JPH0333187B2 - - Google Patents

Info

Publication number
JPH0333187B2
JPH0333187B2 JP59004124A JP412484A JPH0333187B2 JP H0333187 B2 JPH0333187 B2 JP H0333187B2 JP 59004124 A JP59004124 A JP 59004124A JP 412484 A JP412484 A JP 412484A JP H0333187 B2 JPH0333187 B2 JP H0333187B2
Authority
JP
Japan
Prior art keywords
ice
friction
parts
weight
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59004124A
Other languages
Japanese (ja)
Other versions
JPS60147450A (en
Inventor
Riichiro Oohara
Tomoichi Nakayama
Noryuki Isobe
Mitsuaki Hayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP59004124A priority Critical patent/JPS60147450A/en
Publication of JPS60147450A publication Critical patent/JPS60147450A/en
Publication of JPH0333187B2 publication Critical patent/JPH0333187B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はタイヤトレツドゴム組成物、特に優れ
た氷上での高摩擦特性を有するスパイクレスタイ
ヤ用トレツドゴム組成物に関する。 一般にタイヤトレツド部を構成するゴム組成物
は、低温になると硬化しゴム本来の柔軟性を失い
路面グリツプ力が低下する。即ち雪上及び氷上で
路面グリツプができず滑つてしまう。また制動も
効かずハンドルによる車体のコントロールもでき
ない状況に陥る。この点を補う目的で使用されて
いるのがスパイク付スノータイヤであるが、近来
スパイク付スノータイヤによる路面の損傷及びそ
れに伴う粉塵の発生、浮遊、さらには騒音等が社
会問題となつており、十分な低温特性を有するス
パイクレススノータイヤへの要請が高まつてきて
いる。 従来より、ゴムの低温特性を改善し、氷上摩擦
係数を上げる方法として(1)氷上摩擦係数の大きい
ポリマーの使用、(2)アロマテイツクオイル、ナフ
テニツクオイルの多量使用、(3)ジ−(2−エチル
ヘキシル)アジペート(DOA),ジ−(2−エチ
ルヘキシル)フタレート(DOP),ジ−(2−エ
チルヘキシル)アゼレート(DOZ),ジ−(2−
エチルヘキシル)セバケート(DOS)などの低
温性可塑剤をゴム組成物に加えること等が知られ
ている。 ところで一般に氷結路面といつても、その氷温
はさまざまであり、特に注目しなければならない
のは、氷温の差異によりゴムの氷上摩擦係数がか
なり変動するという点である。例えば、同じジエ
ン系合成ゴムであるBR(ポリブタジエンゴム)
とSBR(スチレンブタジエン共重合ゴム)を比較
すると、−5℃付近の氷温ではSBRの方が氷上摩
擦係数が大きいにもかかわらず、−12℃付近で両
者の氷上摩擦係数の大小関係が逆転し、さらに低
温になるほどBRの氷上摩擦係数が大きくなつて
いく(SBRの摩擦係数は小さくなつていく)と
いうことが、一般に知られている。この場合、
BRとSBRをブレンド使用しても特別な組合せ効
果は得られず、各温度でBRおよびSBRを単独に
使用する場合の高い方の氷上摩擦係数よりは劣つ
てしまう。また前述したオイルの多量使用や、低
温性可塑剤を利用する方法では、−20℃付近より
低い氷温での氷上摩擦係数の向上には効果がある
が、−5℃付近での氷上摩擦係数については顕著
な改善効果が認められない。 このように、各種ゴム組成物の氷上摩擦係数を
測定すると氷温の変化により、氷上摩擦係数の値
も変化し、広い範囲の氷温にわたつて氷上摩擦係
数の高いゴム組成物を得ることは極めて困難であ
つた。 しかし、実際の氷結路面の氷温は季節や地域に
よりかなりの範囲で変化する。従つて、スパイク
レスタイヤが使用されるすべての氷温範囲にわた
り高い氷上摩擦係数を有するタイヤトレツドゴム
組成物の開発が強く要望されていた。 本発明者は、このような要望を満たすトレツド
ゴム組成物の開発を目的として、鋭意研究した結
果、凝固点が−40℃以下である低温性可塑剤を使
用して低温特性を改良したゴム組成物に、特定の
粒径範囲を持つたアルミナを併用すると両者を組
合せた効果が表われ、−5℃から−35℃の全温度
範囲にわたつて高い氷上摩擦係数を示すゴム組成
物が得られることを見出し、本発明に到達した。 即ち本発明は、天然ゴムおよび/又はジエン系
合成ゴム100重量部に対し、凝固点が−40℃以下
である低温性可塑剤10〜80重量部と、平均粒径が
0.01〜0.5mmであるアルミナ5〜45重量部とを併
用配合してなるタイヤトレツドゴム組成物に係
る。 本発明に使用する、凝固点が−40℃以下の低温
性可塑剤としては、ジ−(2−エチルヘキシル)
アジペート(DOA、凝固点−70℃),ジ−(2−
エチルヘキシル)フタレート(DOP、凝固点−
55℃),ジ−(2−エチルヘキシル)アゼレート
(DOZ、凝固点−65℃),ジ−(2−エチルヘキシ
ル)セバケート(DOS、凝固点−65℃),α−オ
レフインオリゴマ−(PAO、凝固点−65℃)等が
ある。配合量は10〜80重量部であり、10重量部未
満では、低温下での氷上摩擦係数が上がらず、ま
た80重量部を越えて配合すると、氷温−5℃付近
では逆に氷上摩擦係数が低下する傾向を示し、耐
摩耗性も劣るので好ましくない。 本発明に用いるアルミナは、平均粒径が0.01〜
0.5mm、さらに好ましくは0.05〜0.3mmである。
0.01mm未満では氷上摩擦係数の向上が望めず、ま
た0.5mmを越えると、路面を傷めやすく、かつ耐
摩耗性の低下が著しいので好ましくない。 本発明におけるアルミナの配合量は、ゴム100
重量部に対し15〜45重量部、さらに好ましくは10
〜30重量部である。5重量部未満では氷上摩擦係
数の十分な向上が望めず、また45重量部を越える
と耐摩耗性の低下が著しくなつて好ましくない。 本発明におけるゴム成分は、天然ゴム(NR)
および/又はジエン系合成ゴムである。ジエン系
合成ゴムとしては、例えばポリイソプレンゴム
(IR)、ポリブタジエンゴム(BR)、スチレンブ
タジエンゴム(SBR)及びこれらのブレンド物
等が好適である。 本発明のゴム組成物は上記成分を通常の加工装
置、例えばロール、バンバリーミキサー、ニーダ
ーなどにより混練することにより得られる。また
上記成分の他に公知の加硫剤、加硫促進剤、加硫
促進助剤、加硫遅延剤、有機過酸化物、補強剤、
充填剤、オイル、軟化剤、可塑剤、老化防止剤、
粘着付与剤、着色剤等を添加できることは勿論で
ある。 以下、本発明を実施例及び比較例により詳しく
説明する。 なお、評価法は次の通りである。 ● JIS硬度:JIS K6301により測定した。 ● ピコ摩擦指数:ASTM D2228に従い、ピコ
摩耗試験機を用いて評価し、コントロール配合
No.1を100として指数表示した。数値の大きい
方が良好である。 ● Iceμ(氷上摩擦係数):岩本製作所製摩擦係数
測定試験機を用いて、負荷圧力2.7Kg/cm2、滑
り速度0.1cm/secで測定しコントロール配合No.
1の値を100として指数表示した。数値の大き
い方が良好である。 ● タイヤwetμ:各配合によるトレツドを作製
し、そのトレツドを用いてタイヤサイズ185/70
SR14のタイヤを製作し、そのタイヤについて
湿潤グリツプ性(wetμ)を測定した。測定は
米国のUTQGS(タイヤ品質等級基準)で定め
られた方法に従い、タイヤを試験用トレーラー
に、5J×14のリムを用いて装着し、充填空気圧
1.8Kg/cm2、荷重336Kgの条件下で、湿潤アスフ
アルト密粒度路面上を走行して、タイヤの回転
をロツクしたときの摩擦抵抗を測定した。コン
トロール配合No.1の摩擦係数を100として指数
表示した。数値の大きい方が良好である。 ● 路面損傷度:岩本製作所製摩擦係数測定試験
機を用いて、30℃で、アスフアルト路面上を負
荷圧力2.7Kg/cm2、滑り速度0.1cm/secで運転
し、路面プレートを50回転させた後のアスフア
ルト路面損傷度を観察評価した。評価はコント
ロール配合No.1による路面損傷程度(無損傷)
を1、コントロール配合No.1にスパイクピンを
打ち込んで測定した場合の路面損傷程度を5と
し、5段階評価を行つた。数値の小さい方が良
好である。 実施例及び比較例 第1表に示した各種ゴム組成物を混練り後、加
硫した。これらゴム組成物について、各物性を評
価し、結果を第1表に示す。 尚、各配合には第1表に記載の成分以外に、亜
鉛華(3部)、ステアリン酸(3部)、老化防止剤
(パラフエニレンジアミン系、3部)、加硫促進剤
(チアゾール類、1.5部)及び硫黄(2部)をそれ
ぞれ配合した。
The present invention relates to tire tread rubber compositions, and particularly to tread rubber compositions for spikeless tires having excellent high friction properties on ice. Generally, the rubber composition constituting the tire tread hardens at low temperatures and loses its inherent flexibility, resulting in a decrease in road grip. In other words, the vehicle cannot grip the road surface on snow or ice, resulting in slipping. Also, the brakes do not work and the vehicle cannot be controlled using the steering wheel. Snow tires with spikes are used to compensate for this problem, but in recent years, snow tires with spikes have caused damage to the road surface and the resulting dust generation, floating, and even noise, which has become a social problem. There is an increasing demand for spikeless snow tires that have sufficient low-temperature characteristics. Conventionally, methods for improving the low-temperature properties of rubber and increasing the coefficient of friction on ice include (1) the use of polymers with a high coefficient of friction on ice, (2) the use of large amounts of aromatic oils and naphthenic oils, and (3) the use of (2-ethylhexyl) adipate (DOA), di-(2-ethylhexyl) phthalate (DOP), di-(2-ethylhexyl) azelate (DOZ), di-(2-ethylhexyl) azelate (DOZ),
It is known to add low temperature plasticizers such as ethylhexyl) sebacate (DOS) to rubber compositions. By the way, when we talk about icy road surfaces, the icy temperature generally varies, and it is particularly important to note that the coefficient of friction of rubber on ice varies considerably depending on the difference in icy temperature. For example, BR (polybutadiene rubber), which is the same diene-based synthetic rubber.
Comparing SBR (styrene-butadiene copolymer rubber) and SBR, even though SBR has a larger coefficient of friction on ice at an ice temperature of around -5°C, the relationship in magnitude between the coefficients of friction on ice is reversed at around -12°C. However, it is generally known that the coefficient of friction on ice of BR increases as the temperature decreases (the coefficient of friction of SBR decreases). in this case,
Blends of BR and SBR do not provide any special combination effect and are inferior to the higher ice friction coefficients obtained when BR and SBR are used alone at each temperature. In addition, the method of using a large amount of oil or using a low-temperature plasticizer as described above is effective in improving the coefficient of friction on ice at ice temperatures lower than around -20°C, but the coefficient of friction on ice at around -5°C is effective. No significant improvement effect was observed. In this way, when measuring the coefficient of friction on ice of various rubber compositions, the value of the coefficient of friction on ice changes as the ice temperature changes, and it is difficult to obtain a rubber composition with a high coefficient of friction on ice over a wide range of ice temperatures. It was extremely difficult. However, the actual ice temperature of frozen roads varies considerably depending on the season and region. Therefore, there has been a strong desire to develop a tire tread rubber composition that has a high coefficient of friction on ice over the entire freezing temperature range in which spikeless tires are used. As a result of intensive research aimed at developing a treaded rubber composition that satisfies these demands, the present inventor has developed a rubber composition with improved low-temperature properties using a low-temperature plasticizer with a freezing point of -40°C or lower. It has been shown that when alumina with a specific particle size range is used in combination, the combined effect of the two appears, and a rubber composition that exhibits a high coefficient of friction on ice over the entire temperature range from -5°C to -35°C can be obtained. Heading, we arrived at the present invention. That is, the present invention uses 10 to 80 parts by weight of a low-temperature plasticizer whose freezing point is -40°C or lower and an average particle size of 100 parts by weight of natural rubber and/or diene-based synthetic rubber.
The present invention relates to a tire tread rubber composition which is combined with 5 to 45 parts by weight of alumina having a diameter of 0.01 to 0.5 mm. The low-temperature plasticizer with a freezing point of -40°C or lower used in the present invention is di-(2-ethylhexyl).
Adipate (DOA, freezing point -70℃), di(2-
ethylhexyl) phthalate (DOP, freezing point -
55℃), di-(2-ethylhexyl) azelate (DOZ, freezing point -65℃), di-(2-ethylhexyl) sebacate (DOS, freezing point -65℃), α-olefin oligomer (PAO, freezing point -65℃) ) etc. The blending amount is 10 to 80 parts by weight.If it is less than 10 parts by weight, the coefficient of friction on ice at low temperatures will not increase, and if it is blended in excess of 80 parts by weight, the coefficient of friction on ice will decrease at around -5℃. This is not preferable because it tends to reduce the wear resistance and has poor wear resistance. The alumina used in the present invention has an average particle size of 0.01~
It is 0.5 mm, more preferably 0.05 to 0.3 mm.
If it is less than 0.01 mm, no improvement in the coefficient of friction on ice can be expected, and if it exceeds 0.5 mm, it is undesirable because it tends to damage the road surface and the abrasion resistance decreases significantly. The amount of alumina blended in the present invention is 100%
15 to 45 parts by weight, more preferably 10 parts by weight
~30 parts by weight. If it is less than 5 parts by weight, a sufficient improvement in the coefficient of friction on ice cannot be expected, and if it exceeds 45 parts by weight, the abrasion resistance will be markedly lowered, which is not preferable. The rubber component in the present invention is natural rubber (NR)
and/or diene-based synthetic rubber. Suitable diene-based synthetic rubbers include, for example, polyisoprene rubber (IR), polybutadiene rubber (BR), styrene-butadiene rubber (SBR), and blends thereof. The rubber composition of the present invention can be obtained by kneading the above components using conventional processing equipment such as rolls, Banbury mixers, kneaders, etc. In addition to the above components, known vulcanizing agents, vulcanization accelerators, vulcanization accelerators, vulcanization retarders, organic peroxides, reinforcing agents,
Fillers, oils, softeners, plasticizers, anti-aging agents,
Of course, tackifiers, colorants, etc. can be added. Hereinafter, the present invention will be explained in detail with reference to Examples and Comparative Examples. The evaluation method is as follows. ● JIS hardness: Measured according to JIS K6301. ● Pico friction index: Evaluated using a Pico abrasion tester according to ASTM D2228, control formulation
It is expressed as an index with No. 1 as 100. The larger the number, the better. ● Ice μ (friction coefficient on ice): Measured using a friction coefficient measurement tester made by Iwamoto Seisakusho at a load pressure of 2.7 Kg/cm 2 and a sliding speed of 0.1 cm/sec. Control formulation No.
The value of 1 was set as 100 and expressed as an index. The larger the number, the better. ● Tire wet μ: Create a tread for each formulation and use that tread to adjust the tire size to 185/70.
An SR14 tire was manufactured and its wet grip property (wetμ) was measured. The measurement was carried out in accordance with the method specified by the US UTQGS (tire quality grading standard).The tire was mounted on a test trailer using a 5J x 14 rim, and the air pressure was adjusted.
The frictional resistance was measured when the tire was running on a wet asphalt dense-grained road surface under conditions of 1.8 kg/cm 2 and a load of 336 kg, and the rotation of the tire was locked. The friction coefficient of control formulation No. 1 was set as 100 and expressed as an index. The larger the number, the better. ● Road surface damage level: Using a friction coefficient measurement tester made by Iwamoto Seisakusho, the vehicle was operated on an asphalt road surface at 30°C with a load pressure of 2.7 Kg/cm 2 and a sliding speed of 0.1 cm/sec, and the road plate was rotated 50 times. The degree of damage to the asphalt road surface was observed and evaluated. Evaluation is based on the degree of road surface damage (no damage) due to control formulation No. 1
A 5-grade evaluation was performed, with 1 being the degree of road damage measured by driving spike pins into control formulation No. 1 and 5 being the degree of road surface damage. The smaller the number, the better. Examples and Comparative Examples Various rubber compositions shown in Table 1 were kneaded and then vulcanized. Each physical property of these rubber compositions was evaluated and the results are shown in Table 1. In addition to the ingredients listed in Table 1, each formulation contains zinc white (3 parts), stearic acid (3 parts), anti-aging agent (paraphenylenediamine type, 3 parts), and vulcanization accelerator (thiazole). 1.5 parts) and sulfur (2 parts).

【表】【table】

【表】【table】

【表】【table】

【表】 第1表に記載のゴム組成物の評価に関し、典型
的なスパイクレススノータイヤのトレツド配合の
1例であるNo.1の配合物をコントロールにして具
体的に示す。 実施例に相当する配合No.2,3,5,6,15,
16,17,18は、いずれもコントロール配合No.1に
比べ、ピコ摩擦指数とwetμがほぼ同等レベルで、
Iceμは−5℃から−35℃の全ての温度範囲にわた
つて非常に優れていることがわかる。 配合No.4は、低温性可塑剤のみ配合して、アル
ミナを配合しない場合の比較例である。コントロ
ール配合No.1に比べ、−35℃でのIceμは優れてい
るが−5℃でのIceμは殆ど改善されていない。 配合No.14は、アルミナのみを配合して、低温性
可塑剤を配合しない場合の比較例である。コント
ロール配合No.1に比べ、−5℃でのIceμは優れて
いるが−35℃でのIceμは殆ど改善されていない。 配合No.8は、平均粒径が0.01mmより小さいアル
ミナと低温可塑剤を組み合わせた場合の比較例で
ある。配合No.7に比べ−5℃付近のIceμの改善が
見られない。 配合No.9は、平均粒径が0.5mmを越えるアルミ
ナと低温性可塑剤を組み合わせた場合の比較例で
ある。ピコ摩耗指数の低下が著しく、また路面を
損傷させる傾向があるので好ましくない。 配合No.10は、アルミナの配合量が5重量部より
少ない場合の比較例である。コントロール配合No.
1に比べ−5℃でのIceμは、殆ど改善されない。 配合No.11は、アルミナの配合量が45重量部を越
える場合の比較例である。ピコ摩耗指数の低下が
著しく好ましくない。 配合No.12は、80重量部を越える低温性可塑剤と
アルミナを組み合わせた場合の比較例である。配
合No.6に比べ、−5℃でのIceμが劣つており、ま
たピコ摩耗指数も低下していて好ましくない。 配合No.13は、低温性可塑剤の配合量が10重量部
より少ない場合の比較例である。−35℃でのIceμ
の改善が見られない。 以上より、本発明のトレツドゴム組成物は耐摩
耗性、湿潤路面制動力、路面損傷性を悪化させず
に、−5℃から−35℃のすべての温度にわたつて
優れた氷上制動力を有し、スパイク付きタイヤの
ような公害を出さないスパイクレススノータイヤ
のトレツドゴム組成物として極めて適した特性を
有していることがわかる。
[Table] Regarding the evaluation of the rubber compositions listed in Table 1, composition No. 1, which is an example of a typical spikeless snow tire tread composition, is specifically shown as a control. Blend No. 2, 3, 5, 6, 15, corresponding to Examples
16, 17, and 18 all have pico friction index and wet μ at almost the same level as control formulation No. 1,
It can be seen that Iceμ is very good over the entire temperature range from -5°C to -35°C. Blend No. 4 is a comparative example in which only a low-temperature plasticizer is blended and no alumina is blended. Compared to control formulation No. 1, Iceμ at -35°C is excellent, but Iceμ at -5°C is hardly improved. Blend No. 14 is a comparative example in which only alumina is blended and no low temperature plasticizer is blended. Compared to control formulation No. 1, Iceμ at -5°C is excellent, but Iceμ at -35°C is hardly improved. Blend No. 8 is a comparative example in which alumina with an average particle size of less than 0.01 mm and a low-temperature plasticizer are combined. Compared to formulation No. 7, there is no improvement in Ice μ near -5°C. Blend No. 9 is a comparative example in which alumina with an average particle size exceeding 0.5 mm and a low temperature plasticizer are combined. This is not preferable because it significantly reduces the pico wear index and tends to damage the road surface. Blend No. 10 is a comparative example in which the amount of alumina blended is less than 5 parts by weight. Control formulation No.
Ice μ at −5° C. is hardly improved compared to No. 1. Blend No. 11 is a comparative example in which the blended amount of alumina exceeds 45 parts by weight. A significant decrease in pico wear index is undesirable. Formulation No. 12 is a comparative example in which more than 80 parts by weight of a low-temperature plasticizer and alumina are combined. Compared to Blend No. 6, the Iceμ at -5°C is inferior, and the pico wear index is also lower, which is not preferable. Blend No. 13 is a comparative example in which the amount of low temperature plasticizer blended is less than 10 parts by weight. Iceμ at −35℃
No improvement is seen. From the above, the treaded rubber composition of the present invention has excellent braking power on ice over all temperatures from -5°C to -35°C without deteriorating wear resistance, wet road braking power, or road damage resistance. It can be seen that it has properties that are extremely suitable as a tread rubber composition for spikeless snow tires that do not cause pollution like spiked tires.

Claims (1)

【特許請求の範囲】[Claims] 1 天然ゴム及び/又はジエン系合成ゴム100重
量部に対し、凝固点が−40℃以下である低温性可
塑性10〜80重量部と、平均粒径が0.01〜0.5mmで
あるアルミナ5〜45重量部とを併用配合してなる
タイヤトレツドゴム組成物。
1. 10 to 80 parts by weight of low-temperature plasticity with a freezing point of -40°C or lower and 5 to 45 parts by weight of alumina with an average particle size of 0.01 to 0.5 mm per 100 parts by weight of natural rubber and/or diene synthetic rubber. A tire tread rubber composition comprising a combination of the following.
JP59004124A 1984-01-11 1984-01-11 Tire tread rubber composition Granted JPS60147450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59004124A JPS60147450A (en) 1984-01-11 1984-01-11 Tire tread rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59004124A JPS60147450A (en) 1984-01-11 1984-01-11 Tire tread rubber composition

Publications (2)

Publication Number Publication Date
JPS60147450A JPS60147450A (en) 1985-08-03
JPH0333187B2 true JPH0333187B2 (en) 1991-05-16

Family

ID=11576032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59004124A Granted JPS60147450A (en) 1984-01-11 1984-01-11 Tire tread rubber composition

Country Status (1)

Country Link
JP (1) JPS60147450A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135241A (en) * 1988-11-16 1990-05-24 Nitto Sangyo Kk Rubber composition for tire tread
JP2571963B2 (en) * 1989-03-07 1997-01-16 東洋ゴム工業株式会社 Tread rubber composition for tire
JPH0381106U (en) * 1989-12-08 1991-08-20
JP2002060548A (en) * 2000-08-11 2002-02-26 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP3686384B2 (en) 2002-02-28 2005-08-24 住友ゴム工業株式会社 Rubber composition for tread and pneumatic tire using the same
JP5233317B2 (en) * 2008-02-26 2013-07-10 横浜ゴム株式会社 Rubber composition for tire tread
JP5202122B2 (en) * 2008-06-13 2013-06-05 東洋ゴム工業株式会社 Rubber composition for tire and pneumatic tire
EP2316884B1 (en) * 2008-08-22 2018-01-24 Osaka Soda Co., Ltd. Vulcanizable rubber composition for air spring, and molded rubber article for air spring
JP6014276B2 (en) * 2014-05-15 2016-10-25 住友ゴム工業株式会社 Rubber composition and pneumatic tire

Also Published As

Publication number Publication date
JPS60147450A (en) 1985-08-03

Similar Documents

Publication Publication Date Title
JPS63202636A (en) Rubber composition for tire tread
JPH04261446A (en) Neumatic rubber tire
KR0168430B1 (en) Rubber composition for all-weather tires
JPH0333187B2 (en)
JP3244841B2 (en) Rubber composition for tread
US20090054551A1 (en) Rubber mixture and tire
JPH02272042A (en) Tread rubber composition for tire
JPS6031546A (en) Rubber composition for tire tread
JP3370541B2 (en) Rubber composition for studless tires
JPH0653833B2 (en) Rubber composition for tire tread
JPH0368899B2 (en)
JPH02135241A (en) Rubber composition for tire tread
KR100746327B1 (en) Tread rubber composition for tire
JPS61162536A (en) Rubber composition for tire tread
JPH0745599B2 (en) Rubber composition for tire tread
JP3600675B2 (en) Tread rubber composition for studless tires
JPH0251929B2 (en)
JP3375390B2 (en) Rubber composition for tire tread
JPH03126737A (en) Rubber composition for tread
JP2571963B2 (en) Tread rubber composition for tire
JPH01174546A (en) Tire for studless use
JPH06345901A (en) Rubber composition for tread
JPH1036561A (en) Rubber composition for tire
JPH11172044A (en) Rubber composition for studless tire
JPH04110333A (en) Rubber composition for tire