JPH04365606A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH04365606A
JPH04365606A JP3167516A JP16751691A JPH04365606A JP H04365606 A JPH04365606 A JP H04365606A JP 3167516 A JP3167516 A JP 3167516A JP 16751691 A JP16751691 A JP 16751691A JP H04365606 A JPH04365606 A JP H04365606A
Authority
JP
Japan
Prior art keywords
rubber
ice
tread
particles
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3167516A
Other languages
Japanese (ja)
Other versions
JP3096092B2 (en
Inventor
Seiichiro Iwafune
盛一郎 岩船
Yoshiyuki Morimoto
森本 芳之
Shinichi Iwasaki
眞一 岩崎
Susumu Sato
進 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP03167516A priority Critical patent/JP3096092B2/en
Publication of JPH04365606A publication Critical patent/JPH04365606A/en
Application granted granted Critical
Publication of JP3096092B2 publication Critical patent/JP3096092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band

Abstract

PURPOSE:To secure the stable on-ice performance over a wide temperature range and the stable ice performance under all the using conditions up to the perfect abrasion, as for a neumatic tire for a vehicle ranging from small size to large size. CONSTITUTION:The foamed rubber which has independent gas foams having a foaming rate of 3-35% and contains 3-30wt. parts inorganic high hardness particles which each possess a Mohs's hardness of 1.5 deg.C or more and has an average particle diameter of 10-400mum and to which the processing for improving the affinity with rubber is applied, for 100wt. parts rubber portion are used for tread.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は空気入りタイヤに関し、
特に氷雪路面で使用される乗用車、トラック・バスなど
小型から大型の全てを含む車両の空気入りタイヤのトレ
ッドの改良技術に関するものである。
[Industrial Application Field] The present invention relates to pneumatic tires.
In particular, this invention relates to technology for improving the treads of pneumatic tires for vehicles used on icy and snowy roads, from small to large vehicles such as passenger cars, trucks, and buses.

【0002】0002

【従来の技術】冬期における低温の路面、特に路面上の
水や雪が凍結して氷面を形成した路面上を車で走行する
場合、車に装着されたタイヤのトレッドゴムと氷面との
間の摩擦力は氷面でない乾燥した通常の路面上の摩擦力
より大幅に低い。このため、氷面を有する路面上を車で
安全に走行するには、スパイクタイヤを車に装着したり
、タイヤの外周にタイヤチェーンを装着して、タイヤの
トレッドゴムと氷面との間の摩擦力が低くならないよう
に維持されている。
[Prior Art] When driving a car on a low-temperature road surface in winter, especially on a road surface where water or snow on the road surface has frozen and formed an icy surface, there is a gap between the tread rubber of the tires installed on the car and the ice surface. The frictional force is significantly lower than the frictional force on a normal, dry, non-icy road surface. Therefore, in order to drive safely on roads with icy surfaces, it is necessary to attach spiked tires to the car, or attach tire chains around the outer circumference of the tires to prevent the tread between the tire tread rubber and the icy surface. Frictional force is maintained so as not to become low.

【0003】しかし、タイヤチェーンを装着したタイヤ
又はスパイクタイヤを車に装着した場合、車がカーブし
て走行したり、急発進、急停止したりする際、スパイク
タイヤのスパイク又はタイヤチェーンが路面を傷付け、
傷付いた路面の一部が切欠されて粉末となり、この路面
が乾燥したときに、粉末が風により吹き上げられ粉塵を
撒き散らすという問題点がある。また、前記スパイクタ
イヤ又はタイヤチェーン付タイヤを装着した車が路面を
走行する際、スパイクタイヤのスパイク又はタイヤチェ
ーンが路面を衝打して騒音を発生するという問題点もあ
る。
However, when tires equipped with tire chains or spiked tires are installed on a car, when the car runs around a curve, starts suddenly, or suddenly stops, the spikes of the spiked tires or tire chains may touch the road surface. hurt,
A problem arises in that a portion of the damaged road surface is cut out and becomes powder, and when this road surface dries, the powder is blown up by the wind and scatters dust. In addition, when a car equipped with the spiked tires or tires with tire chains runs on a road, the spikes of the spiked tires or tire chains hit the road surface and generate noise.

【0004】これに対して、近年、トレッドゴム自体に
摩擦力向上のための工夫を加える技術が採用されている
。その第1の方法として、トレッドゴムを適当な方法で
発泡させ、独立気泡を生成させる方法がある(特開昭6
3−89547号公報) 。即ち、このようにして得ら
れるトレッドゴムの氷面は、多数の気孔で覆われている
ため、氷面に対する除水効果及び気孔部のミクロな運動
に伴う氷を削り取るエッジ効果の発現によって、氷上高
摩擦性を発現する。この手法は実際のタイヤトレッドに
取入れられ、スタッドレスタイヤとして市販されている
。またトレッドゴムに各種の異物(砂、もみがらのよう
な天然物等)を混入し、タイヤ走行時にこれらの異物が
抜け落ちることによって気孔を発生させる方法も検討さ
れている。この方法は、氷上高摩擦化のメカニズムとし
ては発泡と同一のものである。
[0004] In response to this, in recent years, techniques have been adopted in which improvements are made to the tread rubber itself in order to improve the frictional force. The first method is to foam the tread rubber by an appropriate method to generate closed cells (Japanese Patent Laid-Open No. 6
3-89547). In other words, since the ice surface of the tread rubber obtained in this way is covered with a large number of pores, the water removal effect on the ice surface and the edge effect that scrapes off the ice due to the microscopic movement of the pores cause the ice surface to be easily removed. Demonstrates high friction properties. This method has been incorporated into actual tire treads and is commercially available as studless tires. A method is also being considered in which various foreign substances (such as sand and natural substances such as rice husks) are mixed into the tread rubber, and these foreign substances fall off when the tire is running, thereby creating pores. This method has the same mechanism as foaming to increase friction on ice.

【0005】第2の方法として、各種の高硬度材料をト
レッドゴム中に混入し、この高硬度材料中の氷面に対す
るひっかき効果を利用してトレッドゴムの氷上高摩擦化
を実現しようとしたものがある (特公昭46−317
32号, 特開昭51−147803 号, 特公昭5
6−52057号公報) 。この方法は、明らかに前記
第1の方法とは異なったメカニズムによ  るトレッド
ゴムの氷上高摩擦化法である。実際、多くの場合、これ
らの高硬度材料を多量に混入すればする程、トレッドゴ
ムは氷上高摩擦化される傾向にある。
[0005] A second method is to mix various high-hardness materials into tread rubber and utilize the scratching effect of the high-hardness materials on the ice surface to achieve high friction of the tread rubber on ice. There is (Tokuko Sho 46-317
No. 32, JP-A No. 51-147803, Special Publication No. 5
6-52057). This method clearly uses a different mechanism from the first method to increase the friction of tread rubber on ice. In fact, in many cases, the more these high hardness materials are mixed in, the more the tread rubber tends to have high friction on ice.

【0006】[0006]

【発明が解決しようとする課題】上述した従来技術の内
、トレッオゴムの発泡又は混入された異物が離脱した後
の表面凹凸の凸部で氷をひっかき、凹部で氷表面の水分
を吸排出する第1の方法の欠点は、ゴムの硬さが氷表面
より相対的に低下することにより、低温下  (通常の
場合−3℃以下)でのひっかき効果が期待できなくなる
ことである。
[Problems to be Solved by the Invention] Among the above-mentioned conventional techniques, the first one scratches the ice with the convex portions of the surface unevenness after foaming of Treo rubber or the removal of mixed foreign matter, and the concave portions absorb and discharge moisture on the ice surface. The disadvantage of method 1 is that the hardness of the rubber is relatively lower than that of the ice surface, so the scratching effect cannot be expected at low temperatures (usually below -3°C).

【0007】一方、トレッドのマトリックスゴムにひっ
かき効果の高い高硬度材料を混入する第2の方法の欠点
は、水分の多い0℃付近での氷上性能改良効果が小さく
、また高硬度材料がゴムに親和性のない異物として存在
するため、耐摩擦性や破壊特性の低下が著しいことであ
る。
On the other hand, the second method, in which a high hardness material with a high scratching effect is mixed into the matrix rubber of the tread, has the disadvantage that the effect of improving performance on ice at around 0°C, where there is a lot of moisture, is small, and the high hardness material does not affect the rubber. Since it exists as a foreign substance with no affinity, there is a significant drop in friction resistance and fracture properties.

【0008】現実の氷面温度は日中から夜間にかけて様
々に変化するため広い温度域でより安定した氷上性能を
示し、かつ耐摩耗性および破壊特性も著しく低下させる
ことのないタイヤトレッドが望まれている。
[0008] Since the actual ice surface temperature changes variously from daytime to nighttime, it is desirable to have a tire tread that exhibits more stable on-ice performance over a wide temperature range and that does not significantly reduce wear resistance and fracture properties. ing.

【0009】また、タイヤの新品時に対し、走行末期で
はゴムの経時的硬化とパターン溝深さの減少に伴い剛性
が高まり、氷上性能が低下することも氷上走行用空気入
りタイヤの従来からの課題であった。
[0009] Another problem with pneumatic tires for running on ice is that compared to when the tire is new, at the final stage of running, the stiffness of the rubber increases over time and the pattern groove depth decreases, resulting in a decrease in on-ice performance. Met.

【0010】そこで本発明の目的は、広い温度域に亘り
安定した氷上性能を示すとともに、完全摩耗に至るまで
の全ての使用条件下でより安定した氷性能を示すトレッ
ドを備える空気入りタイヤを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a pneumatic tire with a tread that exhibits stable on-ice performance over a wide temperature range and also exhibits more stable on-ice performance under all usage conditions up to complete wear. It's about doing.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討した結果、トレッドのマトリック
スゴムを氷表面に溶融した水分の多い0℃付近の氷上性
能に有利な適度な発泡率から成る発泡ゴムとし、そのマ
トリックスゴムに特定の硬度、粒径をもちマトリックス
ゴムと親和性のある特殊な無機高硬度粒子を混入するこ
とでトレッド表面に該高硬度粒子を一定面積出現させる
ことにより、ゴムより氷面が硬くなる低温下においてひ
っかき効果が得られ、かつ混入した粒子の離脱による耐
摩耗性および破壊特性の低下を来すこともないことを見
い出し、本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the present inventors have developed a method to improve the performance on ice at around 0°C, where the matrix rubber of the tread is melted on the ice surface and has a high moisture content. A foamed rubber with a foaming ratio is used, and special inorganic high-hardness particles having a specific hardness and particle size and having an affinity for the matrix rubber are mixed into the matrix rubber, so that the high-hardness particles appear in a certain area on the tread surface. It was discovered that by doing so, a scratching effect can be obtained at low temperatures where the ice surface is harder than rubber, and that there is no deterioration in wear resistance and fracture properties due to detachment of mixed particles, and in completing the present invention. It's arrived.

【0012】すなわち本発明の空気入りタイヤは、モー
ス硬度が1.5 度以上、平均粒径が10〜400 μ
m で、表面にゴムとの親和性向上処理が施された無機
高硬度粒子をゴム分 100重量部に対して3〜30重
量部含有し、かつ3〜35%の発泡倍率の独立気泡を有
する発泡ゴムをトレッドに備えたことを特徴とするもの
である。上記トレッドの表面積1cm2 当りの高硬度
粒子の面積は全て1.6mm2以上となる。
That is, the pneumatic tire of the present invention has a Mohs hardness of 1.5 degrees or more and an average particle size of 10 to 400 μm.
m, contains 3 to 30 parts by weight of inorganic high hardness particles whose surface has been treated to improve affinity with rubber, based on 100 parts by weight of rubber, and has closed cells with an expansion ratio of 3 to 35%. It is characterized by having a tread made of foamed rubber. The area of the high hardness particles per 1 cm 2 of surface area of the tread is all 1.6 mm 2 or more.

【0013】また、本発明のタイヤトレッドにおいては
、完全摩耗に至るまでの氷上性能低下を抑制するために
、ゴムマトリックスの発泡倍率をトレッド表面より最内
層に向かって漸増させることが好ましい。このためには
、トレッド表面より1mmの範囲にある発泡ゴム層の平
均発泡倍率が、当該発泡ゴム層の最内層で非発泡ゴムと
接する面より0.5 〜1.5 mmの範囲にある層の
平均発泡倍率より小さくする。
Further, in the tire tread of the present invention, in order to suppress the deterioration of on-ice performance until complete wear occurs, it is preferable that the expansion ratio of the rubber matrix is gradually increased from the tread surface toward the innermost layer. For this purpose, the average expansion ratio of the foamed rubber layer located within 1 mm from the tread surface is within a range of 0.5 to 1.5 mm from the innermost layer of the foamed rubber layer, which is in contact with the non-foamed rubber. smaller than the average foaming ratio.

【0014】[0014]

【作用】本発明において、発泡ゴムが3〜35%の発泡
倍率の独立気泡を有することとしたのは、0℃付近の氷
表面に溶融した水分が多い状態において気孔によるミク
ロな吸排水効果を大きくし、優れた氷雪性能を発揮させ
るためにはかかる独立気泡が不可欠だからである。独立
気泡を作る手段としては、発泡手段による他、もみがら
などマトリックスゴムと親和性のない粉体を混入してお
き、走行時に離脱させることで作製することも可能であ
るが、この場合には氷上性能として発泡以上の効果は得
られない。
[Function] In the present invention, the foamed rubber has closed cells with an expansion ratio of 3 to 35% because it has a microscopic absorption and drainage effect by the pores when there is a lot of melted water on the ice surface at around 0℃. This is because such closed cells are essential in order to increase the size and exhibit excellent ice and snow performance. In addition to foaming, closed cells can also be created by mixing powder that has no affinity with the matrix rubber, such as rice husk, and separating it during running. No effect beyond foaming can be obtained in terms of performance on ice.

【0015】また、発泡手段は、トレッドの表層から最
内層に至るまでの発泡倍率を制御することができ、完全
摩耗に至るまでの氷上性能の変化を少なくすることがで
きるので、本発明においてはこれを選択する。発泡は発
泡剤によるもの、ガスの高圧ミキシングによるもののい
ずれの方法を用いてもよいが、発泡倍率が3%未満では
発泡の効果が十分でなく、一方35%を超えるとトレッ
ド剛性が不十分のため、耐摩耗性の低下や溝底クラック
の発生が大となる。
In addition, the foaming means can control the foaming ratio from the surface layer to the innermost layer of the tread, and can reduce changes in on-ice performance until complete wear. Select this. Foaming may be performed using a foaming agent or by high-pressure mixing of gas, but if the foaming ratio is less than 3%, the foaming effect will not be sufficient, while if it exceeds 35%, the tread rigidity may be insufficient. Therefore, the wear resistance deteriorates and the occurrence of groove bottom cracks increases.

【0016】ここで、発泡ゴムの発泡率Vs は、次式
  Vs ={(ρo −ρg )/(ρ1 −ρg 
)−1}×100  (%)  −−−− (1) で
表され、ρ1 は発泡ゴムの密度(g/cm3 )、ρ
o は発泡ゴムの固相部の密度(g/cm3 )、ρg
 は発泡ゴムの気泡内のガス部の密度(g/cm3 )
である。発泡ゴムは固相部と、固相部によって形成され
る空洞(独立気泡)すなわち気泡内のガス部とから構成
されている。ガス部の密度ρg は極めて小さく、ほぼ
零に近く、かつ固相部の密度ρ1 に対して極めて小さ
いので、式(1) は、次式   Vs ={(ρo −ρ1 )−1}×100  
(%)                  −−−−
 (2) とほぼ同等となる。
Here, the foaming rate Vs of the foamed rubber is determined by the following formula: Vs = {(ρo - ρg )/(ρ1 - ρg
)-1}×100 (%) ----- (1) where ρ1 is the density of foam rubber (g/cm3), ρ
o is the density of the solid phase part of the foam rubber (g/cm3), ρg
is the density of the gas part in the foam rubber bubbles (g/cm3)
It is. Foamed rubber is composed of a solid phase portion and a cavity (closed cell) formed by the solid phase portion, that is, a gas portion within the cell. Since the density ρg of the gas part is extremely small, close to zero, and extremely small compared to the density ρ1 of the solid phase part, equation (1) is expressed as follows: Vs = {(ρo - ρ1 )-1} x 100
(%) -----
It is almost equivalent to (2).

【0017】ゴムの硬度より氷の硬度の方が高くなる低
温下では、ひっかき効果を得るために、発泡ゴムに混入
される高硬度材料として以下の条件を満たす無機粒子が
必要である。すなわち、まずモース硬度計で測定される
モース硬度が1.5 ゜以上である。1.5 ゜未満で
は十分なひっかき効果が得られない。
At low temperatures, where the hardness of ice is higher than the hardness of rubber, inorganic particles that satisfy the following conditions are required as a high hardness material to be mixed into foamed rubber in order to obtain a scratching effect. That is, first, the Mohs hardness measured by a Mohs hardness tester is 1.5° or more. If it is less than 1.5°, a sufficient scratching effect cannot be obtained.

【0018】かかる高硬度粒子の平均粒径は10〜40
0 μm 、好ましくは15〜250 μm の範囲内
であり、10μm 未満では氷上性能の改良効果が見ら
れず、一方 400μm を超えると溝底クラックの発
生が問題となる。
[0018] The average particle diameter of such high hardness particles is 10 to 40
0 μm, preferably within the range of 15 to 250 μm; if it is less than 10 μm, no improvement in performance on ice will be observed, while if it exceeds 400 μm, occurrence of groove bottom cracks will become a problem.

【0019】これら条件を満たす高硬度粒子はゴム分 
100重量部に対して3〜30重量部配合されていなけ
ればならず、3重量部未満では、最も軽い粒子を想定し
た場合でもトレッド表面において粒子の占める面積が少
なすぎるため、氷上性能の改良効果が見られない。すな
わち、実際に200km 直進走行した後のテストタイ
ヤについてトレッド表面積1cm2 あたりに出現して
いる粒子の総面積を顕微鏡で測定した結果、粒子の総面
積が1.6mm2以上あるタイヤにおいて十分な氷上性
能が得られることは判明したが、この総面積を得るため
に、混入される高硬度粒子は3重量部以上必要である。 しかし、30重量部を超えて混入すると、耐摩耗性の低
下が著しく、溝底クラックの発生も問題となる。
[0019] High hardness particles satisfying these conditions have a rubber content.
It must be blended in an amount of 3 to 30 parts by weight per 100 parts by weight, and if it is less than 3 parts by weight, the area occupied by the particles on the tread surface will be too small even when the lightest particles are assumed, resulting in poor performance improvement on ice. I can't see it. In other words, after actually driving straight for 200 km, we measured the total area of particles appearing per 1 cm2 of tread surface area of the test tire using a microscope, and found that tires with a total particle area of 1.6 mm2 or more had sufficient on-ice performance. However, in order to obtain this total area, 3 parts by weight or more of high hardness particles are required to be mixed. However, when more than 30 parts by weight is mixed in, the wear resistance is significantly reduced and the occurrence of groove bottom cracks becomes a problem.

【0020】さらに、本発明においては、混入される無
機の高硬度粒子は、マトリックスゴムとの親和性向上処
理が施されていなければならない。このような粒子でな
いとすると、走行時に粒子がマトリックスゴムから離脱
して表面凹凸の形成には寄与するものの目的とするひっ
かき効果が十分に得られない他、トレッドゴムの破壊特
性および耐摩耗性が著しく低下する。
Furthermore, in the present invention, the inorganic high hardness particles to be mixed must be treated to improve their affinity with the matrix rubber. If such particles are not used, the particles will separate from the matrix rubber during running and contribute to the formation of surface irregularities, but the desired scratching effect will not be obtained sufficiently, and the fracture characteristics and wear resistance of the tread rubber will be affected. Significantly decreased.

【0021】本発明に用いることのできる親和性向上処
理方法としては、マトリックスゴムと粒子の相手に強固
に接着し得る接着剤を粒子表面にコーティングする処理
方法が挙げられる。また、接着剤の代わりに、高硬度粒
子表面にメッキ、プラズマ処理、スパッタ処理等により
真ちゅうや銅或いはコバルトを蒸着する処理方法も挙げ
られる。この場合には、マトリックスとなるゴム材料を
高硫黄配合とすることなどによって、より強い接着力が
得られる。
[0021] As a treatment method for improving affinity that can be used in the present invention, there may be mentioned a treatment method in which the surfaces of the particles are coated with an adhesive capable of firmly adhering to the matrix rubber and the other particles. Alternatively, instead of using an adhesive, a treatment method may be used in which brass, copper, or cobalt is deposited on the surface of high-hardness particles by plating, plasma treatment, sputtering, or the like. In this case, stronger adhesive strength can be obtained by, for example, making the rubber material that forms the matrix a high-sulfur compound.

【0022】また、高硬度粒子を接着用ゴム材料でコー
ティングすることも有効である。この場合、接着用ゴム
材料としてはマトリックスとなるゴム材料であっても、
異なる配合のゴム材料であっても良い。マトリックスの
ゴム材料と異なる配合のゴム材料とする場合、そのゴム
成分としては一般の固形状ゴム以外にラテックス、エマ
ルジョンまたは熱可塑性ゴムを用いることができる。こ
れらの接着用ゴム材料は粘度が高い場合には、適当な溶
剤を加えて、溶剤として高硬度粒子に塗布すれば良い。
It is also effective to coat the high hardness particles with an adhesive rubber material. In this case, even if the adhesive rubber material is a matrix rubber material,
Rubber materials with different formulations may be used. When using a rubber material having a different composition from that of the matrix rubber material, latex, emulsion, or thermoplastic rubber can be used as the rubber component in addition to general solid rubber. When these adhesive rubber materials have a high viscosity, a suitable solvent may be added and applied as a solvent to the high hardness particles.

【0023】更にまた、高硬度粒子を樹脂でコーティン
グすることも極めて有効である。この場合、樹脂として
は、スチレン−ブタジエン樹脂、ポリエステル、水酸化
ポリエステル、ポリエーテルポリオール、ポリカプロラ
クトン−ポリオール、水酸化ポリエステル−ポリイソシ
アネート、エポキシ樹脂、アクリル樹脂、エチレン−酢
酸ビニル、フェノール樹脂、トリレンジイソシアネート
、ビスフェノールAのグリシジルエーテル、ポリシロキ
サン、シリコーン樹脂、PVA(ポリビニルアルコール
)、PMMA(ポリメチルメタアクリレート)、ポリ酢
酸ビニル、ポリアクリル酸、ピッチ、メチルメタクリレ
ート、スチレン等が有効である。
Furthermore, it is also extremely effective to coat the high hardness particles with a resin. In this case, the resins include styrene-butadiene resin, polyester, hydroxide polyester, polyether polyol, polycaprolactone-polyol, hydroxide polyester-polyisocyanate, epoxy resin, acrylic resin, ethylene-vinyl acetate, phenolic resin, tolylene resin, Effective examples include isocyanate, glycidyl ether of bisphenol A, polysiloxane, silicone resin, PVA (polyvinyl alcohol), PMMA (polymethyl methacrylate), polyvinyl acetate, polyacrylic acid, pitch, methyl methacrylate, and styrene.

【0024】その他、ポリノルボルネン熱可塑性ゴム等
の形状記憶性を有する樹脂で、高硬度粒子の表面をコー
ティングすることも有効である。これらの樹脂は低温(
氷結温度)では強固に高硬度粒子を固定し、高温になる
と柔らかくなってマトリックスのゴム材料に親和するこ
とによって、大きな改善効果を発揮する。また、シラン
系、チタネート系、クロム系、アルミニウム系のカップ
リング剤やポリアルキレンオキサイド等による高硬度粒
子の表面処理もマトリックスのゴム材料との接着性向上
に有効である。
In addition, it is also effective to coat the surface of the highly hard particles with a resin having shape memory properties such as polynorbornene thermoplastic rubber. These resins can be used at low temperatures (
It firmly fixes high-hardness particles at high temperatures (freezing temperature), and softens at high temperatures and becomes compatible with the matrix rubber material, resulting in a significant improvement effect. Furthermore, surface treatment of high-hardness particles with a silane-based, titanate-based, chromium-based, or aluminum-based coupling agent, polyalkylene oxide, or the like is also effective in improving adhesion to the matrix rubber material.

【0025】無機高硬度粒子を上述のような接着用ゴム
材料または樹脂でコーティングする場合、マトリックス
ゴムと共架橋を形成させるために、接着用ゴムまたは樹
脂に一般にゴム組成物に用いられる加硫促進剤を配合し
ておくことで、さらに親和性の向上が期待できる。なお
、上述の各種処理法は、単独で行っても良く、あるいは
2種以上を組合わせて、即ち2種以上の材料によりコー
ティング層を形成するようにしても良い。
When coating inorganic high-hardness particles with an adhesive rubber material or resin as described above, in order to form a co-crosslink with the matrix rubber, the adhesive rubber or resin is coated with a vulcanization accelerator commonly used in rubber compositions. Further improvement in affinity can be expected by incorporating agents. Note that the above-mentioned various treatment methods may be performed alone or in combination of two or more types, that is, a coating layer may be formed using two or more types of materials.

【0026】無機高硬度粒子の材質は前述の硬度、平均
粒径を満たすものであれば何ら制限されるべきものでな
いが、具体的にはAl2O3 、ZnO 、TiO2、
SiC 、Si、C 、SiO2、フェライト、ジルコ
ニア、MgO 等のセラミックス、Fe、Co、Al、
Ca、Mg、Na、Cu、Crなどの金属、およびこれ
ら金属よりなる合金、真ちゅう、ステンレス等、更には
これら金属の窒化物、酸化物、水酸化物、炭酸塩、ケイ
酸塩、硫酸塩、その他、ガラス、カーボン、カーボンラ
ンダム、マイカ、ゼオライト、カオリン、アスベスト、
モンモリロナイト、ベントナイト、グラファイト、シリ
カ等が挙げられ、本発明ではこれらに前述の親和性向上
処理を施して使用する。
[0026] The material of the inorganic high-hardness particles is not limited in any way as long as it satisfies the above-mentioned hardness and average particle size, but specifically Al2O3, ZnO, TiO2,
Ceramics such as SiC, Si, C, SiO2, ferrite, zirconia, MgO, Fe, Co, Al,
Metals such as Ca, Mg, Na, Cu, Cr, alloys made of these metals, brass, stainless steel, etc., as well as nitrides, oxides, hydroxides, carbonates, silicates, sulfates of these metals, Others include glass, carbon, carbon random, mica, zeolite, kaolin, asbestos,
Examples include montmorillonite, bentonite, graphite, and silica, which are used in the present invention after being subjected to the above-mentioned affinity improvement treatment.

【0027】無機高硬度粒子と表面処理との特に好まし
い組合わせとして、コールタールピッチより熱処理する
ことにより得られる炭素質粉末のメソフェースカーボン
をプラズマ処理したもの、石英粉末またはアルミナをス
チレン−ブタジエン樹脂とトリアジン系加硫促進剤で表
面処理したもの等が挙げられる。
Particularly preferable combinations of inorganic high-hardness particles and surface treatment include plasma-treated mesoface carbon, a carbonaceous powder obtained by heat-treating coal tar pitch, and quartz powder or alumina with styrene-butadiene resin. Examples include those surface-treated with a triazine-based vulcanization accelerator.

【0028】本発明においては、このような表面処理を
施した高硬度粒子1種を単独で使用しても良く、あるい
は前記材質、粒径、硬度、表面処理等の異なる高硬度粒
子を2種以上組合わせても良い。
In the present invention, one type of high-hardness particles subjected to such surface treatment may be used alone, or two types of high-hardness particles having different materials, particle sizes, hardnesses, surface treatments, etc. may be used. The above may be combined.

【0029】以上の条件を満たす高硬度の樹脂と前述の
発泡ゴムとを組み合わせることにより、0℃付近の氷上
から極低温氷上までより安定した氷上性能が得られる。
[0029] By combining a high hardness resin that satisfies the above conditions with the above-mentioned foamed rubber, more stable performance on ice can be obtained from ice at around 0°C to extremely low temperature ice.

【0030】マトリックスゴムの発泡倍率をトレッド表
面層より最内層に向かって漸増させることにより、マト
リックスゴム自体の氷上性能を最内層に向かって漸次増
加させることができるが、その一方で剛性は低下する。 この現象と、ゴムの経時的硬化と、溝深さ減少による剛
性上昇および氷上性能低下との均衡を図ることにより、
完全摩耗に至るまでの氷上性能をより安定したものに改
良することができる。すなわち、トレッドの発泡ゴム最
内層で非発泡ゴムと接する面より0.5 〜1.5mm
の範囲にある平均発泡倍率をトレッド表面より1mmの
範囲にある発泡ゴム層の平均発泡倍率より高く設定する
ことでこの改良目的は達成され、その差が2%以上であ
れば特に好ましい。このような発泡倍率の制御は、加硫
時におけるタイヤモールド側の温度とブラダー側の温度
とを適当に選択することにより可能である。
By gradually increasing the foaming ratio of the matrix rubber from the tread surface layer toward the innermost layer, the on-ice performance of the matrix rubber itself can be gradually increased toward the innermost layer, but on the other hand, the rigidity decreases. . By balancing this phenomenon with the hardening of the rubber over time, the increase in rigidity due to the decrease in groove depth, and the decrease in performance on ice,
It is possible to improve on-ice performance to be more stable until complete wear occurs. In other words, the innermost foamed rubber layer of the tread is 0.5 to 1.5mm from the surface in contact with the non-foamed rubber.
This improvement objective can be achieved by setting the average expansion ratio within the range of 1 mm higher than the average expansion ratio of the foamed rubber layer within 1 mm from the tread surface, and it is particularly preferable if the difference is 2% or more. Such control of the expansion ratio is possible by appropriately selecting the temperature on the tire mold side and the temperature on the bladder side during vulcanization.

【0031】マトリックスゴムの配合としては、特に制
限はなく、一般のゴム組成物を用いることができる。す
なわち、ゴム成分に各種充填剤、オイル、加硫剤等を適
宜配合したゴム組成物を用いることができるが、低温で
の硬さを低く設定し氷との実接触面積を広げること、0
℃付近でのひっかき効果を得ること、耐摩耗性および操
縦安定性など他性能との均衡を図ることなどより、室温
での弾性率(E′)が3×107 〜20×107 d
yn /cm2 内に設定することが好ましい。
[0031] There are no particular restrictions on the blending of the matrix rubber, and general rubber compositions can be used. That is, it is possible to use a rubber composition in which various fillers, oils, vulcanizing agents, etc. are appropriately blended with the rubber component, but it is necessary to set the hardness at low temperatures to be low to increase the actual contact area with ice.
The elastic modulus (E') at room temperature is 3 x 107 to 20 x 107 d, in order to obtain a scratching effect near ℃ and to balance other performances such as wear resistance and handling stability.
It is preferable to set it within yn/cm2.

【0032】尚、このE′は、加硫条件160 ℃×1
5分ゲージ2mmのスラブシートより切出した幅5mm
、長さ20mmのサンプルを岩本製作所(株)製のスペ
クトロメーターを使用して、初期荷重 150g、動的
歪み2%、周波数50Hz、設定温度25℃の条件で測
定したものである。
[0032] This E' is determined by the vulcanization condition of 160°C x 1
Width 5mm cut from a 5 minute gauge 2mm slab sheet
A sample with a length of 20 mm was measured using a spectrometer manufactured by Iwamoto Seisakusho Co., Ltd. under the conditions of an initial load of 150 g, a dynamic strain of 2%, a frequency of 50 Hz, and a set temperature of 25°C.

【0033】[0033]

【実施例】以下、実施例及び比較例を挙げて本発明をよ
り具体的に説明する。下記の表1に、本発明の実施例お
よび比較例で使用した無機高硬度粒子の特性をまとめて
示す。
[Examples] The present invention will be explained in more detail below with reference to Examples and Comparative Examples. Table 1 below summarizes the characteristics of the inorganic high hardness particles used in the Examples and Comparative Examples of the present invention.

【0034】[0034]

【表1】[Table 1]

【0035】表中、AおよびBは共に石英粉末樹脂であ
るが、Aは未処理であるのに対し、Bは樹脂と加硫促進
剤とでゴムとの親和性の向上処理が施されており、Aは
比較例として、またBは実施例として使用した。Cは石
英から製造したメソフェースカーボンをプラズマ処理し
たものであり、DはアルミナBと同じ処理を施したもの
で、いずれも実施例として使用した。E〜Gは硬度また
は粒径の点で本発明の要件を満たしていない粒子であり
、比較例として使用した。
In the table, A and B are both quartz powder resins, but while A is untreated, B is treated with a resin and a vulcanization accelerator to improve its affinity with rubber. A was used as a comparative example, and B was used as an example. C is a mesoface carbon produced from quartz that was subjected to plasma treatment, and D is a carbon that was subjected to the same treatment as alumina B, and both were used as examples. E to G are particles that do not meet the requirements of the present invention in terms of hardness or particle size, and were used as comparative examples.

【0036】表2および表3に、表1に示す無機高硬度
粒子と組み合わせた発泡ゴムマトリックスの配合処方(
重量部)、並びに得られた粒子混入発泡ゴムの加硫物性
および当該発泡ゴムをタイヤトレッドに適用したときの
タイヤ性能を夫々示す。具体的には、表2では親和性向
上処理の有無、粒子の硬度、発泡剤の種類の変化につき
検討し、表3では粒子の配合量、粒径、発泡倍率の変化
につき検討した。
Tables 2 and 3 show the formulation of the foamed rubber matrix combined with the inorganic high hardness particles shown in Table 1 (
(parts by weight), the vulcanized physical properties of the resulting particle-containing foamed rubber, and the tire performance when the foamed rubber is applied to a tire tread. Specifically, in Table 2, changes in the presence or absence of affinity improvement treatment, particle hardness, and type of blowing agent were investigated, and in Table 3, changes in particle blending amount, particle size, and expansion ratio were investigated.

【0037】[0037]

【表2】[Table 2]

【0038】[0038]

【表3】[Table 3]

【0039】表2および表3により次のことが確認され
た。高硬度粒子が混入されてない発泡ゴムだけの比較例
1と同様に、ゴムとの親和性向上処理の施されていない
粒子Aを配合した比較例2では氷上性能の改善が見られ
ず、粒子のモース硬度が1.5 度に満たない粒子Eを
配合した比較例3も同様であった。
The following was confirmed from Tables 2 and 3. Similar to Comparative Example 1, which contained only foamed rubber with no high-hardness particles mixed in, Comparative Example 2, which contained Particle A that had not been treated to improve its affinity with rubber, showed no improvement in on-ice performance. The same was true for Comparative Example 3 in which particles E having a Mohs hardness of less than 1.5 degrees were blended.

【0040】これに対し、ゴムとの親和性向上処理を施
したB,C,Dの粒子を用いた実施例1〜3では、−2
℃における氷上制動性指数の改良効果もさることながら
、特にひっかき効果依存性の高い−10℃での改良効果
が顕著である。実施例4および5では発泡剤の種類を、
また実施例6ではマトリックスゴムの配合を変えた例で
あり、比較例1対比いずれも氷上性能が改良されている
On the other hand, in Examples 1 to 3 using particles B, C, and D that were treated to improve their affinity with rubber, -2
In addition to the effect of improving the on-ice braking performance index at °C, the improvement effect is particularly remarkable at -10 °C, which is highly dependent on the scratching effect. In Examples 4 and 5, the type of blowing agent was
Further, in Example 6, the formulation of the matrix rubber was changed, and the performance on ice was improved in both cases compared to Comparative Example 1.

【0041】次に、表3に示す比較例4では無機粒子が
全く混入されていないのに対し、比較例5では好適な高
硬度粒子が配合されているが、その配合量が3重量部未
満であったため、氷上のひっかき効果に相関する粒子出
現率(トレッド表面積1cm2 当りの粒子総表面積m
m2)が氷上性能改良に必要な 1.6%に達していな
いことが分かる。
Next, in Comparative Example 4 shown in Table 3, no inorganic particles are mixed in, whereas in Comparative Example 5, suitable high hardness particles are blended, but the blended amount is less than 3 parts by weight. Therefore, the particle appearance rate (total particle surface area per 1 cm2 of tread surface area m) that correlates with the scratching effect on ice
m2) has not reached the 1.6% required to improve on-ice performance.

【0042】これに対し、実施例7, 8, 9および
比較例6では粒子の出現率が1.6 %以上で粒子の配
合量増加に伴い粒子出現率が比例して増加し、氷上性能
もこれに相関して改良が認められる。但し、比較例6は
、粒子配合量が30重量部を超えているため、溝底クラ
ックが発生し、耐摩耗性能の低下も著しいため、実用に
は適さなかった。
On the other hand, in Examples 7, 8, 9 and Comparative Example 6, when the particle appearance rate was 1.6% or more, the particle appearance rate increased proportionally as the amount of particles added increased, and the performance on ice also decreased. Improvements are observed in correlation with this. However, Comparative Example 6 was unsuitable for practical use because the particle content exceeded 30 parts by weight, which caused groove bottom cracks and a significant drop in wear resistance.

【0043】比較例11の粒子配合量は実施例8のそれ
と同一だが、比較例11の粒子はゴムとの親和性向上処
理が施されていないため、マトリックスゴムから大部分
が離脱して粒子出現率が1.6 %に達しておらび、氷
上性能の改良も認められなかった。このように粒子出現
率は粒子の配合量とゴムとの親和性に相関し氷上性能に
よく相関することが分かる。
The amount of particles in Comparative Example 11 is the same as that in Example 8, but since the particles in Comparative Example 11 were not treated to improve their affinity with rubber, most of them separated from the matrix rubber and particles appeared. The rate reached 1.6%, and no improvement in on-ice performance was observed. In this way, it can be seen that the particle appearance rate correlates with the amount of particles blended and the affinity with the rubber, and correlates well with the performance on ice.

【0044】比較例7に用いた粒子は平均粒径が10μ
m 未満と小さすぎるため、氷上性能の改良効果が見ら
れず、また比較例8に用いた粒子は粒径が大きすぎるた
め、溝底クラックと耐摩耗性の点に問題があった。
[0044] The particles used in Comparative Example 7 had an average particle size of 10 μm.
Since the particles were too small (less than m), no improvement effect on on-ice performance was observed, and the particles used in Comparative Example 8 were too large in particle size, so there were problems with groove bottom cracks and wear resistance.

【0045】比較例9および10は発泡倍率を検討した
ものであり、比較例9は発泡倍率が3%未満で氷上性能
の改良効果が発泡倍率20%の実施例8対比著しく劣っ
ていた。一方、発泡倍率が35%を超える比較例10は
、溝底クラックと耐摩耗性に問題があり、実用に供し得
るものではなかった。
In Comparative Examples 9 and 10, the foaming ratio was investigated. Comparative Example 9 had a foaming ratio of less than 3%, and the effect of improving performance on ice was significantly inferior to that of Example 8, which had a foaming ratio of 20%. On the other hand, Comparative Example 10, in which the expansion ratio exceeded 35%, had problems with groove bottom cracks and wear resistance, and could not be put to practical use.

【0046】表4に、マトリックスゴムの発泡倍率をト
レッド表面より最内層に向かって漸増さる方法と、その
漸増がトレッドの完全摩耗に至るまでの氷上性能低下を
如何に抑制するかを示す。
Table 4 shows how the foaming ratio of the matrix rubber is gradually increased from the tread surface toward the innermost layer, and how this gradual increase suppresses the deterioration of the on-ice performance until the tread is completely worn out.

【0047】[0047]

【0048】実施例10, 11では、モールド側温度
をブラダー側温度より高くして加硫したタイヤでトレッ
ド最内層の平均発泡倍率が表層のそれと同等又はそれよ
りも小さいために、トレッドの完全摩耗に至るまでの氷
上性能の低下が見られた。
In Examples 10 and 11, the average expansion ratio of the innermost layer of the tread was equal to or smaller than that of the surface layer of the tire, which was cured with the mold side temperature higher than the bladder side temperature, so that the tread did not wear completely. A decline in on-ice performance was seen.

【0049】これに対し実施例12では、モールド側と
ブラダー側の加硫温度を同じにしたことにより、最内層
の発泡倍率が表層のそれよりも2%程大きくなっており
、この結果氷上性能の低下が抑制された。また、実施例
13では、モールド側よりもブラダー側加硫温度を上げ
たことで、最内層1mm間と表層1mm間の平均発泡倍
率の差が6%まで拡大し、この結果完全摩耗に至るまで
の氷上性能低下は全くなくなった。従って、発泡と組み
合わせることにより加硫条件を変えることで、走行の初
期、後期の氷上性能バランスを自由にコントロールする
ことが可能になる。
On the other hand, in Example 12, by making the vulcanization temperature on the mold side and the bladder side the same, the foaming ratio of the innermost layer was about 2% larger than that of the surface layer, and as a result, the performance on ice was improved. The decline was suppressed. In addition, in Example 13, by raising the vulcanization temperature on the bladder side than on the mold side, the difference in average foaming ratio between 1 mm of the innermost layer and 1 mm of the surface layer expanded to 6%, and as a result, complete wear occurred. The deterioration in on-ice performance has completely disappeared. Therefore, by changing the vulcanization conditions in combination with foaming, it becomes possible to freely control the balance of on-ice performance in the early and late stages of running.

【0050】[0050]

【発明の効果】以上詳述した通り、本発明による発泡ゴ
ムマトリックスとこれとの親和性向上処理が施された無
機高硬度粒子とを組み合わせたトレッドを用いた空気入
りタイヤは、あらゆる使用条件下の氷上性能において顕
著な改良効果が認められ、耐摩耗性および溝底クラック
なども実用上問題ない範囲である。
Effects of the Invention As detailed above, a pneumatic tire using a tread combining a foamed rubber matrix according to the present invention and inorganic high hardness particles treated to improve compatibility with the foamed rubber matrix can be used under all conditions of use. A remarkable improvement effect was observed in the on-ice performance, and the wear resistance and groove bottom cracks were within the range of no practical problems.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  モース硬度が1.5 度以上、平均粒
径が10〜400 μm で、表面にゴムとの親和性向
上処理が施された無機高硬度粒子をゴム分 100重量
部に対して3〜30重量部含有し、かつ3〜35%の発
泡倍率の独立気泡を有する発泡ゴムをトレッドに備えた
ことを特徴とする空気入りタイヤ。
Claim 1: Inorganic high hardness particles with a Mohs hardness of 1.5 degrees or more, an average particle size of 10 to 400 μm, and whose surface has been treated to improve affinity with rubber, per 100 parts by weight of rubber. 1. A pneumatic tire, characterized in that the tread is equipped with foamed rubber containing 3 to 30 parts by weight of closed cells with an expansion ratio of 3 to 35%.
【請求項2】  トレッドの表面より1mmの範囲にあ
る発泡ゴム層の発泡平均倍率が、当該発泡ゴムの最内層
で非発泡ゴムと接する面より0.5 〜1.5 mmの
範囲にある層の平均発泡倍率より小さい請求項1記載の
空気入りタイヤ。
2. A layer in which the average expansion ratio of the foamed rubber layer located within 1 mm from the surface of the tread is within a range of 0.5 to 1.5 mm from the surface of the innermost layer of the foamed rubber that is in contact with the non-foamed rubber. The pneumatic tire according to claim 1, which has a smaller average expansion ratio than the average expansion ratio.
JP03167516A 1991-06-13 1991-06-13 Pneumatic tire Expired - Fee Related JP3096092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03167516A JP3096092B2 (en) 1991-06-13 1991-06-13 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03167516A JP3096092B2 (en) 1991-06-13 1991-06-13 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPH04365606A true JPH04365606A (en) 1992-12-17
JP3096092B2 JP3096092B2 (en) 2000-10-10

Family

ID=15851140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03167516A Expired - Fee Related JP3096092B2 (en) 1991-06-13 1991-06-13 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP3096092B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020575A1 (en) * 1993-03-01 1994-09-15 Nippon Zeon Co., Ltd. Resin composition and molding produced therefrom
US5798009A (en) * 1994-12-27 1998-08-25 Bridgestone Corporation Foamed rubber compositions for tires and pneumatic tire using the same
JP2002060548A (en) * 2000-08-11 2002-02-26 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2006206822A (en) * 2005-01-31 2006-08-10 Bridgestone Corp Rubber composition, its vulcanized rubber, and tire using the same
JP2010143521A (en) * 2008-12-22 2010-07-01 Bridgestone Corp Tire
JP2010274785A (en) * 2009-05-28 2010-12-09 Bridgestone Corp Tire
JP2013067713A (en) * 2011-09-22 2013-04-18 Yokohama Rubber Co Ltd:The Foaming rubber composition, and method of producing foam

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020575A1 (en) * 1993-03-01 1994-09-15 Nippon Zeon Co., Ltd. Resin composition and molding produced therefrom
US5665795A (en) * 1993-03-01 1997-09-09 Nippon Zeon Co., Ltd. Resin compositions and molded articles
US5798009A (en) * 1994-12-27 1998-08-25 Bridgestone Corporation Foamed rubber compositions for tires and pneumatic tire using the same
JP2002060548A (en) * 2000-08-11 2002-02-26 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2006206822A (en) * 2005-01-31 2006-08-10 Bridgestone Corp Rubber composition, its vulcanized rubber, and tire using the same
JP2010143521A (en) * 2008-12-22 2010-07-01 Bridgestone Corp Tire
JP2010274785A (en) * 2009-05-28 2010-12-09 Bridgestone Corp Tire
JP2013067713A (en) * 2011-09-22 2013-04-18 Yokohama Rubber Co Ltd:The Foaming rubber composition, and method of producing foam

Also Published As

Publication number Publication date
JP3096092B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP5527014B2 (en) Rubber composition for tire
JP4187174B2 (en) Rubber composition for winter tire tread and winter tire
WO2006062119A1 (en) Tire
US5162395A (en) Rubber composition
JP3775413B2 (en) Rubber composition and pneumatic tire
JPH04365606A (en) Pneumatic tire
JP2006336013A (en) Rubber composition for tread of studless tire
US5968427A (en) Foamed rubber compositions for pneumatic tires and method of producing the same
EP0719658B1 (en) Foamed rubber composition for tires and pneumatic tire using the same
JPH04368205A (en) Pneumatic tire
JPH09136999A (en) Rubber composition
JP2000044732A (en) Rubber composition for tire tread
JP4750235B2 (en) Vulcanized rubber and tires
JP3549974B2 (en) Method for producing rubber composition
JPS6044538A (en) Rubber composition for tire tread
JPH09302153A (en) Particle-containing rubber composition
JP4236429B2 (en) Pneumatic studless tire
JPH04365607A (en) Pneumatic tire
JP2005029708A (en) Studless tire rubber composition
JP4694659B2 (en) Rubber composition for tire, vulcanized rubber for tire and tire
JP4093979B2 (en) Rubber composition for tire and pneumatic tire using the same
JPH09124850A (en) Rubber composition
JPH09124852A (en) Pneumatic tire
JPH09124821A (en) Foamed rubber composition containing particle and its production
JP3591741B2 (en) Rubber composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees