなく、並列遮断機δの周辺に常用として設置されている汎用碍子13bと静電碍子13aとを容易に置きかえることが可能である。静電碍子13aの汎用碍子13bに対する違いは、中間外周に亙る山谷段数が多いことと、先端面に一対設けたボルト孔間距離を少し大きくして変圧機能特性を高めたことである。   The electrostatic high-voltage synchronous phase detector α includes an electrostatic insulator 13a and a low-voltage board circuit 14. FIGS. 2 (a1) and 2 (a2) are a front view and a side view of the electrostatic insulator 13a used in the present invention. It is a block diagram, (b1), (b2) is the front view and side block diagram of the general purpose insulator 13b generally used. (A), (b) As shown in both drawings, the outer diameter and length of the electrostatic insulator 13a used in the present invention and the outer diameter and length of the general-purpose insulator 13b are substantially the same. Therefore, it is not necessary to provide a new installation place for the electrostatic insulator 13a in the parallel breaker δ, and the general-purpose insulator 13b and the electrostatic insulator 13a that are installed regularly around the parallel breaker δ can be easily replaced. It is possible. The difference between the electrostatic insulator 13a and the general-purpose insulator 13b is that the number of ridges and valleys on the intermediate outer periphery is large, and the distance between the bolt holes provided in a pair on the tip surface is slightly increased to improve the transformation function characteristics.

また、一般的に使用される計器用変圧器Vtと比較すると、静電碍子13aは小型かつ軽量であるとともに比較的安価であるため、置き換えるだけでなく、新たに追加設置を行ったとしても配置スペース等に支障が発生しない。   In addition, compared with the generally used instrument transformer Vt, the electrostatic insulator 13a is small and light and relatively inexpensive. Therefore, the electrostatic insulator 13a is arranged not only for replacement but also for additional installation. There is no problem in space.

次に低圧盤回路14は、静電碍子13aによって高電圧から変換された低圧微小電流を電圧計としてパネル16の電流計AR、AS、ATに表示するための回路であり、算出された低圧微小電流のみでなく、母線ケーブル12と発電機Gそれぞれの電圧の値ON/OFFを切換えるための主切換スイッチ回路15aを含む。この場合主切換スイッチ回路15aの接点には、小型リレーやカムスイッチなどを用いると良い。   Next, the low voltage board circuit 14 is a circuit for displaying the low voltage minute current converted from the high voltage by the electrostatic insulator 13a on the ammeters AR, AS, AT of the panel 16 as a voltmeter. It includes a main changeover switch circuit 15a for switching not only current but also voltage values of the bus cable 12 and the generator G, respectively. In this case, a small relay, a cam switch or the like may be used as the contact of the main changeover switch circuit 15a.

図3は、調査員が三相の同期タイミングを視覚的に確認するためのパネル16の一例を示したものであり、パネル16には、主切換ロータリースイッチ15bと、各相に対応した低圧微小電流計AR、AS、ATが実装される。図中18は、N/Rスナップスイッチ、19、20はそれぞれ発電機側接続端子群と母線側接続端子群である。   FIG. 3 shows an example of a panel 16 for an investigator to visually confirm the three-phase synchronization timing. The panel 16 includes a main switching rotary switch 15b and a low-pressure micro switch corresponding to each phase. Ammeters AR, AS, and AT are mounted. In the figure, 18 is an N / R snap switch, and 19 and 20 are a generator side connection terminal group and a bus side connection terminal group, respectively.

パネル16は、並列遮断機δ付近に設置される。図1におけるパネル16の設置位置は一例であり、設置位置に指定はなく調査員が容易に監視可能であり、感電の怖れのない位置に設置すれば、検査時の安全性が増すといえる。   The panel 16 is installed near the parallel breaker δ. The installation position of the panel 16 in FIG. 1 is an example, and the installation position is not specified and can be easily monitored by an investigator. If it is installed in a position where there is no fear of electric shock, it can be said that the safety at the time of inspection increases. .

主切換ロータリースイッチ15bは、母線、発電機、同期、切の4パターンが存在し、回転し切換えると、母線側の電流値、発電機側の電流値、母線と発電機の低圧微小電流の合成電流値を表示するように電流計AR、AS、AT群に切換情報が伝達される。   The main switching rotary switch 15b has four patterns of bus, generator, synchronous, and off. When the rotary switch 15b is rotated and switched, the current value on the bus side, the current value on the generator side, and the low-voltage minute current between the bus and the generator are combined. Switching information is transmitted to the ammeters AR, AS, and AT groups so as to display the current value.

電流計AR、AS、ATは、主切換ロータリースイッチ15bの旋回操作により主切換スイッチ回路15aに伝達され、主切換スイッチ15aから導入した電源R、S、Tの各三相の電流値を視覚的に示し、同期N/Rスナップスイッチ18がN接点の閉路を選択されている状態で、すべての値が最高値になった場合を並列遮断機δを閉路とすべき同期投入領域Bとして判断する。   The ammeters AR, AS, AT are transmitted to the main changeover switch circuit 15a by the turning operation of the main changeover rotary switch 15b, and visually indicate the current values of the three phases of the power supplies R, S, T introduced from the main changeover switch 15a. In the state where the synchronous N / R snap switch 18 is selected to close the N contact, it is determined that the parallel breaker δ should be closed as the synchronous closing region B when all the values become the maximum value. .

(方法例)
次に、図4〜図7を用いて、上記装置例を適用した本発明方法に係る実施形態例について説明する。
(Example method)
Next, an embodiment according to the method of the present invention to which the above apparatus example is applied will be described with reference to FIGS.

図4は、静電型高圧検相装置α及び並列遮断機δの電気回路図であり、(a)は、その接続内容の詳細を示す配線図であり、(b)はR相及びU相のみの場合についての回路図である。図4の(a)に示すように並列遮断機βの母線側電源R、S、T及び、発電機側電源U、V、Wのそれぞれの相には、静電碍子13が接続され、さらにそれぞれ低圧盤回路14に接続される。   FIG. 4 is an electric circuit diagram of the electrostatic high-voltage phase detector α and the parallel breaker δ, (a) is a wiring diagram showing details of the connection contents, and (b) is an R phase and a U phase. It is a circuit diagram about only the case. As shown in FIG. 4A, an electrostatic insulator 13 is connected to each phase of the bus-side power sources R, S, T and the generator-side power sources U, V, W of the parallel breaker β, Each is connected to a low voltage board circuit 14.

図4(a)においてR相及びU相部分を抽出したものが(b)であり、この場合において、R相で静電碍子13の静電容量が250PFの場合、使用電圧6600V、50Hzを以下の数式1にあてはめ、算出を行うと、対地電流約0.3mAが導き出され、約1mAの電流計ARで計測することが可能となる。   In FIG. 4A, the extracted R phase and U phase portions are shown in FIG. 4B. In this case, when the electrostatic capacity of the electrostatic insulator 13 is 250 PF in the R phase, the operating voltage is 6600 V and 50 Hz or less. When the calculation is applied to Equation 1 below, a ground current of about 0.3 mA is derived and can be measured with an ammeter AR of about 1 mA.

Figure 0004068624
上記数式1において、ICOは対地電流値を示し、ICOは電圧Eと、周波数fによって導き出される。
Figure 0004068624
In Equation 1 above, I CO represents a ground current value, and I CO is derived from the voltage E and the frequency f.

数式1によって導き出された数値をもとに、母線ケーブル12と発電機Gを同電圧及び同相(0度位置)で並列接続したときには以下の数式2より0.6mAが最大値、0mAが最小値として導き出される。この最大値の状態が、同期のタイミングとなる同期投入領域Bとなる。   Based on the numerical value derived from Equation 1, when the bus cable 12 and the generator G are connected in parallel at the same voltage and the same phase (0 degree position), 0.6 mA is the maximum value and 0 mA is the minimum value from Equation 2 below. As derived. The state of this maximum value is the synchronization input area B that is the timing of synchronization.

Figure 0004068624
このとき、IはR相における低圧微小電流の値を表す。ICRは母線側の低圧微小電流の値、ICUは発電機側の低圧微小電流の値をそれぞれ指し示し、母線側と発電機側の低圧微小電流の合計電流の和が最大値、つまり位相差φ=0゜のとき、同期投入領域Bとなり、位相差φ=180゜のときは最小値0が導き出される。
Figure 0004068624
In this case, I R represents the value of the low-pressure micro-current in the R phase. I CR is the value of the low small current of the bus side, I CU points to the value of the low small current on the generator side, respectively, bus side and sum maximum of the total current of low voltage small current on the generator side, i.e. the phase difference When φ = 0 °, the synchronous input region B is obtained. When the phase difference φ = 180 °, the minimum value 0 is derived.

上記数式2をR相同様にS相、T相それぞれにあてはめ相回転の波形図として示したものが図5であり、(a)は正相状態、(b)は反相(相回転の逆)状態、(c)は、従来の計器用変圧器を用いた場合のビート電圧のそれぞれの波形図である。   FIG. 5 is a waveform diagram of the phase rotation applied to the S phase and the T phase in the same manner as the R phase as in the R phase. FIG. 5A is a normal phase state, and FIG. 5B is a reverse phase (reverse phase rotation). ) State and (c) are waveform diagrams of beat voltages when a conventional instrument transformer is used.

相回転が正相状態のとき、上記数式1及び式2より位相差φが0゜のとき0.6mAが最大値であることが算出され、最大値のときを同期投入領域Bとする。位相のずれとともに、電流は小さくなり位相差φが180゜のとき0mAの最小値を示す。   When the phase rotation is in the normal phase state, 0.6 mA is calculated to be the maximum value when the phase difference φ is 0 ° from the above formulas 1 and 2, and the synchronous input region B is set when the phase difference is the maximum value. Along with the phase shift, the current decreases, and shows a minimum value of 0 mA when the phase difference φ is 180 °.

図5の(a)の状態において、相回転が一致すると(正相状態)、各三相の電流計AR、AS、ATは約同値を示し、周波数の差に応じて振幅を行うが、三相の周波数が近づくにつれて、最大値が持続し、同期投入領域Bが明らかとなる。また、相回転が逆の場合(反相状態)には、三相が約120゜ずれて振幅を行う。   In the state of FIG. 5A, when the phase rotations coincide (in the normal phase state), the three-phase ammeters AR, AS, AT show approximately the same value, and perform amplitude according to the difference in frequency. As the frequency of the phase approaches, the maximum value persists, and the synchronous input region B becomes apparent. When the phase rotation is reversed (anti-phase state), the three phases shift in amplitude by about 120 ° and perform amplitude.

従来の計器変圧器を用いた方式では、同期投入領域Bを電圧が最小値(零ビート)を示すときとしているが、高電圧における最小電圧の値は確認しづらい。それに対して、本発明においては、電流値の範囲が1mA以内なため、最大値の確認がしやすい点も効果として挙げられる。   In the conventional method using an instrument transformer, the synchronous input region B is set when the voltage indicates the minimum value (zero beat), but it is difficult to confirm the minimum voltage value at the high voltage. On the other hand, in the present invention, since the range of the current value is within 1 mA, the point that the maximum value can be easily confirmed is also effective.

上記原理をもとにして配線を接続することによって、母線ケーブル12と発電機Gの高電圧から変換された低圧微小電流を主切換スイッチ回路15aと主切換ロータリースイッチ15bで回転切換ながら低圧微小電流計AR、AS、ATで計測することが可能となる。   By connecting the wiring based on the above principle, the low-voltage minute current converted from the high voltage of the bus cable 12 and the generator G is rotated and switched by the main changeover switch circuit 15a and the main changeover rotary switch 15b. It is possible to measure with a total of AR, AS, and AT.

低圧盤回路14内にあるN/Rスイッチ回路は、母線ケーブル12に接続する前に、発電機Gの電圧確立を行ったあと、並列遮断機δを投入すると、正相状態であれば三相とも同期投入領域(約0゜線上)の最高値を示す。   The N / R switch circuit in the low voltage board circuit 14 establishes the voltage of the generator G before connecting to the bus cable 12 and then turns on the parallel breaker δ. Both show the maximum value in the synchronous input region (on the approximately 0 ° line).

N/Rスイッチ回路21をR(リバース)側に切り換えた場合、R相は健全な同期投入領域(約0゜線上)で最高値を示し、その他のS相、T相は著しく異なった値(各120゜の位相差相当分)を示すため、判断基準として利用することができる。   When the N / R switch circuit 21 is switched to the R (reverse) side, the R phase shows the highest value in the healthy synchronous input region (on the approximately 0 ° line), and the other S and T phases have significantly different values ( Each phase difference of 120 ° is indicated, and can be used as a criterion.

図6は主切換スイッチ回路15aに小型リレーを用いた場合の使用例を示し、下記表2のように、主切換ロータリースイッチ15bを母線、発電機、同期、切のいずれかに合わせ、各部の相回転及び同期タイミングの確認を行う。

Figure 0004068624
上記表において、1はON、0はOFF状態を示す。 FIG. 6 shows an example of use when a small relay is used for the main changeover switch circuit 15a. As shown in Table 2 below, the main changeover rotary switch 15b is set to one of bus, generator, synchronous, and off. Check phase rotation and synchronization timing.
Figure 0004068624
In the above table, 1 indicates ON and 0 indicates OFF state.

また、図7は、主切換スイッチ回路15aにカムスイッチを用いた例であるが、1は母線、2は発電機、3は切、4は同期のそれぞれの状態を図示し、上記小型リレーを用いた場合と同様に主切換ロータリースイッチ15bを各部に合わせ相回転および同期タイミングが正常であるか否かを確認することが可能となる。   FIG. 7 shows an example in which a cam switch is used for the main changeover switch circuit 15a. 1 is a busbar, 2 is a generator, 3 is off, 4 is a synchronous state, and the small relay is shown. As in the case of using it, it is possible to confirm whether the phase rotation and synchronization timing are normal by setting the main switching rotary switch 15b to each part.

このとき、主切換スイッチ回路15aのY、YGの接点は常時閉路させ、高圧誘電の防止を行う。 In this case, Y P of the main change-over switch circuit 15a, the contacts of the Y G causes the closing always performed to prevent high pressure dielectric.

以上が本発明における装置例及び本発明方法に係る実施形態例について説明したが、本発明は、必ずしも上述した手段及び手法にのみ限定されるものではなく、前述した効果を有する範囲内において、適宜、変更実施することが可能なものである。   The above is an example of the apparatus according to the present invention and the embodiment according to the method of the present invention. However, the present invention is not necessarily limited to the above-described means and methods, and may be appropriately selected within the scope of the above-described effects. It is possible to implement changes.

本発明の装置例に係る静電型高圧同期検相装置を搭載する発電設備の概要図である。It is a schematic diagram of the electric power generation equipment carrying the electrostatic type high voltage | pressure synchronous phase detection apparatus which concerns on the example of an apparatus of this invention. 本発明の装置例に係る静電碍子を示す説明図であり、(a1)、(a2)は本発明に用いられる静電碍子のそれぞれ正面図及び側面図であり、(b1)、(b2)は一般的に使用されている碍子のそれぞれ正面図及び側面図である。It is explanatory drawing which shows the electrostatic insulator which concerns on the example of an apparatus of this invention, (a1), (a2) is each a front view and side view of the electrostatic insulator used for this invention, (b1), (b2) These are a front view and a side view, respectively, of a generally used insulator. 本発明の装置例に係るパネル上の実装配置例の説明図である。It is explanatory drawing of the example of mounting arrangement on the panel which concerns on the apparatus example of this invention. 本発明の実施形態例に係る静電型高圧同期方法の説明図であり、(a)は回路図であり、(b)はR相及びU相に係る部分のみを抽出した回路図である。It is explanatory drawing of the electrostatic high voltage | pressure synchronization method which concerns on the embodiment of this invention, (a) is a circuit diagram, (b) is the circuit diagram which extracted only the part which concerns on R phase and U phase. 本発明方法の実施形態例に係る三相の相回転の説明図であり、(a)は相回転の一致(正相)時における波形図、(b)は相回転の逆(反相)時における波形図、(c)は従来の計器用変圧器に用いられるビート電圧の波形図である。It is explanatory drawing of the phase rotation of the three-phase which concerns on the example of embodiment of this invention method, (a) is a waveform diagram at the time of coincidence of phase rotation (normal phase), (b) is at the time of reverse (antiphase) of phase rotation (C) is a waveform diagram of a beat voltage used in a conventional instrument transformer. 本発明の実施形態例に係る主切換スイッチ回路に小型リレーを用いた場合の回路説明図である。It is circuit explanatory drawing at the time of using a small relay for the main changeover switch circuit concerning the example of an embodiment of the present invention. 本発明の実施形態例に係る主切換スイッチ回路にカムスイッチを用いた場合の回路説明図である。It is circuit explanatory drawing at the time of using a cam switch for the main changeover switch circuit concerning the example of an embodiment of the present invention. 従来の発電設備における並列接続機器の配置構成図である。It is arrangement | positioning block diagram of the parallel connection apparatus in the conventional power generation equipment. 従来の発電設備における発電機の並列接続の構成図である。It is a block diagram of the parallel connection of the generator in the conventional power generation equipment. 従来の発電設備における計器変圧器を用いた同期装置の説明図であり、(a)は並列接続の回路図であり、(b)は母線及び発電機の相回転方向の説明図である。It is explanatory drawing of the synchronizer using the instrument transformer in the conventional power generation equipment, (a) is a circuit diagram of parallel connection, (b) is explanatory drawing of the phase rotation direction of a bus-line and a generator. 従来の発電設備における同期装置の説明図であり、(a)は正常接続時の正接続の説明図であり、(b)は異常接続時の反接続の説明図である。It is explanatory drawing of the synchronizer in the conventional power generation equipment, (a) is explanatory drawing of the normal connection at the time of normal connection, (b) is explanatory drawing of the anti-connection at the time of abnormal connection. (a)、(b)、(c)は従来の発電設備における各種検電器の説明図であり、高圧架空線路用や地中線路用の高圧検電棒の構成図である。(A), (b), (c) is explanatory drawing of the various voltage detectors in the conventional power generation equipment, and is a block diagram of the high voltage voltage detection rod for high voltage overhead lines or underground lines.

符号の説明Explanation of symbols

α…静電型高圧同期検相装置
β、β’…発電設備
G、G´…発電機
γ1、γ2、γn…銅バー
δ、δ´…並列遮断機
A1、A2、A3…高圧検電棒
A11、A21、A31…接触部分
A32…中継棒
AR、AS、AT…低圧微小電流計
Vt…計器用変圧器
D…複合計器同期装置
Ln…母線
Ld…負荷
W…電力計
11…発電機出力ケーブル
12…母線ケーブル
13a…静電碍子
14…低圧盤回路
15a…主切換スイッチ回路
15b…主切換ロータリースイッチ
16…パネル
17…発電機高圧線
18…N/Rスナップスイッチ
19…発電機側接続端子群
20…母線側接続端子群
21…N/Rスイッチ回路
α ... electrostatic high-voltage synchronous phase detector β, β '... power generation equipment G, G' ... generators γ1, γ2, γn ... copper bars δ, δ '... parallel breakers A1, A2, A3 ... high-voltage detection rod A11 , A21, A31 ... contact part A32 ... relay rod AR, AS, AT ... low-voltage microammeter Vt ... instrument transformer D ... compound instrument synchronizer Ln ... bus Ld ... load W ... wattmeter 11 ... generator output cable 12 ... bus bar cable 13a ... electrostatic insulator 14 ... low voltage board circuit 15a ... main changeover switch circuit 15b ... main changeover rotary switch 16 ... panel 17 ... generator high voltage line 18 ... N / R snap switch 19 ... generator side connection terminal group 20 ... Bus side connection terminal group 21 ... N / R switch circuit

Claims (11)

系統連係の常用発電所もしくは移動式発電装置等の発電設備において、複数の高圧発電機の並列接続の相回転と適正な同期時期の確認を行う静電型高圧同期検相装置であって、
介接した並列遮断機を中に挟んだ両側の発電機側、母線側に前記発電機を通じてそれぞれ出力された各三相RST(UVW)の高電圧を低圧微小電流に変換し、当該発電機側、母線側の当該低圧微小電流の各合成電流を算出する静電型計器用変圧器と、
前記発電機側、母線側の各低圧微小電流及び、当該低圧微小電流の合成電流の前記各三相の値を切換える低圧盤回路と、
当該低圧盤回路にて切り換えられた当該合成電流の値を、視覚的に表示する電流計群と、を具備し、
前記低圧盤回路は、前記各三相の前記発電機側、母線側の前記低圧微小電流及び、その前記合成電流の値を切換える主切替スイッチ回路と、
各相の最高値を基準にして他の相が示す値をもとに、N、Rの接点の切換により、正常に相回転が行われているか否かを自己判断するためのN/Rスイッチ回路と、からなり、
前記低圧盤回路における前記発電機側、母線側、同期状態、切状態のON/OFF切換え情報に応じて前記主切換スイッチ回路を切換操作自在に構成する、
ことを特徴とする、静電型高圧同期検相装置。
In a power generation facility such as a grid-connected utility power plant or a mobile power generator, an electrostatic high-voltage synchronous phase detector that performs phase rotation of a parallel connection of a plurality of high-voltage generators and confirmation of an appropriate synchronization timing,
The high voltage of each three-phase RST (UVW) output through the generator on both the generator side and the busbar side with the parallel parallel breaker in between is converted into a low-voltage microcurrent, and the generator side , An electrostatic instrument transformer for calculating each combined current of the low-voltage microcurrent on the bus side,
A low-voltage board circuit for switching the values of the three phases of the low-voltage microcurrent on the generator side and the bus-bar side and the combined current of the low-voltage microcurrent;
An ammeter group for visually displaying the value of the combined current switched by the low-voltage board circuit;
The low-voltage board circuit is a main changeover switch circuit for switching the value of the low-voltage microcurrent on the generator side of each of the three phases, the bus-side, and the combined current;
N / R switch for self-determination of whether or not phase rotation is normally performed by switching the N and R contacts based on the value indicated by the other phase based on the maximum value of each phase A circuit,
The main changeover switch circuit is configured to be freely switchable according to ON / OFF switching information of the generator side, bus side, synchronous state, and off state in the low-voltage board circuit.
An electrostatic high-voltage synchronous phase detector.
前記静電型計器用変圧器は、
静電碍子であって、零相電圧検出用コンデンサを構成する、
ことを特徴とする請求項1に記載の静電型高圧同期検相装置。
The electrostatic instrument transformer is:
An electrostatic insulator that constitutes a zero-phase voltage detection capacitor;
The electrostatic high-voltage synchronous phase detector according to claim 1.
前記静電碍子は、
一般的に使用されている汎用碍子より中間外周に亙る山谷段数の多い以外は、外径、長さがほぼ同寸法の屋内用碍子である、
ことを特徴とする、請求項1に記載の静電型高圧同期検相装置。
The electrostatic insulator is
It is an indoor insulator that has almost the same outer diameter and length, except that there are a large number of steps in the middle and outer circumference than the general-purpose insulator that is generally used.
The electrostatic high-voltage synchronous phase detection device according to claim 1, wherein:
前記主切換スイッチ回路は、
前記発電機側、前記母線側、同期状態、切状態の4つのパターンの切換情報に応じて導通した前記低圧微小電流の値を計測表示する電流計群に伝達する連動スイッチである、
ことを特徴とする請求項1又は2に記載の静電型高圧同期検相装置。
The main selector switch circuit is
An interlocking switch that transmits to the ammeter group that measures and displays the value of the low-voltage microcurrent that is conducted according to the switching information of the four patterns of the generator side, the bus side, the synchronous state, and the off state,
The electrostatic high-voltage synchronous phase detector according to claim 1 or 2.
前記主切換スイッチ回路は、
小型リレー又は、カムスイッチで形成される、
ことを特徴とする請求項1、2、3又は4に記載の静電型高圧同期検相装置。
The main selector switch circuit is
Formed with small relays or cam switches,
5. The electrostatic high-voltage synchronous phase detection device according to claim 1, 2, 3 or 4.
前記電流計群は、
前記並列遮断機付近に設置するに際し、容易に監視可能な感電の怖れのない位置に設置する、
ことを特徴とする請求項1、2又は3に記載の静電型高圧同期検相装置。
The ammeter group is:
When installing in the vicinity of the parallel breaker, install in a position where there is no fear of electric shock that can be easily monitored,
The electrostatic high-voltage synchronous phase detector according to claim 1, 2, or 3.
系統連係の常用発電所もしくは移動式発電装置等の発電設備において、複数の高圧発電機の並列接続の相回転と適正な同期時期の確認を行う静電型高圧同期検相方法であって、
並列遮断機を中に挟んだ両側における前記高圧発電機側と母線側のそれぞれの高圧端子RST(UVW)の各三相に静電型計器用変圧器を接続し前記発電機の各高電圧を低圧微小電流に変換し、合成電流として算出したものを、
低圧盤回路内で主切換スイッチ回路を用いて、前記発電機側と前記母線側それぞれの前記低圧微小電流と算出された合成電流の切換えを行い、
当該合成電流が最大値となったときを前記並列遮断機の健全な同期投入時機とした上で、
前記高圧発電機の前記三相が相回転の状態が正常か異常かを判断することにより発電設備の同期状態の確認を行う、
ことを特徴とする静電型高圧同期検相方法。
An electrostatic type high-voltage synchronous phase detection method for confirming appropriate synchronous timing and phase rotation of parallel connection of a plurality of high-voltage generators in a power generation facility such as a grid-connected utility power plant or a mobile power generator,
An electrostatic instrument transformer is connected to each of the three phases of the high-voltage terminal RST (UVW) on each of the high-voltage generator side and the bus-bar side on both sides of the parallel circuit breaker, and each high voltage of the generator is What is converted into a low-voltage minute current and calculated as a combined current is
Using the main changeover switch circuit in the low voltage board circuit, switching the low voltage minute current on each of the generator side and the bus side and the calculated composite current,
On the basis of the time when the combined current becomes the maximum value as a time for a healthy synchronous closing of the parallel breaker,
Confirming the synchronized state of the power generation equipment by judging whether the phase of the three phases of the high-voltage generator is normal or abnormal,
An electrostatic high-voltage synchronous phase detection method characterized by the above.
前記低圧微小電流の合成電流は、
約1mA以内の各相電流計で測定し、相回転が正常状態の場合には三相が一致して振幅し、
相回転が異常状態の場合には三相が120゜ずれて振幅することで、相回転の状態確認を行う、
ことを特徴とする請求項7に記載の静電型高圧同期検相方法。
The combined current of the low-voltage microcurrent is
Measured with each phase ammeter within about 1 mA, and when the phase rotation is in a normal state, the three phases coincide and amplify,
When the phase rotation is in an abnormal state, the three phases are offset by 120 ° and the amplitude is checked.
The electrostatic high-voltage synchronous phase detection method according to claim 7.
前記主切換スイッチ回路は、
前記発電機側と前記母線側の前記低圧微小電流と、前記合成電流を表示する電流計群に直結し、
高圧電流の誘導を防止するために、前記主切換スイッチ回路の4接点のうち2接点を常時閉路する、
ことを特徴とする請求項7又は8に記載の静電型高圧同期検相方法。
The main selector switch circuit is
Directly connected to the low-voltage microcurrent on the generator side and the busbar side, and an ammeter group that displays the combined current,
In order to prevent induction of high voltage current, two of the four contacts of the main changeover switch circuit are normally closed.
The electrostatic high-voltage synchronous phase detection method according to claim 7 or 8.
前記電流計群は、
前記主切換スイッチ回路の総ての接点群がON状態で、前記母線との接続前に前記発電機の電圧確立を行った後に前記並列遮断機を投入すると、
正常であれば前記三相とも前記発電機側と前記母線側の前記低圧微小電流の和の最高値を示す、
ことを特徴とする請求項7、8又は9に記載の静電型高圧同期検相方法。
The ammeter group is:
When all the contact groups of the main changeover switch circuit are in the ON state, and the parallel breaker is turned on after establishing the voltage of the generator before connection with the bus,
If normal, the three phases show the highest value of the sum of the low-voltage microcurrents on the generator side and the bus side,
The electrostatic high-voltage synchronous phase detection method according to claim 7, 8 or 9.
前記静電型計器用変圧器は、
零相電圧検出用コンデンサを形成する静電碍子を用いる際、前記並列遮断機の周辺に設置される既設の支持碍子と置き換えるか、または新たに追加して使用する、
ことを特徴とする請求項7、8、9又は10に記載の静電型高圧同期検相方法。
The electrostatic instrument transformer is:
When using an electrostatic insulator that forms a zero-phase voltage detection capacitor, it replaces the existing support insulator installed around the parallel breaker or uses it in addition.
The electrostatic high-voltage synchronous phase detection method according to claim 7, 8, 9, or 10.
JP2005033000A 2005-02-09 2005-02-09 Electrostatic high voltage synchronous phase detection method and apparatus Active JP4068624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033000A JP4068624B2 (en) 2005-02-09 2005-02-09 Electrostatic high voltage synchronous phase detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033000A JP4068624B2 (en) 2005-02-09 2005-02-09 Electrostatic high voltage synchronous phase detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2006220481A JP2006220481A (en) 2006-08-24
JP4068624B2 true JP4068624B2 (en) 2008-03-26

Family

ID=36982911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033000A Active JP4068624B2 (en) 2005-02-09 2005-02-09 Electrostatic high voltage synchronous phase detection method and apparatus

Country Status (1)

Country Link
JP (1) JP4068624B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200469609Y1 (en) 2012-05-04 2013-10-22 주식회사 현대미포조선 Fixing structure for load bank of ship
CN102854405A (en) * 2012-09-14 2013-01-02 中国一冶集团有限公司 Safe and efficient high-voltage nuclear phasing method
KR101876782B1 (en) * 2017-09-27 2018-07-10 (주)오엔앰 코리아 Preventing non-synchronization device using the voltage comparison method and voltage phasor rotation measurement
CN113162040B (en) * 2021-04-29 2023-06-20 西安热工研究院有限公司 System and method for power supply non-voltage nuclear phase for high-voltage plant of power plant
CN114252710B (en) * 2021-09-18 2023-08-18 华电电力科学研究院有限公司 Method for unit grid-connected synchronous system homologous nuclear phase
CN114039329B (en) * 2021-11-15 2023-08-04 国网新疆电力有限公司乌鲁木齐供电公司 Alarm device and method for preventing misoperation of secondary operation safety measures of transformer substation

Also Published As

Publication number Publication date
JP2006220481A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
EP2095481B1 (en) System and method to determine the impedance of a disconnected electrical facility
Guide Network protection & automation guide
JP4068624B2 (en) Electrostatic high voltage synchronous phase detection method and apparatus
Lee et al. An online groundwall and phase-to-phase insulation quality assessment technique for AC-machine stator windings
CN108287295B (en) Power line ground fault position finding method and system
Kasztenny et al. Detection of incipient faults in underground medium voltage cables
CN110221115B (en) Method, device and equipment for determining single-phase grounding capacitance current
KR20210014877A (en) An On-line Monitoring Method and Its Device Using the Circuit Constants Measurement of Electric Power Equipment
CN104505863B (en) A method for determining and adjusting wireless phase detection
KR101916362B1 (en) Intelligent power facility failure prediction system and method using three-phase leakage current measurement method by insulation deterioration
CN113325236A (en) Power transmission phase checking method for double-bus double-section wiring GIS cabinet power supply
CN106918757A (en) A kind of method of discrimination of Secondary Circuit of Potential Transformer integrity
JP4444574B2 (en) Method, computer program and device for validity check of current transformer in switchgear, and switchgear having the device
RU2293342C2 (en) METHOD FOR DETERMINING POSITION AND DISTANCE FOR ONE-PHASED GROUNDING SPOT IN ELECTRIC NETWORKS OF 6-35 kV WITH ISOLATED OR COMPENSATED NEUTRAL
KR20170051984A (en) Before using electrical short circuit resistance measuring device for applying distribution board
JP2010091581A (en) Device for measuring leakage current state of low-voltage electrical facility
Selkirk et al. Why neutral-grounding resistors need continuous monitoring
KR100927462B1 (en) The switchgear with diagnostic equipment for circuit breaker and method for diagnosing switchgear
Bolotinha Substations equipment inspection and periodic maintenance
EP1134865B1 (en) Detecting wire break in electrical network
CN109782113A (en) A kind of isolated neutral system single-phase wire break selection method and system
JP2015055592A (en) Automatic insulation resistance measurement system
JP3732864B2 (en) System protection device test equipment
CN113985271B (en) Subway GIS high-voltage switch cabinet system detection device and method
JP7514472B2 (en) Wire short circuit confirmation device and wire short circuit confirmation method

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20060517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20250118

Year of fee payment: 17