JPS60147450A - Tire tread rubber composition - Google Patents

Tire tread rubber composition

Info

Publication number
JPS60147450A
JPS60147450A JP59004124A JP412484A JPS60147450A JP S60147450 A JPS60147450 A JP S60147450A JP 59004124 A JP59004124 A JP 59004124A JP 412484 A JP412484 A JP 412484A JP S60147450 A JPS60147450 A JP S60147450A
Authority
JP
Japan
Prior art keywords
alumina
friction
ice
low
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59004124A
Other languages
Japanese (ja)
Other versions
JPH0333187B2 (en
Inventor
Riichiro Ohara
大原 利一郎
Tomoichi Nakayama
倫一 中山
Noriyuki Isobe
磯部 典幸
Mitsuaki Hayama
端山 光明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP59004124A priority Critical patent/JPS60147450A/en
Publication of JPS60147450A publication Critical patent/JPS60147450A/en
Publication of JPH0333187B2 publication Critical patent/JPH0333187B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the titled composition giving high coefficient of friction on ice over a wide range of temperatures, by incorporating natural and/or diene synthetic rubber with a combination of low-temperature type plasticizer having specific freezing point and alumina of specific particle diameter range. CONSTITUTION:The objective composition can be obtained by incorporating and kneading (A) 100pts.wt. of natural and/or diene synthetic rubber such as polyisoprene, polybutadiene with (B) 10-80pts.wt. of low-temperature type plasticizer such as di-(2-ethylhexyl)phthalate with a freezing point <=-40 deg.C and (C) 45(pref. 10-30)pts.wt. of alumina with an average size 0.01-0.5(pref. 0.05-0.3)mm.. Said composition gives excellent brake performance on ice over a range of temperatures -5--35 deg.C without impairing its wear resistance, wet-road brake performance and road-protecting ability, thus being suitable as a tread rubber composition for spikeless snow tires.

Description

【発明の詳細な説明】 本発明はタイヤトレッドゴム組成物、特に優れた氷上で
の高摩擦特性を有するスパイクレスタイヤ用トレッドゴ
ム組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to tire tread rubber compositions, particularly tread rubber compositions for spikeless tires having excellent high friction properties on ice.

一般にタイヤトレッド部を構成するゴム組成物は、低温
になると硬化しゴム本来の柔軟性を失し1路面グリップ
力が低下する。即ち雪上及び水上で路面グリップができ
ず滑ってしまう。また制動も効かずハンドルによる車体
のコントロールもできない状況に陥る。この点を補う目
的で使用されているのがスパイク付スノータイヤである
が、近来界バイク付スノータイヤによる路面の損傷及び
それに伴う粉塵の発生、浮遊、さらには騒音等が社会問
題となっており、十分な低温特性を有するスパイクレス
スノータイヤへの要請が高まってきてシ1 る。
Generally, the rubber composition constituting the tire tread portion hardens at low temperatures and loses its inherent flexibility, resulting in a decrease in road grip. In other words, the vehicle cannot grip the road surface on snow or water and slips. Also, the brakes do not work and the vehicle cannot be controlled using the steering wheel. Snow tires with spikes are used to compensate for this problem, but in recent years snow tires with motorcycles have caused damage to the road surface and the resulting dust generation, floating, and even noise have become social issues. There is an increasing demand for spikeless snow tires with sufficient low-temperature characteristics.

従来より、ゴムの低温特性を改善し、氷上摩擦係数を上
げる方法として(1)氷上摩擦係数の大きいポリマーの
使用、(2)アロマティックオイル、ナフテニックオイ
ルの多量使用、(3)シー(2−エチルヘキシル)アツ
ベ−)(DO^)、シー(2−エチルヘキシル)7タレ
ー) (DOf’)、ノー(2−エチルヘキシル)アゼ
レート(002)、ノー(27エチルヘキシル)セパケ
ー) (DOS)などの低温性可塑剤をゴム組成物に加
えること等が知54られている。
Conventionally, methods for improving the low-temperature properties of rubber and increasing the coefficient of friction on ice include (1) the use of polymers with a large coefficient of friction on ice, (2) the use of large amounts of aromatic oils and naphthenic oils, and (3) sea (2) -Ethylhexyl) (DO^), (2-ethylhexyl) (DOof'), (2-ethylhexyl) azelate (002), (27 ethylhexyl) (DOS), etc. It is known to add plasticizers to rubber compositions.

ところで一般に氷結路面といっても、その氷温はさまざ
まであり、特に注目しなければならないのは、氷温の差
異によりゴムの氷上摩擦係数がかなり変動するという点
である。例えば、同じジエン系合成ゴムであるBR(ポ
リブタノエンゴム)と5BR(スチレンブタジェン共重
合ゴム)を比較すると、−5℃付近の氷温ではSDRの
方が氷上摩擦係数が大きいにもかかわらず、−12℃付
近で両者の氷上摩擦係数の大小関係が逆転し、さらに低
温になるほどBRの氷上摩擦係数が大きくなっていく(
SBRの摩擦係数は小さくなりていく)ということが、
一般に知られている。この場合、BRと5ll11をブ
レンド使用しでも特別な組合せ効果は得られず、各温度
でBRおよびSDRを単独に使用する場合の高い方の氷
上摩擦係数よりは劣ってしまう。
By the way, icy road surfaces generally have various icy temperatures, and it is particularly important to note that the coefficient of friction of rubber on ice varies considerably depending on the difference in icy temperature. For example, when comparing BR (polybutanoene rubber), which is the same diene-based synthetic rubber, and 5BR (styrene-butadiene copolymer rubber), SDR has a higher coefficient of friction on ice at freezing temperatures around -5°C. Regardless, the magnitude relationship between the coefficients of friction on ice for both reverses around -12℃, and as the temperature gets lower, the coefficient of friction on ice for BR increases (
The friction coefficient of SBR becomes smaller).
generally known. In this case, even if BR and 5ll11 are used as a blend, no special combination effect can be obtained, and the coefficient of friction on ice is inferior to the higher one when BR and SDR are used alone at each temperature.

また前述したオイルの多量使用や、低温性可塑剤。Also, the use of large amounts of oil and low-temperature plasticizers as mentioned above.

を利用する方法では、−20℃付近より低い氷温での氷
上摩擦係数の向上には効果があるが、−5℃付近での氷
上摩擦係数については顕者な改善効果が認められない。
The method using this method is effective in improving the coefficient of friction on ice at ice temperatures lower than around -20°C, but no significant improvement effect is observed on the coefficient of friction on ice at around -5°C.

このように、各種ゴム組成物の氷上摩擦係数を測定する
と氷温の変化により、氷上摩擦係数の値も変化し、広い
範囲の氷温にわたって氷上摩擦係数の^いゴム組成物を
得ることは極めて困難であった。
In this way, when measuring the coefficient of friction on ice of various rubber compositions, the value of the coefficient of friction on ice changes as the ice temperature changes, and it is extremely difficult to obtain a rubber composition with a coefficient of friction on ice over a wide range of ice temperatures. It was difficult.

しかし、実際の氷結路面の氷温は季節や地域によりかな
りの範囲で変化する。従って、スパイクレスタイヤが使
用されるすべての氷温範囲にわたり高い氷上摩擦係数を
有するタイヤトレッドゴム組成物の開発が強く要望され
ていた。
However, the actual ice temperature of frozen roads varies considerably depending on the season and region. Therefore, there has been a strong desire to develop a tire tread rubber composition that has a high coefficient of friction on ice over the entire freezing temperature range in which spikeless tires are used.

本発明者は、このような要望を満たすトレッドゴム組成
物の開発を目的として、鋭意研究した結果、凝固点が一
40℃以下である低温性可塑剤を使用して低温特性を改
良したゴム組成物に、特定の粒径範囲を持ったアルミナ
を併用すると両者を組合せた効果が表われ、−5℃から
一35℃の全′温度。1.わ、、9□5、い□□□。f
’:fA@よ 2物が得られることを見出し、本発明に
到達した。
As a result of intensive research aimed at developing a tread rubber composition that satisfies such demands, the present inventors have developed a rubber composition with improved low-temperature properties using a low-temperature plasticizer with a freezing point of 140°C or less. When alumina with a specific particle size range is used in combination with the above, the combined effect of the two appears, and the total temperature ranges from -5°C to -35°C. 1. Wow, 9□5, □□□. f
':fA@yo We have discovered that two things can be obtained, and have arrived at the present invention.

即ち本発明は、天然ゴムおよび/又はジエン系合成ゴム
100重量部に対し、凝固点が一40℃以下である低温
性可塑剤10〜80重呈部と、平均粒径が0.01〜O
,’5+mであるアルミナ5〜45重量部とを併用配合
して乞るタイヤトレッドゴム組成物に係る。
That is, the present invention provides 10 to 80 parts by weight of a low-temperature plasticizer with a freezing point of 140°C or less and an average particle size of 0.01 to
, '5+m, in combination with 5 to 45 parts by weight of alumina.

本発明に使用する、凝固点が−4()℃以下の低温性可
塑剤としては、シー(2−エチルヘキシル)アジベー)
 (DOA、凝固点□=70℃)、シー(2−エチルヘ
キシル)7タレート(DOP、−固点二55℃)、ジー
(2−エチルヘキシル)アゼシー) (DOZ、 a固
点−65℃)、シー(2−エチルへ□キシル)セバケー
ト<’ D’(l S’ 。
The low-temperature plasticizer with a freezing point of -4()°C or lower used in the present invention is
(DOA, freezing point □ = 70℃), C (2-ethylhexyl) 7 tallate (DOP, - solid point - 255℃), Di (2-ethylhexyl) azecy) (DOZ, a solid point - 65℃), C ( 2-ethyl to □xyl) sebacate <'D' (l S'.

凝固点−65℃)、a−オレフィンオリゴマー(1)八
〇、凝固点−65℃)等がある。配置合量は10〜80
重量部であり、10重量部未満では、低温下での氷上摩
擦係数が上がらず、また80重量部を越えて配合すると
、氷温−5℃付近では逆に氷上摩擦係数が低下□する傾
向を示し゛、耐摩耗性゛も劣るので好ましくない。
freezing point -65°C), a-olefin oligomer (1) 80, freezing point -65°C), etc. The total amount of placement is 10 to 80
If it is less than 10 parts by weight, the coefficient of friction on ice at low temperatures will not increase, and if it exceeds 80 parts by weight, the coefficient of friction on ice will tend to decrease at around -5°C. It is undesirable because it has poor viscosity and abrasion resistance.

本発明に用いるアルミナは、平均粒径が0.01〜0.
5m+*、さらに好ましくは0.05−0.3mmであ
る。
The alumina used in the present invention has an average particle size of 0.01 to 0.
5m+*, more preferably 0.05-0.3mm.

0.01a++I1未満では氷上摩擦係数の向上が望め
ず、まり0.5fflI11を越えると、路面を傷めや
すく、かつ耐摩耗性の低下が着しいので好ましくない。
If it is less than 0.01a++I1, no improvement in the coefficient of friction on ice can be expected, and if it exceeds 0.5fflI11, it is undesirable because it tends to damage the road surface and the abrasion resistance is severely degraded.

本発明におけるアルミナの配合量は、ゴム1o。The amount of alumina blended in the present invention is 1 o of rubber.

重量部に対し5〜45重量部、さらに好ましぐは10〜
30重量部である65重量部未満では氷上摩擦係数の十
分な向上が望めず、また45重量部を越えると耐摩耗性
の低下が着しくなって好ましくない。
5 to 45 parts by weight, more preferably 10 to 45 parts by weight
If it is less than 65 parts by weight (30 parts by weight), a sufficient improvement in the coefficient of friction on ice cannot be expected, and if it exceeds 45 parts by weight, the abrasion resistance will deteriorate undesirably.

本発明にお・けるゴム成分は、天然ゴム(NR)および
/又はジエン系合成ゴムである。ジエン系合成ゴムとし
ては、例えばポリイゾプレンゴム(IR)、ポリブタジ
ェンゴム(8R)、スチレンブタジェンゴム(SBR)
及びこれらのブレンド物等が好適である。
The rubber component in the present invention is natural rubber (NR) and/or diene-based synthetic rubber. Examples of diene-based synthetic rubber include polyisoprene rubber (IR), polybutadiene rubber (8R), and styrene-butadiene rubber (SBR).
and blends thereof are suitable.

本発明のゴム組成物は上記成分を通常の加工装置、例え
ばロール、パン□バリーミキサー、ニーグー′などによ
り混練することにより得られる。また上記成分の他に公
知の加硫剤、加硫促進剤、加硫促進助剤J加硫遅延剤、
有機過酸化物、補強剤、充填剤、オイル、軟化剤、可塑
剤、老化防止剤、粘着付与剤、着色剤等を添加できるこ
とは勿論である。
The rubber composition of the present invention can be obtained by kneading the above-mentioned components using a conventional processing device such as a roll, a bread ball mixer, a negoo mixer, or the like. In addition to the above components, known vulcanizing agents, vulcanization accelerators, vulcanization accelerators J vulcanization retarders,
Of course, organic peroxides, reinforcing agents, fillers, oils, softeners, plasticizers, anti-aging agents, tackifiers, colorants, etc. can be added.

以下、本発明を実施例及び比較例により詳しく説明する
Hereinafter, the present invention will be explained in detail with reference to Examples and Comparative Examples.

なお、評価法は次の通りである。The evaluation method is as follows.

・JIS硬度: JIS K6301により測定した。- JIS hardness: Measured according to JIS K6301.

φピコ摩擦指数:^STM D2228に従い、ピコ摩
耗試験機を用いて評価し、コン)o−ル配合Nolを1
00として指数表示した。数値の大きい方が良好である
φ Pico friction index: Evaluated using a Pico abrasion tester according to STM D2228, Con) o-le blend No. 1
It was expressed as an index as 00. The larger the number, the better.

・Iceμ(氷上摩擦係数):箸本製作所製摩擦係数測
定試験槻を用いて、負荷圧力2.7kg/cI112、
滑り速度0. lc蒙/seaで測定しコントロール配
合Nolの値を100として指数表示した。数値の大き
い方が良好である。
・Iceμ (coefficient of friction on ice): Using a friction coefficient measurement test piece manufactured by Hashimoto Seisakusho, the load pressure was 2.7 kg/cI112,
Sliding speed 0. It was measured in lc/sea and expressed as an index with the value of control formulation No. 1 as 100. The larger the number, the better.

・タイヤ−eLμ:各配合によるトレッドを作製し、そ
のトレッドを用いてタイヤサイ、l’185/705R
14のタイヤを製作し、そのタイヤについて湿潤グリッ
プ性(Wetμ)を測定した。測定は米国のUTQGS
(タイヤ品質等級基準)で定められた方法に従い、タイ
ヤを試験用トレーラ−に、5JX14のリムを用いて装
着し、充填空気圧1.8kg/am2、荷重336に、
の条件下で、湿潤アスファルト密粒度路面上を走行して
、タイヤの回転をロックしたときの摩擦抵抗を測定した
。コントロール配合Nolの摩擦係数を100として指
数表示した。数値の大きい方が良好である。
・Tire-eLμ: Create a tread with each formulation, and use the tread to create a tire size, l'185/705R.
Fourteen tires were manufactured, and the wet grip properties (Wetμ) of the tires were measured. Measured by UTQGS in the United States
(Tire Quality Grading Standards), the tires were mounted on a test trailer using 5JX14 rims, and the air pressure was 1.8 kg/am2 and the load was 336.
The frictional resistance was measured when the tires were running on a wet asphalt dense-grained road surface under these conditions and the rotation of the tires was locked. The coefficient of friction of the control formulation No. 1 was set as 100 and expressed as an index. The larger the number, the better.

・路面損傷度:岩本製作所製摩撫係数測定試験機を用い
て、30℃で、アスファルト路面上を負荷圧力2,7k
g/c+a2、滑り速度0,1cm/seeで運転し、
路面プレートを50回転させた後のアスファルト路面□
□工□、。□1よ22.。−7187Nolによる路面
損傷程度(無損傷)を1、コントロール配合Molにス
パイクビンを打ち込んで測定した場合の路面損傷程度を
5とし、5段階評価i行った。数値の小さい方が良好で
ある□。
・Road surface damage level: Using a friction coefficient measurement tester made by Iwamoto Seisakusho, the asphalt road surface was subjected to a load pressure of 2.7 k at 30°C.
g/c+a2, operating at a sliding speed of 0.1 cm/see,
Asphalt road surface after rotating the road plate 50 times □
□Eng.□. □1 yo 22. . The road surface damage level (no damage) caused by -7187Nol was set as 1, and the road surface damage level when measured by driving a spike bottle into the control mixture Mol was set as 5, and a 5-level evaluation was performed. The smaller the number, the better □.

実施例及び比較例 = 第1表に示した各種ゴス組成物を混練り後、□加硫した
。これらゴム組成物について、各物性を評価し、結果を
第1表に示す。
Examples and Comparative Examples = Various goss compositions shown in Table 1 were kneaded and then □vulcanized. Each physical property of these rubber compositions was evaluated and the results are shown in Table 1.

尚、各RQ会には第1表i記−の成分以外に、亜鉛華(
3部)、ステアリン酸(3部′)、老化防止剤(パラフ
ェニレンジアミン系、3部)、加硫促進剤(チアゾール
類、1.5部)及び硫黄(2部)をそれぞ□れ配合した
In addition, each RQ meeting contains zinc white (
3 parts), stearic acid (3 parts'), anti-aging agent (para-phenylene diamine type, 3 parts), vulcanization accelerator (thiazoles, 1.5 parts), and sulfur (2 parts). did.

注1) 5BRI502 注2)夕7デン1534 注3.4)二連化工製 注5)共同石油社製 注6)アルミナA: 日経化工製、電鋳アルミナ微粉(
粒度#280品、最大粒子径147μ以下、平均粒子径
73.5〜62μ) 注7) アルミナB: 同上(粒度# 2000品、最
大粒子径17μ以下、平均粒子径8.9〜7.1μ)注
8) アルミfC: 同上(粒度#20品、840 u
以上の粒径を有する物が80%以上で、且つ最大168
0μ以下) 注9)アルミナD: 同上(粒度#54品、最大粒子径
500μ以下、97%以上が粒径210μ以上、65%
以上が粒径250μ以上) 第1表に記載のゴム岨威物の評価に関し、典型的なスパ
イクレス入/−タイヤのトレッド配合の1例であるNo
、1の配合物をコントロールにして具体的に示す。
Note 1) 5BRI502 Note 2) Evening 7den 1534 Note 3.4) Made by Niren Kako Note 5) Made by Kyodo Oil Note 6) Alumina A: Made by Nikkei Kako, electroformed alumina fine powder (
Particle size #280 product, maximum particle size 147μ or less, average particle size 73.5-62μ) Note 7) Alumina B: Same as above (particle size #2000 product, maximum particle size 17μ or less, average particle size 8.9-7.1μ) Note 8) Aluminum fC: Same as above (particle size #20 product, 840 u
80% or more of particles have a particle size of 168 or more, and a maximum of 168
Note 9) Alumina D: Same as above (particle size #54 product, maximum particle size 500μ or less, 97% or more particle size 210μ or more, 65%
Regarding the evaluation of the rubber materials listed in Table 1, No. 1, which is an example of a typical spikeless/-tire tread composition
, 1 is specifically shown as a control.

実施例に相当する配合No、2.3.5,8,15,1
8゜17、18は、いずれもコントa−ル配合No、 
1に比べ、ピコ摩擦指数とNetμがほぼ同等レベルで
、Iceμは一5℃から一35℃の全ての温度範囲にわ
たって非常に優れていることがわかる。
Blend No. corresponding to Example, 2.3.5, 8, 15, 1
8゜17 and 18 are both control formulation No.
It can be seen that compared to No. 1, the pico friction index and Netμ are at almost the same level, and Iceμ is very superior over the entire temperature range from -5°C to -35°C.

配合No、 4は、低温性可塑剤のみを配合して、アル
ミナを配合しない場合の比較例である。コントロール配
合No、1に比べ、−35℃でのIceμは優れている
が一5℃でのleeμは殆ど改善されていない。
Blend No. 4 is a comparative example in which only a low temperature plasticizer is blended and no alumina is blended. Compared to control formulation No. 1, Iceμ at -35°C is excellent, but leeμ at 5°C is hardly improved.

配合No、14は、アルミナのみを配合しで、低温性可
塑剤を配合しない場合の比較例である。コントa−ル配
合No、1に比べ、−5℃でのleeμは優れでいるが
一35℃でのIceμは殆ど改善されていない。
Blend No. 14 is a comparative example in which only alumina is blended and no low temperature plasticizer is blended. Compared to control formulation No. 1, the leeμ at -5°C is excellent, but the iceμ at 35°C is hardly improved.

配合No、8は、平均粒径が0.01−mより小さいア
ルミナと低温性可塑剤を組み合わせた場合の比較例であ
る。配合No、7に比べ一5℃付近のIceμの改善が
見られない。
Blend No. 8 is a comparative example in which alumina having an average particle size of less than 0.01-m and a low-temperature plasticizer are combined. Compared to formulation No. 7, there is no improvement in Iceμ around -5°C.

配合No、9は、平均粒径が0.5mI++を越えるア
ルミナと低温性可塑剤を組み合わせた場合の比較例であ
る。ピコ摩耗指数の低下が着しく、また路面を損傷させ
る傾向があるので好ましくない。
Blend No. 9 is a comparative example in which alumina having an average particle size exceeding 0.5 mI++ is combined with a low temperature plasticizer. This is undesirable because the pico wear index is severely reduced and there is a tendency to damage the road surface.

配合No、 10は、アルミナの配合量が5電量部より
少ない場合の比較例である。コントロール配合No、1
に比べ一5℃でのIceμは、殆ど改善されない。
Blend No. 10 is a comparative example in which the blended amount of alumina is less than 5 coulometric parts. Control formulation No. 1
There is almost no improvement in Iceμ at -5°C.

配合No、11は、アルミナの配合量が45重電部を越
える場合の比較例である。ピコ摩耗指数の低1ζが着し
く好ましくない。
Blend No. 11 is a comparative example in which the blending amount of alumina exceeds 45 parts. A low pico wear index of 1ζ is undesirable.

配合No、12は、80重量部を越える低温性可塑剤と
アルミナを組み合わせた場合の比較例である。
Blend No. 12 is a comparative example in which more than 80 parts by weight of a low-temperature plasticizer and alumina are combined.

配合No、6に比べ、−5℃での[eすμが劣っており
、またピコ摩耗指数も低下していて好ましくない。
Compared to Blend No. 6, the [eμ] at -5°C is inferior, and the pico wear index is also lower, which is not preferable.

配合No、 13は、低温性可塑剤の配合量が10重量
部より少ない場合の比較例である。−35℃でのIce
μの改善が見られない。
Blend No. 13 is a comparative example in which the blended amount of the low-temperature plasticizer is less than 10 parts by weight. Ice at -35℃
There is no improvement in μ.

以上より、本発明のトレッドゴム組成物は耐摩耗性、湿
潤路面制動力、路面損傷性を悪化させずに、−5℃から
一35℃のすべての温度にわたって優れた氷上制動力を
有し、スパイク付きタイヤのような公害を出さないスパ
イクレススノータイヤのトレッドゴム組成物として極め
て適した特性を有していることがわかる。
From the above, the tread rubber composition of the present invention has excellent braking power on ice at all temperatures from -5°C to -35°C without deteriorating wear resistance, wet road braking force, and road damage resistance. It can be seen that it has properties that are extremely suitable as a tread rubber composition for spikeless snow tires that do not cause pollution like tires with spikes.

(以上) 特許出願人 東洋ゴム工業株式会社 r代理人 弁理士
用材 巌
(above) Patent applicant: Toyo Rubber Industries, Ltd. r Agent: Iwao, patent attorney materials

Claims (1)

【特許請求の範囲】[Claims] (1)天然ゴム及び/又はツエン系合成ゴム100重量
部に対し、凝固点が一40℃以下である低温性可塑剤1
0〜80重量部と、平均粒径が0,01−0.5mmで
あるアルミナ5〜45重量部とを併用配合してなるタイ
ヤトレッドゴム組成物。
(1) 1 part of a low-temperature plasticizer with a freezing point of 140°C or less per 100 parts by weight of natural rubber and/or tsene-based synthetic rubber
A tire tread rubber composition comprising 0 to 80 parts by weight of alumina and 5 to 45 parts by weight of alumina having an average particle size of 0.01 to 0.5 mm.
JP59004124A 1984-01-11 1984-01-11 Tire tread rubber composition Granted JPS60147450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59004124A JPS60147450A (en) 1984-01-11 1984-01-11 Tire tread rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59004124A JPS60147450A (en) 1984-01-11 1984-01-11 Tire tread rubber composition

Publications (2)

Publication Number Publication Date
JPS60147450A true JPS60147450A (en) 1985-08-03
JPH0333187B2 JPH0333187B2 (en) 1991-05-16

Family

ID=11576032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59004124A Granted JPS60147450A (en) 1984-01-11 1984-01-11 Tire tread rubber composition

Country Status (1)

Country Link
JP (1) JPS60147450A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135241A (en) * 1988-11-16 1990-05-24 Nitto Sangyo Kk Rubber composition for tire tread
JPH02234802A (en) * 1989-03-07 1990-09-18 Toyo Tire & Rubber Co Ltd Tread rubber compound for tire
JPH0381106U (en) * 1989-12-08 1991-08-20
JP2002060548A (en) * 2000-08-11 2002-02-26 Yokohama Rubber Co Ltd:The Rubber composition for tire
US7211612B2 (en) 2002-02-28 2007-05-01 Sumitomo Rubber Industries, Ltd. Tread rubber composition and pneumatic tire employing the same
JP2009203288A (en) * 2008-02-26 2009-09-10 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2009298920A (en) * 2008-06-13 2009-12-24 Toyo Tire & Rubber Co Ltd Rubber composition for tire and pneumatic tire
US20110160342A1 (en) * 2008-08-22 2011-06-30 Daiso Co., Ltd. Vulcanizable rubber composition for use in an air spring and rubber formed product for use in an air spring
CN106488950A (en) * 2014-05-15 2017-03-08 住友橡胶工业株式会社 Rubber composition and pneumatic tire

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135241A (en) * 1988-11-16 1990-05-24 Nitto Sangyo Kk Rubber composition for tire tread
JPH02234802A (en) * 1989-03-07 1990-09-18 Toyo Tire & Rubber Co Ltd Tread rubber compound for tire
JPH0381106U (en) * 1989-12-08 1991-08-20
JP2002060548A (en) * 2000-08-11 2002-02-26 Yokohama Rubber Co Ltd:The Rubber composition for tire
US7211612B2 (en) 2002-02-28 2007-05-01 Sumitomo Rubber Industries, Ltd. Tread rubber composition and pneumatic tire employing the same
JP2009203288A (en) * 2008-02-26 2009-09-10 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2009298920A (en) * 2008-06-13 2009-12-24 Toyo Tire & Rubber Co Ltd Rubber composition for tire and pneumatic tire
US20110160342A1 (en) * 2008-08-22 2011-06-30 Daiso Co., Ltd. Vulcanizable rubber composition for use in an air spring and rubber formed product for use in an air spring
US8530587B2 (en) * 2008-08-22 2013-09-10 Daiso Co., Ltd Vulcanizable rubber composition for use in an air spring and rubber formed product for use in an air spring
CN106488950A (en) * 2014-05-15 2017-03-08 住友橡胶工业株式会社 Rubber composition and pneumatic tire

Also Published As

Publication number Publication date
JPH0333187B2 (en) 1991-05-16

Similar Documents

Publication Publication Date Title
EP0989161B1 (en) Tire with silica reinforced tread and/or sidewall components
JPS63202636A (en) Rubber composition for tire tread
JP2008001900A (en) Tire using tread comprising highly silica-containing rubber for performance for winter season
JPH0653830B2 (en) Pneumatic tire
KR0168430B1 (en) Rubber composition for all-weather tires
JPS60147450A (en) Tire tread rubber composition
JPS6031546A (en) Rubber composition for tire tread
JPH02272042A (en) Tread rubber composition for tire
JPS63172750A (en) Rubber composition for tire tread
JPS60197751A (en) Rubber composition for tire tread
JPS61162536A (en) Rubber composition for tire tread
JPH02135241A (en) Rubber composition for tire tread
JPH0745599B2 (en) Rubber composition for tire tread
JPS60137946A (en) Tread rubber composition
JPH0455443A (en) Tread rubber composition for studless tire
JPS60258235A (en) Rubber composition
JPH03126737A (en) Rubber composition for tread
JP2004300340A (en) Rubber composition for tire and pneumatic tire
JPH04122745A (en) Rubber composition and pneumatic tire having tread prepared from the composition
JP2003041058A (en) Rubber composition for tire tread
JPH01174546A (en) Tire for studless use
JPH09194634A (en) Tread rubber composition for studless tire
JPH11172044A (en) Rubber composition for studless tire
JP3054238B2 (en) Pneumatic tire
JPS6220704A (en) Studless tyre