JPH04365607A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH04365607A
JPH04365607A JP3167517A JP16751791A JPH04365607A JP H04365607 A JPH04365607 A JP H04365607A JP 3167517 A JP3167517 A JP 3167517A JP 16751791 A JP16751791 A JP 16751791A JP H04365607 A JPH04365607 A JP H04365607A
Authority
JP
Japan
Prior art keywords
rubber
resin
ice
tread
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3167517A
Other languages
Japanese (ja)
Other versions
JP3096093B2 (en
Inventor
Seiichiro Iwafune
盛一郎 岩船
Yoshiyuki Morimoto
森本 芳之
Shinichi Iwasaki
眞一 岩崎
Susumu Sato
進 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP03167517A priority Critical patent/JP3096093B2/en
Publication of JPH04365607A publication Critical patent/JPH04365607A/en
Application granted granted Critical
Publication of JP3096093B2 publication Critical patent/JP3096093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Tyre Moulding (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To secure the stable on-ice performance over a wide temperature range and the stable ice performance under all the using conditions up to the perfect abrasion, as for a pneumatic tire for a vehicle ranging from small size to large size. CONSTITUTION:The foamed rubber which has independent gas foams having a foaming rate of 3-35% and contains 3-30wt. parts resin which possesses a hardness of ASTM Shore D 40 deg. or more and an average diameter of 10-400mum and forms a polymer allay with rubber or the resin which is conjugation-cross- linked with rubber is used for tread.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は空気入りタイヤに関し、
特に氷雪路面で使用される乗用車、トラック・バスなど
小型から大型の全てを含む車両の空気入りタイヤのトレ
ッドの改良技術に関するものである。
[Industrial Application Field] The present invention relates to pneumatic tires.
In particular, this invention relates to technology for improving the treads of pneumatic tires for vehicles used on icy and snowy roads, from small to large vehicles such as passenger cars, trucks, and buses.

【0002】0002

【従来の技術】冬期における低温の路面、特に路面上の
水や雪が凍結して氷面を形成した路面上を車で走行する
場合、車に装着されたタイヤのトレッドゴムと氷面との
間の摩擦力は氷面でない乾燥した通常の路面上の摩擦力
より大幅に低い。このため、氷面を有する路面上を車で
安全に走行するには、スパイクタイヤを車に装着したり
、タイヤの外周にタイヤチェーンを装着して、タイヤの
トレッドゴムと氷面との間の摩擦力が低くならないよう
に維持されている。
[Prior Art] When driving a car on a low-temperature road surface in winter, especially on a road surface where water or snow on the road surface has frozen and formed an icy surface, there is a gap between the tread rubber of the tires installed on the car and the ice surface. The frictional force is significantly lower than the frictional force on a normal, dry, non-icy road surface. Therefore, in order to drive safely on roads with icy surfaces, it is necessary to attach spiked tires to the car, or attach tire chains around the outer circumference of the tires to prevent the tread between the tire tread rubber and the icy surface. Frictional force is maintained so as not to become low.

【0003】しかし、タイヤチェーンを装着したタイヤ
又はスパイクタイヤを車に装着した場合、車がカーブし
て走行したり、急発進、急停止したりする際、スパイク
タイヤのスパイク又はタイヤチェーンが路面を傷付け、
傷付いた路面の一部が切欠されて粉末となり、この路面
が乾燥したときに、粉末が風により吹き上げられ粉塵を
撒き散らすという問題点がある。また、前記スパイクタ
イヤ又はタイヤチェーン付タイヤを装着した車が路面を
走行する際、スパイクタイヤのスパイク又はタイヤチェ
ーンが路面を衝打して騒音を発生するという問題点もあ
る。
However, when tires equipped with tire chains or spiked tires are installed on a car, when the car runs around a curve, starts suddenly, or suddenly stops, the spikes of the spiked tires or tire chains may touch the road surface. hurt,
A problem arises in that a portion of the damaged road surface is cut out and becomes powder, and when this road surface dries, the powder is blown up by the wind and scatters dust. In addition, when a car equipped with the spiked tires or tires with tire chains runs on a road, the spikes of the spiked tires or tire chains hit the road surface and generate noise.

【0004】これに対して、近年、トレッドゴム自体に
摩擦力向上のための工夫を加える技術が採用されている
。その第1の方法として、トレッドゴムを適当な方法で
発泡させ、独立気泡を生成させる方法がある(特開昭6
3−89547号公報) 。即ち、このようにして得ら
れるトレッドゴムの氷面は、多数の気孔で覆われている
ため、氷面に対する除水効果及び気孔部のミクロな運動
に伴う氷を削り取るエッジ効果の発現によって、氷上高
摩擦性を発現する。この手法は実際のタイヤトレッドに
取入れられ、スタッドレスタイヤとして市販されている
。またトレッドゴムに各種の異物(砂、もみがらのよう
な天然物等)を混入し、タイヤ走行時にこれらの異物が
抜け落ちることによって気孔を発生させる方法も検討さ
れている。この方法は、氷上高摩擦化のメカニズムとし
ては発泡と同一のものである。
[0004] In response to this, in recent years, techniques have been adopted in which improvements are made to the tread rubber itself in order to improve the frictional force. The first method is to foam the tread rubber by an appropriate method to generate closed cells (Japanese Patent Laid-Open No. 6
3-89547). In other words, since the ice surface of the tread rubber obtained in this way is covered with a large number of pores, the water removal effect on the ice surface and the edge effect that scrapes off the ice due to the microscopic movement of the pores cause the ice surface to be easily removed. Demonstrates high friction properties. This method has been incorporated into actual tire treads and is commercially available as studless tires. A method is also being considered in which various foreign substances (such as sand and natural substances such as rice husks) are mixed into the tread rubber, and these foreign substances fall off when the tire is running, thereby creating pores. This method has the same mechanism as foaming to increase friction on ice.

【0005】第2の方法として、各種の高硬度材料をト
レッドゴム中に混入し、この高硬度材料中の氷面に対す
るひっかき効果を利用してトレッドゴムの氷上高摩擦化
を実現しようとしたものがある (特公昭46−317
32号, 特開昭51−147803 号, 特公昭5
6−52057号公報) 。この方法は、明らかに前記
第1の方法とは異なったメカニズムによ  るトレッド
ゴムの氷上高摩擦化法である。実際、多くの場合、これ
らの高硬度材料を多量に混入すればする程、トレッドゴ
ムは氷上高摩擦化される傾向にある。
[0005] A second method is to mix various high-hardness materials into tread rubber and utilize the scratching effect of the high-hardness materials on the ice surface to achieve high friction of the tread rubber on ice. There is (Tokuko Sho 46-317
No. 32, JP-A No. 51-147803, Special Publication No. 5
6-52057). This method clearly uses a different mechanism from the first method to increase the friction of tread rubber on ice. In fact, in many cases, the more these high hardness materials are mixed in, the more the tread rubber tends to have high friction on ice.

【0006】[0006]

【発明が解決しようとする課題】上述した従来技術の内
、トレッオゴムの発泡又は混入された異物が離脱した後
の表面凹凸の凸部で氷をひっかき、凹部で氷表面の水分
を吸排出する第1の方法の欠点は、ゴムの硬さが氷表面
より相対的に低下することにより、低温下  (通常の
場合−3℃以下)でのひっかき効果が期待できなくなる
ことである。
[Problems to be Solved by the Invention] Among the above-mentioned conventional techniques, the first one scratches the ice with the convex portions of the surface unevenness after foaming of Treo rubber or the removal of mixed foreign matter, and the concave portions absorb and discharge moisture on the ice surface. The disadvantage of method 1 is that the hardness of the rubber is relatively lower than that of the ice surface, so the scratching effect cannot be expected at low temperatures (usually below -3°C).

【0007】一方、トレッドのマトリックスゴムにひっ
かき効果の高い高硬度材料を混入する第2の方法の欠点
は、水分の多い0℃付近での氷上性能改良効果が小さく
、また高硬度材料がゴムに親和性のない異物として存在
するため、耐摩擦性や破壊特性の低下が著しいことであ
る。
On the other hand, the second method, in which a high hardness material with a high scratching effect is mixed into the matrix rubber of the tread, has the disadvantage that the effect of improving performance on ice at around 0°C, where there is a lot of moisture, is small, and the high hardness material does not affect the rubber. Since it exists as a foreign substance with no affinity, there is a significant drop in friction resistance and fracture properties.

【0008】現実の氷面温度は日中から夜間にかけて様
々に変化するため広い温度域でより安定した氷上性能を
示し、かつ耐摩耗性および破壊特性も著しく低下させる
ことのないタイヤトレッドが望まれている。
[0008] Since the actual ice surface temperature changes variously from daytime to nighttime, it is desirable to have a tire tread that exhibits more stable on-ice performance over a wide temperature range and that does not significantly reduce wear resistance and fracture properties. ing.

【0009】また、タイヤの新品時に対し、走行末期で
はゴムの経時的硬化とパターン溝深さの減少に伴い剛性
が高まり、氷上性能が低下することも氷上走行用空気入
りタイヤの従来からの課題であった。
[0009] Another problem with pneumatic tires for running on ice is that compared to when the tire is new, at the final stage of running, the stiffness of the rubber increases over time and the pattern groove depth decreases, resulting in a decrease in on-ice performance. Met.

【0010】そこで本発明の目的は、広い温度域に亘り
安定した氷上性能を示すとともに、完全摩耗に至るまで
の全ての使用条件下でより安定した氷性能を示すトレッ
ドを備える空気入りタイヤを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a pneumatic tire with a tread that exhibits stable on-ice performance over a wide temperature range and also exhibits more stable on-ice performance under all usage conditions up to complete wear. It's about doing.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討した結果、トレッドのマトリック
スゴムを氷表面に溶融した水分の多い0℃付近の氷上性
能に有利な適度な発泡率から成る発泡ゴムとし、そのマ
トリックスゴムに特定の硬度、粒径をもちマトリックス
ゴムと親和性のある特殊な樹脂を混入することでトレッ
ド表面に樹脂を一定面積出現させることにより、ゴムよ
り氷面が硬くなる低温下においてひっかき効果が得られ
、かつ混入した樹脂の離脱による耐摩耗性および破壊特
性の低下を来すこともないことを見い出し、本発明を完
成するに至った。
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the present inventors have developed a method to improve the performance on ice at around 0°C, where the matrix rubber of the tread is melted on the ice surface and has a high moisture content. The foamed rubber has a certain foaming rate, and the matrix rubber is mixed with a special resin that has a specific hardness and particle size and is compatible with the matrix rubber.By making a certain area of the resin appear on the tread surface, it is more effective than rubber. It was discovered that a scratching effect can be obtained at low temperatures where the surface becomes hard, and that there is no deterioration in wear resistance and fracture properties due to detachment of the mixed resin, and the present invention has been completed.

【0012】すなわち本発明の空気入りタイヤは、AS
TMショアーDで測定された硬度が40゜以上、平均粒
径が10〜400 μm である、ゴムとポリマーアロ
イを形成する樹脂またはゴムと共架橋する樹脂をゴム分
 100重量部に対して3〜30重量部含有し、かつ3
〜35%の発泡倍率の独立気泡を有する発泡ゴムをトレ
ッドに備えたことを特徴とするものである。上記トレッ
ドの表面積1cm2 当りの樹脂の面積は全て1.6m
m2以上となる。
That is, the pneumatic tire of the present invention has AS
A resin that forms a polymer alloy with rubber or a resin that co-crosslinks with rubber, which has a hardness of 40° or more as measured by TM Shore D and an average particle size of 10 to 400 μm, is added to 3 to 3 parts per 100 parts by weight of rubber. Contains 30 parts by weight, and 3
The tread is characterized by having a tread made of foamed rubber having closed cells with an expansion ratio of ~35%. The area of resin per 1cm2 of surface area of the above tread is all 1.6m
It becomes more than m2.

【0013】また、本発明のタイヤトレッドにおいては
、完全摩耗に至るまでの氷上性能低下を抑制するために
、ゴムマトリックスの発泡倍率をトレッド表面より最内
層に向かって漸増させることが好ましい。このためには
、トレッド表層1mm間の平均発泡倍率がトレッド最内
層1mm間の平均発泡倍率より小さくする。
Further, in the tire tread of the present invention, in order to suppress the deterioration of on-ice performance until complete wear occurs, it is preferable that the expansion ratio of the rubber matrix is gradually increased from the tread surface toward the innermost layer. For this purpose, the average foaming ratio between 1 mm of the tread surface layer is made smaller than the average foaming ratio between 1 mm of the innermost tread layer.

【0014】[0014]

【作用】本発明において、発泡ゴムが3〜35%の発泡
倍率の独立気泡を有することとしたのは、0℃付近の氷
表面に溶融した水分が多い状態において気孔によるミク
ロな吸排水効果を大きくし、優れた氷雪性能を発揮させ
るためにはかかる独立気泡が不可欠だからである。独立
気泡を作る手段としては、発泡手段による他、もみがら
などマトリックスゴムと親和性のない粉体を混入してお
き、走行時に離脱させることで作製することも可能であ
るが、この場合には氷上性能として発泡以上の効果は得
られない。
[Function] In the present invention, the foamed rubber has closed cells with an expansion ratio of 3 to 35% because it has a microscopic absorption and drainage effect by the pores when there is a lot of melted water on the ice surface at around 0℃. This is because such closed cells are essential in order to increase the size and exhibit excellent ice and snow performance. In addition to foaming, closed cells can also be created by mixing powder that has no affinity with the matrix rubber, such as rice husk, and separating it during running. No effect beyond foaming can be obtained in terms of performance on ice.

【0015】また、発泡手段は、トレッドの表層から最
内層に至るまでの発泡倍率を制御することができ、完全
摩耗に至るまでの氷上性能の変化を少なくすることがで
きるので、本発明においてはこれを選択する。発泡は発
泡剤によるもの、ガスの高圧ミキシングによるもののい
ずれの方法を用いてもよいが、発泡倍率が3%未満では
発泡の効果が十分でなく、一方35%を超えるとトレッ
ド剛性が不十分のため、耐摩耗性の低下や溝底クラック
の発生が大となる。
In addition, the foaming means can control the foaming ratio from the surface layer to the innermost layer of the tread, and can reduce changes in on-ice performance until complete wear. Select this. Foaming may be performed using a foaming agent or by high-pressure mixing of gas, but if the foaming ratio is less than 3%, the foaming effect will not be sufficient, while if it exceeds 35%, the tread rigidity may be insufficient. Therefore, the wear resistance deteriorates and the occurrence of groove bottom cracks increases.

【0016】ここで、発泡ゴムの発泡率VS は、次式
  VS ={(ρo −ρg )/(ρ1 −ρg 
)−1}×100  (%)−−−−(1)で表され、
ρ1 は発泡ゴムの密度 (g/cm3 )、ρo は
発泡ゴムの固相部の密度(g/cm3 )、ρg は発
泡ゴムの気泡内のガス部の密度 (g/cm3 )であ
る。発泡ゴムは固相部と、固相部によって形成される空
洞(独立気泡)すなわち気泡内のガス部とから構成され
ている。ガス部の密度ρg は極めて小さく、ほぼ零に
近く、かつ固相部の密度ρ1 に対して極めて小さいの
で、式(1) は、次式   VS ={(ρo −ρ1 )−1}×100  
(%)                −−−−(2
)とほぼ同等である。
Here, the foaming rate VS of the foamed rubber is determined by the following formula: VS = {(ρo - ρg )/(ρ1 - ρg
)−1}×100 (%)−−−−(1),
ρ1 is the density of the foamed rubber (g/cm3), ρo is the density of the solid phase part of the foamed rubber (g/cm3), and ρg is the density of the gas part in the cells of the foamed rubber (g/cm3). Foamed rubber is composed of a solid phase portion and a cavity (closed cell) formed by the solid phase portion, that is, a gas portion within the cell. Since the density ρg of the gas part is extremely small, close to zero, and extremely small compared to the density ρ1 of the solid phase part, equation (1) can be calculated as follows: VS = {(ρo −ρ1 )−1}×100
(%) -----(2
) is almost equivalent to

【0017】ゴムの硬度より氷の硬度の方が高くなる低
温下では、ひっかき効果を得るために、発泡ゴムに混入
される高硬度材料として以下の条件を満たす樹脂が必要
である。すなわち、まずASTMショアーDで測定され
る硬度が40゜以上である。40゜未満では十分なひっ
かき効果が得られない。ASTMショアーDの具体的測
定法はJISK7215に準拠した。
At low temperatures, where the hardness of ice is higher than the hardness of rubber, in order to obtain a scratching effect, a resin that satisfies the following conditions is required as a high hardness material to be mixed into foamed rubber. That is, first, the hardness measured by ASTM Shore D is 40° or more. If the angle is less than 40°, a sufficient scratching effect cannot be obtained. The specific ASTM Shore D measurement method was based on JISK7215.

【0018】かかる樹脂の平均粒径は10〜400 μ
m の範囲内であり、10μm 未満では氷上性能の改
良効果が見られず、一方400μm を超えると溝底ク
ラックの発生が問題となる。
[0018] The average particle size of this resin is 10 to 400 μm.
If the thickness is less than 10 μm, no effect of improving on-ice performance will be observed, while if it exceeds 400 μm, the occurrence of groove bottom cracks will become a problem.

【0019】これら条件を満たす高硬度材料はゴム分 
100重量部に対して3〜30重量部配合されていなけ
ればならず、3重量部未満では、最も軽い樹脂を想定し
た場合でもトレッド表面において樹脂の占める面積が少
なすぎるため、氷上性能の改良効果が見られない。すな
わち、実際に200km 直進走行した後のテストタイ
ヤについてトレッド表面積1cm2 あたりに出現して
いる樹脂の総面積を顕微鏡で測定した結果、樹脂の総面
積が1.6mm2以上あるタイヤにおいて十分な氷上性
能が得られることは判明したが、この総面積を得るため
に、混入される樹脂は3重量部以上必要である。しかし
、30重量部を超えて混入すると、耐摩耗性の低下が著
しく、溝底クラックの発生も問題となる。
[0019] A high hardness material that satisfies these conditions is a rubber component.
It must be blended in an amount of 3 to 30 parts by weight per 100 parts by weight, and if it is less than 3 parts by weight, the area occupied by the resin on the tread surface will be too small even when the lightest resin is assumed, so it will not be effective in improving on-ice performance. I can't see it. In other words, after actually driving straight for 200 km, we measured the total area of resin appearing per 1 cm2 of tread surface area of the test tire using a microscope, and found that tires with a total resin area of 1.6 mm2 or more had sufficient on-ice performance. However, in order to obtain this total area, it is necessary to mix the resin in an amount of 3 parts by weight or more. However, when more than 30 parts by weight is mixed in, the wear resistance is significantly reduced and the occurrence of groove bottom cracks becomes a problem.

【0020】さらに、本発明においては、混入される樹
脂はマトリックスゴムとポリマーアロイを形成するか、
またはゴムと共架橋する樹脂でなければならない。この
ような樹脂でないとすると、走行時に樹脂がマトリック
スゴムから離脱して、表面凹凸の形成には寄与するもの
の目的とするひっかき効果は得られず、トレッドゴムの
破壊特性および耐摩耗性は著しく低下する。かかる樹脂
として、そのままでマトリックスゴムの網目に侵入して
ポリマーアロイを形成する樹脂や、マトリックスゴムと
共架橋する樹脂を選択してもよいが、そのような樹脂で
ない場合には、共架橋性のある樹脂や架橋剤を適宜加え
たもので表面処理したものを用いればよい。
Furthermore, in the present invention, the resin to be mixed forms a polymer alloy with the matrix rubber, or
Or it must be a resin that co-crosslinks with rubber. If it is not such a resin, the resin will separate from the matrix rubber during running, and although it will contribute to the formation of surface irregularities, the desired scratching effect will not be obtained, and the fracture characteristics and wear resistance of the tread rubber will be significantly reduced. do. As such a resin, a resin that directly penetrates into the matrix rubber network to form a polymer alloy or a resin that co-crosslinks with the matrix rubber may be selected, but if it is not such a resin, a co-crosslinkable resin may be selected. It is sufficient to use a material that has been surface-treated with a certain resin or crosslinking agent as appropriate.

【0021】そのままでポリマーアロイを形成する樹脂
としては、分子量 100万〜1000万の超高分子量
ポリエステル樹脂等があり、そのまま共架橋する樹脂と
してはスチレン−ブタジエン樹脂等がある。これに対し
、ポリエチレン樹脂やポリアミド樹脂はスチレン−ブタ
ジエン (20/80) 等と一緒に所定の熱処理をす
ることによりポリマーアロイ化することができる。
[0021] Examples of resins that form polymer alloys as they are include ultra-high molecular weight polyester resins having a molecular weight of 1 million to 10 million, and examples of resins that co-crosslink as they are such as styrene-butadiene resins. On the other hand, polyethylene resins and polyamide resins can be made into polymer alloys by subjecting them to a predetermined heat treatment together with styrene-butadiene (20/80) or the like.

【0022】以上の条件を満たす高硬度の樹脂と前述の
発泡ゴムとを組み合わせることにより、0℃付近の氷上
から極低温氷上までより安定した氷上性能が得られる。 なお、本発明で使用する高硬度樹脂は1種類に限定され
るものではなく、2種類以上組み合わせて用いることが
できる。
[0022] By combining a high hardness resin that satisfies the above conditions with the above-mentioned foamed rubber, more stable performance on ice can be obtained from ice at around 0°C to extremely low temperature ice. Note that the high hardness resin used in the present invention is not limited to one type, but can be used in combination of two or more types.

【0023】マトリックスゴムの発泡倍率をトレッド表
面層より最内層に向かって漸増させることにより、マト
リックスゴム自体の氷上性能を最内層に向かって漸次増
加させることができるが、その一方で剛性は低下する。 この現象と、ゴムの経時的硬化と、溝深さ減少による剛
性上昇および氷上性能低下との均衡を図ることにより、
完全摩耗に至るまでの氷上性能をより安定したものに改
良することができる。すなわち、トレッド最内層1mm
間の平均発泡倍率をトレッド表層1mm間の平均発泡倍
率より高く設定することでこの改良目的は達成され、そ
の差が2%以上であれば特に好ましい。このような発泡
倍率の制御は、加硫時におけるタイヤモールド側の温度
とブラダー側の温度とを適当に選択することにより可能
である。
By gradually increasing the foaming ratio of the matrix rubber from the tread surface layer toward the innermost layer, the on-ice performance of the matrix rubber itself can be gradually increased toward the innermost layer, but on the other hand, the rigidity decreases. . By balancing this phenomenon with the hardening of the rubber over time, the increase in rigidity due to the decrease in groove depth, and the decrease in performance on ice,
It is possible to improve on-ice performance to be more stable until complete wear occurs. In other words, the innermost layer of the tread is 1mm
This improvement objective can be achieved by setting the average expansion ratio between the tread surface layers to be higher than the average expansion ratio between 1 mm of the tread surface layer, and it is particularly preferable if the difference is 2% or more. Such control of the expansion ratio is possible by appropriately selecting the temperature on the tire mold side and the temperature on the bladder side during vulcanization.

【0024】マトリックスゴムの配合としては、特に制
限はなく、一般のゴム組成物を用いることができる。す
なわち、ゴム成分に各種充填剤、オイル、加硫剤等を適
宜配合したゴム組成物を用いることができるが、低温で
の硬さを低く設定し氷との実接触面積を広げること、0
℃付近でのひっかき効果を得ること、耐摩耗性および操
縦安定性など他性能との均衡を図ることなどより、室温
での弾性率(E′)が3×107 〜20×107 d
yn /cm2 内に設定することが好ましい。
[0024] There are no particular restrictions on the blending of the matrix rubber, and general rubber compositions can be used. That is, it is possible to use a rubber composition in which various fillers, oils, vulcanizing agents, etc. are appropriately blended with the rubber component, but it is necessary to set the hardness at low temperatures to be low to increase the actual contact area with ice.
The elastic modulus (E') at room temperature is 3 x 107 to 20 x 107 d, in order to obtain a scratching effect near ℃ and to balance other performances such as wear resistance and handling stability.
It is preferable to set it within yn/cm2.

【0025】尚、このE′は、加硫条件 160℃×1
5分、ゲージ2mmのスラブシートより切出した幅5m
m、長さ20mmのサンプルを岩本製作所(株)製のス
ペクトロメーターを使用して、初期荷重 150g、動
的歪み2%、周波数50Hz、設定温度25℃の条件で
測定したものである。
[0025] This E' is the vulcanization condition: 160°C x 1
5 minutes, width 5m cut from a 2mm gauge slab sheet
A sample with a length of 20 mm and a length of 20 mm was measured using a spectrometer manufactured by Iwamoto Seisakusho Co., Ltd. under conditions of an initial load of 150 g, a dynamic strain of 2%, a frequency of 50 Hz, and a set temperature of 25°C.

【0026】[0026]

【実施例】以下、実施例及び比較例を挙げて本発明をよ
り具体的に説明する。下記の表1に、本発明の実施例お
よび比較例で使用した樹脂の特性をまとめて示す。
[Examples] The present invention will be explained in more detail below with reference to Examples and Comparative Examples. Table 1 below summarizes the properties of the resins used in the Examples and Comparative Examples of the present invention.

【0027】[0027]

【表1】[Table 1]

【0028】*  Bにおける親和性処理としては、G
Eプラスチックス製ノリル731Jと旭化成(株)製無
水マレイン酸変性スチレン−ブタジエン共重合体(タフ
プレン 912(商品名)(60/40) )に対し、
ステアリン酸1phr 、硫黄 1.5phr および
亜鉛華3phrを同方向回転2軸押出しにて、ポリマー
アロイ化した。F, I及びJにおける親和性処理は、
あらかじめ所望の粒径に調整したナイロン(東レ,6−
ナイロンアミランCM1021)にレゾルシン−ホルム
アルデヒド縮合体/ゴムラテックス水溶液系接着剤をス
ーパーミキサーなどのヘンシェルミキサーにてコーティ
ングしたものを用いた。Dにおける処理は超高分子量ポ
リエチレン樹脂、旭化成製サンファインu900 にS
Bブロック共重合体同社アサフレックス80を60/4
0に対してステアリン酸1、ZnO 3、S 1.5を
同方向2軸押出機にてポリマーアロイ化した。Eにおけ
る処理は 1,2−ポリブタジエン100 に対してス
テアリン酸1、ZnO 3、S 1.5を、同方向2軸
押出機にてダイナミックに架橋したものを用いた。同方
向2軸押出機としては池貝鉄工製PCMタイプ押出機を
用い各処理の温度はフィード部で 150℃、混練部で
は各樹脂が充分に軟化する温度、架橋部は 200〜2
20 ℃の温度にて実施した。
*As the affinity treatment for B, G
For Noryl 731J manufactured by E-Plastics and maleic anhydride-modified styrene-butadiene copolymer (Tuffprene 912 (trade name) (60/40) manufactured by Asahi Kasei Corporation),
A polymer alloy was formed from 1 phr of stearic acid, 1.5 phr of sulfur, and 3 phr of zinc white by co-rotating twin screw extrusion. Affinity processing in F, I and J is
Nylon (Toray, 6-
Nylon amylan CM1021) was coated with a resorcinol-formaldehyde condensate/rubber latex aqueous solution adhesive using a Henschel mixer such as Supermixer. The treatment in D was ultra-high molecular weight polyethylene resin, Asahi Kasei Sunfine U900.
B block copolymer Asaflex 80 60/4
0, 1 stearic acid, 3 ZnO, and 1.5 S were made into a polymer alloy using a twin-screw extruder in the same direction. In the treatment in E, 100 parts of 1,2-polybutadiene were dynamically crosslinked with 1 stearic acid, 3 ZnO 3, and 1.5 S in a co-directional twin-screw extruder. A PCM type extruder manufactured by Ikegai Iron Works was used as the co-directional twin-screw extruder, and the temperature for each treatment was 150°C in the feed section, the temperature at which each resin was sufficiently softened in the kneading section, and 200 - 200°C in the crosslinking section.
It was carried out at a temperature of 20°C.

【0029】表中、Aはマトリックスゴムとはポリマー
アロイ、共架橋のいずれも形成しないので、本発明の樹
脂としては不適当なものである。B,D,EおよびFは
親和性処理によりマトリックスゴムと共架橋する樹脂で
ある。Cはそのままでマトリックスゴムとポリマーアロ
イを形成する。GおよびHはそのままでマトリックスゴ
ムと共架橋する樹脂であるが、GはショアーD硬度が4
0゜未満のため、本発明の樹脂として採用することはで
きない。IおよびJは平均粒子径がそれぞれ10μm 
未満または 400μm を超えるため、やはり本発明
の樹脂としては不適当なものである。KはAと同様に、
マトリックスゴムとはポリマーアロイ、共架橋いずれも
形成しないので、本発明の樹脂としては不適当なもので
ある。
In the table, A does not form either a polymer alloy or a co-crosslink with the matrix rubber, and is therefore unsuitable as the resin of the present invention. B, D, E and F are resins that co-crosslink with the matrix rubber through affinity treatment. C forms a polymer alloy with the matrix rubber as it is. G and H are resins that co-crosslink with the matrix rubber as they are, but G has a Shore D hardness of 4.
Since it is less than 0°, it cannot be used as the resin of the present invention. I and J each have an average particle diameter of 10 μm
Since it is less than 400 μm or more than 400 μm, it is still inappropriate as the resin of the present invention. K is the same as A,
Since the matrix rubber does not form any polymer alloy or co-crosslinking, it is unsuitable as the resin of the present invention.

【0030】表2および表3に、表1に示す樹脂と組み
合わせた発泡ゴムマトリックスの配合処方(重量部)、
並びに得られた樹脂混入発泡ゴムの加硫物性および当該
発泡ゴムをタイヤトレッドに適用したときのタイヤ性能
を夫々示す。具体的には、表2では樹脂の種類および硬
度、発泡剤の種類の変化につき検討し、表3では樹脂の
配合量、粒径、発泡倍率の変化につき検討した。
Tables 2 and 3 show the formulation (parts by weight) of the foamed rubber matrix combined with the resin shown in Table 1.
In addition, the vulcanized physical properties of the obtained resin-containing foamed rubber and the tire performance when the foamed rubber is applied to a tire tread are shown. Specifically, in Table 2, changes in the type and hardness of the resin and in the type of foaming agent were examined, and in Table 3, changes in the amount of resin blended, particle size, and expansion ratio were examined.

【0031】[0031]

【表2】[Table 2]

【0032】*1   アゾジカルボンアミド*2  
4,4′−オキシビスベンゼンスルホニルヒドラジド*
3   ジニトロソペンタメチレンテトラミン*4  
 実験室試験加硫条件 167℃×20kg/cm2*
5   サイズ 165 R13のタイヤで試験:直進
 200km走行後、速度20km/h から制動(指
数が小ほど良好)*6   一般路走行による耐摩耗性
指数で表示(指数が大ほど耐摩耗性良好)
*1 Azodicarbonamide *2
4,4'-oxybisbenzenesulfonyl hydrazide*
3 Dinitrosopentamethylenetetramine *4
Laboratory test vulcanization conditions 167℃×20kg/cm2*
5 Tested with size 165 R13 tires: After driving straight for 200 km, braking at a speed of 20 km/h (the smaller the index, the better)

【0033】[0033]

【表3】[Table 3]

【0034】表2および表3により次のことが確認され
た。樹脂が混入されてない発泡ゴムだけの比較例1と同
様に、ゴムと親和性のない樹脂Aを配合した比較例2で
は氷上性能の改善が見られず、破壊特性、耐摩耗性の低
下だけが確認された。
The following was confirmed from Tables 2 and 3. Similar to Comparative Example 1, which contained only foamed rubber with no resin mixed in, Comparative Example 2, which contained Resin A, which has no affinity with rubber, showed no improvement in on-ice performance, only a decrease in fracture properties and abrasion resistance. was confirmed.

【0035】これに対し、ゴムと親和性のあるB〜Fの
樹脂を用いた実施例1〜5では、−2℃における氷上制
動性指数の改良効果もさることながら、特にひっかき効
果依存性の高い−10℃での改良効果が顕著である。実
施例6〜7では発泡剤の種類を、また実施例8ではマト
リックスゴムの配合を変えた例であり、比較例1対比い
ずれも氷上性能が改良されている。
On the other hand, in Examples 1 to 5, in which resins B to F having an affinity for rubber were used, not only the on-ice braking index at -2°C was improved, but also the scratching effect dependence was improved. The improvement effect at high temperatures of -10°C is remarkable. Examples 6 and 7 are examples in which the type of blowing agent is changed, and Example 8 is an example in which the blend of matrix rubber is changed, and the performance on ice is improved in both cases compared to Comparative Example 1.

【0036】比較例3と実施例9では、ゴムと共架橋性
のあるスチレン−ブタジエン樹脂を用いたが、比較例3
の樹脂のショアーD硬度は40゜未満のため、氷上効果
に改良が見られなかった。
In Comparative Example 3 and Example 9, a styrene-butadiene resin having co-crosslinking properties with rubber was used;
Since the Shore D hardness of the resin was less than 40°, no improvement was seen in the effectiveness on ice.

【0037】次に表3に示す比較例4では樹脂が全く混
入されていないのに対し、比較例5では好適な樹脂が配
合されているが、その配合量が3重量部未満であったた
め、氷上のひっかき効果に相関する粒子出現率(トレッ
ド表面積1cm2 当りの粒子総表面積mm2)が氷上
性能改良に必要な1.6%に達していないことが分かる
Next, in Comparative Example 4 shown in Table 3, no resin was mixed at all, whereas in Comparative Example 5, a suitable resin was blended, but the blended amount was less than 3 parts by weight. It can be seen that the particle appearance rate (total particle surface area mm2 per 1 cm2 tread surface area), which is correlated with the scratching effect on ice, has not reached the 1.6% required to improve on-ice performance.

【0038】これに対し、実施例10, 11, 12
および比較例6では樹脂の配合量増加に伴い粒子出現率
が比例して増加し、氷上性能もこれに相関して改良が認
められる。 但し、比較例6は、樹脂配合量が30重量部を超えたた
め、溝底クラックが発生し、耐摩耗性能の低下も著しい
ため、実用には適さなかった。
In contrast, Examples 10, 11, 12
In Comparative Example 6, the particle appearance rate increased in proportion to the increase in the amount of resin blended, and the performance on ice was also improved in correlation with this. However, in Comparative Example 6, since the amount of resin blended exceeded 30 parts by weight, groove bottom cracks occurred and the wear resistance performance deteriorated significantly, so it was not suitable for practical use.

【0039】比較例11の樹脂配合量は実施例11のそ
れと同一だが、比較例11の樹脂はゴムとの親和性がな
いため、マトリックスゴムから大部分が離脱して粒子出
現率が1.6%に達しておらび、氷上性能の改良も認め
られなかった。このように粒子出現率は粒子の配合量と
ゴムとの親和性に相関し氷上性能によく相関することが
分かる。
The resin content of Comparative Example 11 is the same as that of Example 11, but since the resin of Comparative Example 11 has no affinity with rubber, most of it separates from the matrix rubber, resulting in a particle appearance rate of 1.6. %, and no improvement in on-ice performance was observed. In this way, it can be seen that the particle appearance rate correlates with the amount of particles blended and the affinity with the rubber, and correlates well with the performance on ice.

【0040】比較例7に用いた樹脂Iは粒径が小さすぎ
るため、氷上性能の改良効果が見られず、また比較例8
に用いた樹脂Jは粒径が大きすぎるため、溝底クラック
と耐摩耗性の点に問題があった。
Since the particle size of Resin I used in Comparative Example 7 was too small, no improvement in performance on ice was observed, and in Comparative Example 8
Since the resin J used in the above was too large in particle size, there were problems with groove bottom cracks and wear resistance.

【0041】比較例9および10は発泡倍率を検討した
ものであり、比較例9は発泡倍率が3%未満で氷上性能
の改良効果が発泡倍率25%の実施例11対比著しく劣
っていた。一方、発泡倍率が35%を超える比較例10
は、溝底クラックと耐摩耗性に問題があり、実用に使え
るものではなかった。
In Comparative Examples 9 and 10, the foaming ratio was investigated. Comparative Example 9 had a foaming ratio of less than 3%, and the effect of improving performance on ice was significantly inferior to that of Example 11, which had a foaming ratio of 25%. On the other hand, Comparative Example 10 where the expansion ratio exceeds 35%
had problems with groove bottom cracks and wear resistance, and was not usable for practical use.

【0042】表4に、マトリックスゴムの発泡倍率をト
レッド表面より最内層に向かって漸増させ、それがトレ
ッドの完全摩耗に至るまでの氷上性能低下を如何に抑制
するかを示す。
Table 4 shows how gradually increasing the foaming ratio of the matrix rubber from the tread surface toward the innermost layer suppresses the deterioration of on-ice performance until complete tread wear.

【0043】[0043]

【0044】実施例13, 14では、モールド側温度
をブラダー側温度より高くして加硫したタイヤでトレッ
ド最内層の平均発泡倍率が表層のそれと同等又はそれよ
りも小さいために、トレッドの完全摩耗に至るまでの氷
上性能の低下が見られる。
In Examples 13 and 14, the average expansion ratio of the innermost layer of the tread was equal to or smaller than that of the surface layer of the tire, which was cured with the mold side temperature higher than the bladder side temperature, so that the tread did not wear completely. A decline in on-ice performance can be seen.

【0045】これに対し実施例15では、モールド側と
ブラダー側の加硫温度を同じにしたことにより、最内層
の発泡倍率が表層のそれよりも2%程大きくなっており
、この結果氷上性能の低下が抑制された。また、実施例
16では、モールド側よりもブラダー側加硫温度を上げ
たことで、最内層1mmと表層1mmの平均発泡倍率の
差が6%まで拡大し、この結果完全摩耗に至るまでの氷
上性能低下はほとんどなくなった。従って、発泡と組み
合わせることにより加硫条件を変えることで、走行の初
期、後期の氷上性能バランスを自由にコントロールする
ことが可能になる。
On the other hand, in Example 15, by making the vulcanization temperatures on the mold side and the bladder side the same, the foaming ratio of the innermost layer was about 2% larger than that of the surface layer, and as a result, the performance on ice was improved. The decline was suppressed. In addition, in Example 16, by raising the vulcanization temperature on the bladder side than on the mold side, the difference in average foaming ratio between the innermost layer 1 mm and the surface layer 1 mm expanded to 6%, and as a result, the temperature on the ice until complete wear was The performance drop has almost disappeared. Therefore, by changing the vulcanization conditions in combination with foaming, it becomes possible to freely control the balance of on-ice performance in the early and late stages of running.

【0046】[0046]

【発明の効果】以上詳述した通り、本発明による発泡ゴ
ムマトリックスとこれと親和性が高い高硬度樹脂とを組
み合わせたトレッドを用いた空気入りタイヤは、あらゆ
る使用条件下の氷上性能において顕著な改良効果が認め
られ、耐摩耗性および溝底クラックなども実用上問題な
い範囲である。
Effects of the Invention As detailed above, a pneumatic tire using a tread that combines a foamed rubber matrix according to the present invention and a high-hardness resin that has a high affinity with the foamed rubber matrix has outstanding on-ice performance under all usage conditions. The improvement effect was observed, and the wear resistance and groove bottom cracks were within the range of no practical problems.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ASTMショアーDで測定された硬度
が40゜以上、平均粒径が10〜400 μm である
、ゴムとポリマーアロイを形成する樹脂またはゴムと共
架橋する樹脂をゴム分 100重量部に対して3〜30
重量部含有し、かつ3〜35%の発泡倍率の独立気泡を
有する発泡ゴムをトレッドに備えたことを特徴とする空
気入りタイヤ。
Claim 1: 100 parts by weight of a resin that forms a polymer alloy with rubber or a resin that co-crosslinks with rubber and has a hardness measured by ASTM Shore D of 40° or more and an average particle size of 10 to 400 μm. 3-30 against
1. A pneumatic tire characterized in that the tread is provided with foamed rubber having closed cells containing parts by weight and an expansion ratio of 3 to 35%.
JP03167517A 1991-06-13 1991-06-13 Pneumatic tire Expired - Fee Related JP3096093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03167517A JP3096093B2 (en) 1991-06-13 1991-06-13 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03167517A JP3096093B2 (en) 1991-06-13 1991-06-13 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPH04365607A true JPH04365607A (en) 1992-12-17
JP3096093B2 JP3096093B2 (en) 2000-10-10

Family

ID=15851160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03167517A Expired - Fee Related JP3096093B2 (en) 1991-06-13 1991-06-13 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP3096093B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4848294A (en) * 1987-02-20 1989-07-18 Yamaha Hatsudoki Kabushiki Kaisha Carburetor heating device for small snowmobile
EP0734886A1 (en) * 1995-03-29 1996-10-02 Bridgestone Corporation Foamed rubber compositions for pneumatic tires and method of producing the same
JPH0940809A (en) * 1995-07-14 1997-02-10 Pirelli Coordinamento Pneumatici Spa Vulcanizable rubber composition for tire
JP2016056248A (en) * 2014-09-08 2016-04-21 横浜ゴム株式会社 Rubber composition for tire and studless tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4848294A (en) * 1987-02-20 1989-07-18 Yamaha Hatsudoki Kabushiki Kaisha Carburetor heating device for small snowmobile
EP0734886A1 (en) * 1995-03-29 1996-10-02 Bridgestone Corporation Foamed rubber compositions for pneumatic tires and method of producing the same
US5776991A (en) * 1995-03-29 1998-07-07 Bridgestone Corporation Foamed rubber compositions for pneumatic tires and method of producing the same
US5968427A (en) * 1995-03-29 1999-10-19 Bridgestone Corporation Foamed rubber compositions for pneumatic tires and method of producing the same
JPH0940809A (en) * 1995-07-14 1997-02-10 Pirelli Coordinamento Pneumatici Spa Vulcanizable rubber composition for tire
JP2016056248A (en) * 2014-09-08 2016-04-21 横浜ゴム株式会社 Rubber composition for tire and studless tire

Also Published As

Publication number Publication date
JP3096093B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
EP1048691B1 (en) Rubber composition for tires and pneumatic tire
JP4187174B2 (en) Rubber composition for winter tire tread and winter tire
JP2007039499A (en) Rubber composition for tire
JP2001011237A (en) Rubber composition for tire, and pneumatic tire
JP2012201708A (en) Tire rubber composition and pneumatic tire
JP3352639B2 (en) Rubber composition for tire tread with increased frictional force on ice and pneumatic tire
US5968427A (en) Foamed rubber compositions for pneumatic tires and method of producing the same
JPH04365607A (en) Pneumatic tire
JPH04368205A (en) Pneumatic tire
JP4750235B2 (en) Vulcanized rubber and tires
JPS60147450A (en) Tire tread rubber composition
JP3096092B2 (en) Pneumatic tire
JP3549974B2 (en) Method for producing rubber composition
JP2003292674A (en) Rubber composition for studless tire and studless tire
JPH09302153A (en) Particle-containing rubber composition
JPH0438206A (en) Pneumatic tire
JP4694659B2 (en) Rubber composition for tire, vulcanized rubber for tire and tire
JP4971648B2 (en) Rubber composition and pneumatic tire
JP3054238B2 (en) Pneumatic tire
JP2004300340A (en) Rubber composition for tire and pneumatic tire
JPH09249005A (en) Foamed rubber composition and pneumatic tire using the foamed rubber composition for tread rubber
US5571350A (en) Pneumatic tire with tread of matrix foamed rubber containing resin
JP2003292676A (en) Rubber composition for tire and pneumatic tire
JP7483587B2 (en) Rubber composition for tires, tread rubber and winter tires
JPH04176707A (en) Pneumatic tire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees