JP2005029708A - Studless tire rubber composition - Google Patents

Studless tire rubber composition Download PDF

Info

Publication number
JP2005029708A
JP2005029708A JP2003271652A JP2003271652A JP2005029708A JP 2005029708 A JP2005029708 A JP 2005029708A JP 2003271652 A JP2003271652 A JP 2003271652A JP 2003271652 A JP2003271652 A JP 2003271652A JP 2005029708 A JP2005029708 A JP 2005029708A
Authority
JP
Japan
Prior art keywords
rubber
rubber composition
fine powder
studless tire
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003271652A
Other languages
Japanese (ja)
Inventor
Norio Minouchi
則夫 箕内
Motoki Takahashi
元樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2003271652A priority Critical patent/JP2005029708A/en
Publication of JP2005029708A publication Critical patent/JP2005029708A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a studless tire rubber composition capable of effectively removing a water screen of on-ice road surface and satisfying both of the removing property of the water screen and the wear resistance. <P>SOLUTION: The studless tire rubber composition comprises 100 pts.wt. rubber component composed of a diene-based rubber and 2-30 pts.wt. cellulosic fine powder having ≤100 μm average particle diameter and preferably has 1-20 ratio (D1/D2) of a long diameter (D1) of the cellulosic fine powder to a short diameter (D2) of the cellulosic fine powder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、スタッドレスタイヤゴム組成物に関し、耐摩耗性を低下することなく氷上性能を向上させたスタッドレスタイヤゴム組成物に関する。   The present invention relates to a studless tire rubber composition, and relates to a studless tire rubber composition having improved performance on ice without lowering the wear resistance.

寒冷地において冬期に使用される空気入りタイヤは、スパイクタイヤに代わりスタッドレスタイヤが多く使用されるようになり、氷上路面での駆動、制動性能や操縦安定性を向上するスタッドレスタイヤゴム組成物の開発が多くなされているが、これらのゴム組成物では乾燥路面での耐摩耗性、操縦安定性などのタイヤ性能が十分に満足できるものでなく、両路面におけるタイヤ性能の両立が求められている。   Pneumatic tires used in winter in cold regions are increasingly used as studless tires instead of spiked tires, and the development of a studless tire rubber composition that improves driving, braking performance and handling stability on icy road surfaces has been developed. Although many have been made, these rubber compositions are not satisfactory in tire performance such as wear resistance and handling stability on dry road surfaces, and are required to satisfy both tire performances on both road surfaces.

トレッドゴムと氷上路面との摩擦力を向上するゴム組成物の改良方策としては、例えば、ガラス転移温度の低いブタジエンゴムの使用や軟化剤の配合により低温でも低硬度を維持するヒステリシス摩擦を向上するもの、充填剤のカーボンブラックの一部をシリカに置換し低温での弾性率を維持して粘着摩擦を向上するもの、トレッド部に発泡ゴムを使用しトレッド表面の凹凸を増加するもの、また有機高分子物質や無機物、植物の粉砕物、金属粉などの硬質物質の粒状体、中空粒状体を配合し掘り起こし(引っ掻き)摩擦を向上するものがある。   Examples of measures for improving the rubber composition that improves the frictional force between the tread rubber and the road surface on ice include the use of butadiene rubber having a low glass transition temperature and the addition of a softening agent to improve hysteresis friction that maintains low hardness even at low temperatures. Some of the filler carbon black is replaced with silica to maintain low-temperature elastic modulus to improve adhesive friction, and foam rubber is used in the tread to increase irregularities on the tread surface. There are materials that improve the friction by digging up (scratching) by blending high-molecular substances, inorganic substances, plant pulverized materials, hard substance particles such as metal powder, and hollow particles.

また、トレッドの接地圧や摩擦熱により発生するトレッドゴムと氷上路面との間の水膜を除去し摩擦係数を向上することも効果があり、例えば、短繊維とセルロース物質を含む粉体加工品を配合しシリカを併用し、短繊維の脱落したスリットによる水膜の除去効果とセルロース物質によるスパイク効果によって氷上グリップ性を向上する技術が開示されている(特許文献1)。
特開2002−114868号公報
It is also effective to remove the water film between the tread rubber generated by the contact pressure of the tread and frictional heat and the road surface on ice to improve the friction coefficient. For example, a powder processed product containing short fibers and a cellulose substance A technique is disclosed that improves the grip on ice by the effect of removing the water film by the slit from which the short fibers have been dropped and the spike effect by the cellulose substance, using a combination of silica and silica (Patent Document 1).
JP 2002-114868 A

摩擦係数の小さい氷上路面では、上記粘着摩擦、掘り起こし摩擦、及び水膜除去の効果が重要となるが、シリカを多量配合したトレッドゴムは氷上性能は向上するがカーボンブラックに比べて補強性が低下し耐摩耗性が劣り、またゴム混練性や導電性低下の問題があり、発泡ゴムや硬質物質の粒状体を配合するものも乾燥路において耐摩耗性が低下するという欠点がある。   The above-mentioned adhesion friction, digging friction, and water film removal effects are important on the road surface on ice with a small coefficient of friction, but tread rubber containing a large amount of silica improves on-ice performance but has lower reinforcement than carbon black. However, the abrasion resistance is inferior, there is a problem of rubber kneadability and conductivity lowering, and those blended with foamed rubber or hard substance granules have the disadvantage that the abrasion resistance is lowered in the drying path.

また、上記特許文献1のスタッドレスタイヤ用ゴム組成物では、氷上路面での制動性や操縦安定性を向上することができるが、短繊維の配向性やセルロース物質の粒径が比較的大きいため氷上性能と耐摩耗性との両立を十分に満足するものではない。   Further, the rubber composition for studless tires of Patent Document 1 can improve braking performance and steering stability on the road surface on ice. However, since the orientation of short fibers and the particle size of the cellulose substance are relatively large, It does not fully satisfy both performance and wear resistance.

本発明は、耐摩耗性を維持し同時にトレッドゴムと氷上路面との間の水膜を除去し氷上性能を向上するもので、吸水性能とゴムとの相溶作用に優れたセルロース粒子を配合することで、効果的に水膜を除去すると共に耐摩耗性を両立することができる、スタッドレスタイヤのトレッドに適した優れた氷上性能を有するスタッドレスタイヤゴム組成物を提供することを目的とする。   The present invention improves the performance on ice by removing the water film between the tread rubber and the road surface on ice while maintaining the wear resistance, and blends cellulose particles excellent in water absorption performance and compatibility with the rubber. Thus, an object of the present invention is to provide a studless tire rubber composition having excellent on-ice performance suitable for a tread of a studless tire, which can effectively remove a water film and achieve both wear resistance.

本発明は、吸水性を有するセルロース物質を微粉体として用いることで、セルロース物質がゴム組成物中の異物とならずに氷上の水を効果的に吸水することができることに着目し本発明の完成に到った。   The present invention focuses on the fact that the cellulose material can absorb water on the ice effectively without using the cellulose material as a foreign substance in the rubber composition by using a cellulose material having water absorption as a fine powder. It reached.

すなわち本発明は、ジエン系ゴムからなるゴム成分100重量部に対して、平均粒子径が100μm以下のセルロース微粉体を2〜30重量部含んでなることを特徴とするスタッドレスタイヤゴム組成物である。   That is, the present invention is a studless tire rubber composition comprising 2 to 30 parts by weight of a cellulose fine powder having an average particle size of 100 μm or less with respect to 100 parts by weight of a rubber component made of a diene rubber.

この場合、セルロース微粉体の長径(D1)と短径(D2)との比D1/D2が、1〜20であることが好ましい。   In this case, it is preferable that the ratio D1 / D2 of the major axis (D1) and the minor axis (D2) of the fine cellulose powder is 1 to 20.

本発明のスタッドレスタイヤゴム組成物によれば、平均粒子径が100μm以下にあるセルロース微粉体(パウダー)が優れた吸水性を発揮し、氷上の水を瞬時に吸水し水膜を除去してトレッドゴムと氷上路面との密着効果及び摩擦係数を高めスタッドレスタイヤの氷上性能を向上することができ、またゴム組成物中でポリマーや配合剤との良好な物理的相溶作用を有しゴム中の異物とならずにゴムの強度や硬度を維持することができる。   According to the studless tire rubber composition of the present invention, the fine cellulose powder (powder) having an average particle size of 100 μm or less exhibits excellent water absorption, instantly absorbs water on ice, removes the water film, and removes the water film. Can improve the on-ice performance of studless tires by improving the adhesion effect and friction coefficient between the tire and the road surface on the ice, and has a good physical compatibility with the polymer and compounding agent in the rubber composition, and foreign matter in the rubber. The strength and hardness of the rubber can be maintained.

このセルロース微粉体は、粒子径が小さいほど粒子の表面積が大きくなり吸水能力が向上しゴムとの相溶性も良好となり好ましく、粒子径が大きくなるほど吸水能力の低下と共にセルロース粒子が異物となりゴム強度を低下させる。また、D1/D2の値が大きくなるとセルロース粒子の形態が長尺状化しゴム硬度を上昇し耐摩耗性を低下させる。また、セルロース微粉体の配合量はゴム成分100重量部に対して、2重量部程度から吸水性の効果を発現し、30重量部を超えるとゴム硬度の上昇と共に耐摩耗性が低下し好ましくない。   The smaller the particle size, the smaller the particle size, the larger the surface area of the particle, the better the water absorption ability and the better the compatibility with rubber. Reduce. Moreover, when the value of D1 / D2 becomes large, the form of the cellulose particles becomes long, the rubber hardness is increased, and the wear resistance is lowered. In addition, the blending amount of the cellulose fine powder exhibits a water absorption effect from about 2 parts by weight with respect to 100 parts by weight of the rubber component, and if it exceeds 30 parts by weight, the wear resistance decreases with an increase in rubber hardness, which is not preferable. .

また、このセルロース微粉体は天然繊維素に基づいて調整されるもので、ゴム組成物中でポリマーや配合剤との物理的相溶性に優れる特性を有し、カーボンブラックや他の充填剤と同様にゴム中の異物となることがなくゴム強度や弾性を低下させずゴム特性を確保することができる。また、トレッドの摩耗に伴い飛散しても、人体への悪影響や環境汚染を起こすことがない。   This cellulose fine powder is prepared based on natural fiber, and has excellent physical compatibility with polymers and compounding agents in rubber compositions, similar to carbon black and other fillers. In addition, it does not become a foreign substance in the rubber, and the rubber characteristics can be secured without lowering the rubber strength and elasticity. In addition, even if the treads are scattered with the wear of the tread, there is no adverse effect on the human body or environmental pollution.

本発明によるスタッドレスタイヤゴム組成物では、セルロース微粉体が優れた吸水性を発揮し氷上路面の水膜を効果的に除去し、同時にゴム組成物の硬度上昇を抑えて耐摩耗性を維持することができる。従って、このスタッドレスタイヤゴム組成物を適用したスタッドレスタイヤは、氷上路面との密着効果及び摩擦係数を高め氷上性能を向上すると共に耐摩耗性、強度などのタイヤ性能を維持し、氷雪路面と乾燥路面におけるタイヤ性能を両立することができる。   In the studless tire rubber composition according to the present invention, the fine cellulose powder exhibits excellent water absorption, effectively removes the water film on the road surface on ice, and at the same time suppresses the increase in hardness of the rubber composition and maintains the wear resistance. it can. Therefore, the studless tire to which this studless tire rubber composition is applied improves the adhesion performance and friction coefficient on the ice road surface and improves the ice performance while maintaining the tire performance such as wear resistance and strength, and on the snow and snow road surface and the dry road surface. Both tire performance can be achieved.

本発明によるスタッドレスタイヤゴム組成物の実施の形態を以下に説明する。   Embodiments of the studless tire rubber composition according to the present invention will be described below.

本発明スタッドレスタイヤゴム組成物は、ジエン系ゴムからなるゴム成分100重量部に対して、平均粒子径が100μm以下のセルロース微粉体を2〜30重量部含むものである。   The studless tire rubber composition of the present invention contains 2 to 30 parts by weight of a cellulose fine powder having an average particle diameter of 100 μm or less with respect to 100 parts by weight of a rubber component made of a diene rubber.

本発明に使用されるゴム成分としては、スタッドレスタイヤのトレッド用に一般に使用されるジエン系ゴムの単独あるいは2種類以上のブレンドを使用することができる。   As a rubber component used for this invention, the diene rubber generally used for the tread of a studless tire can be used individually or two or more types of blends can be used.

ジエン系ゴムとしては、スタッドレスタイヤに要求される低温特性、耐摩耗性、操縦安定性等の観点から、天然ゴム、各種ブタジエンゴム、各種スチレンブタジエンゴム、イソプレンゴムが好ましく用いられ、なかでもガラス転移温度が−50℃以下のブタジエンゴムと天然ゴムとのブレンドを主ゴム成分として用いるのが好ましい。   As the diene rubber, natural rubber, various butadiene rubbers, various styrene butadiene rubbers and isoprene rubbers are preferably used from the viewpoints of low temperature characteristics, abrasion resistance, steering stability, etc. required for studless tires, and in particular, glass transition. It is preferable to use a blend of butadiene rubber and natural rubber having a temperature of −50 ° C. or lower as the main rubber component.

前記ブタジエンゴムと天然ゴムとをブレンドで用いる場合、ブタジエンゴムの比率が少なすぎるとゴム組成物の低温特性が得難く、逆に多くなると加工性が悪化し、耐カット、チッピング性が低下する傾向にあるので、天然ゴム/ブタジエンゴムの比率は20/80〜90/10、さらには40/60〜70/30であることが好ましい。   When the butadiene rubber and natural rubber are used in a blend, if the ratio of the butadiene rubber is too small, it is difficult to obtain low temperature characteristics of the rubber composition, and conversely, if it is increased, the processability deteriorates and the cut resistance and the chipping tendency tend to decrease. Therefore, the ratio of natural rubber / butadiene rubber is preferably 20/80 to 90/10, more preferably 40/60 to 70/30.

本発明に使用されるセルロース微粉体としては、植物繊維の繊維素からなる天然セルロース、例えば、木綿、麻、米殻や麦殻のもみ殻、おが屑、胡桃の殻や桃の実、落花生の殻、銀杏の殻、コルク等の粉砕物、針葉樹や広葉樹の植物繊維を水酸化ナトリウム、亜硫酸水素ナトリウム、次亜塩素酸ナトリウム等で処理し精製したパルプの粉砕物などが挙げられ、植物繊維を再生したレーヨン等の再生セルロース、セルロースから誘導されるアルキルセルロース等のセルロース誘導体の粉砕物であってもよい。   The cellulose fine powder used in the present invention includes natural cellulose composed of fiber of plant fibers, such as cotton, hemp, rice hulls and rice hulls, rice husks, walnut hulls and peach nuts, and peanut hulls. Pulverized pulverized material such as ginko shells, cork, and softened pulp and hardwood plant fibers treated with sodium hydroxide, sodium bisulfite, sodium hypochlorite, etc. It may be a regenerated cellulose such as rayon, or a pulverized product of a cellulose derivative such as alkyl cellulose derived from cellulose.

なかでも、パルプの粉砕物が吸水性能、粒子径調整の容易さ、原材料の入手性や価格等の点で好ましい。また、精製パルプ以外の新聞、雑誌、段ボール等の古紙をリサイクル利用することもできる。   Among these, a pulverized pulp is preferable in terms of water absorption performance, ease of particle size adjustment, availability of raw materials, price, and the like. Also, recycled paper such as newspapers, magazines and cardboard other than refined pulp can be recycled.

このセルロース微粉体は、ゴム組成物中でポリマーや配合剤との物理的相溶作用に優れることから、カーボンブラックやシリカなど他の補強剤と同様にゴム中の異物となることがなく、微粉化して用いることでゴム補強性を低下させることなく強度や弾性率、硬度などの安定したゴム特性を得ることができる。   This cellulose fine powder is excellent in physical compatibility with polymers and compounding agents in the rubber composition, so that it does not become a foreign substance in rubber like other reinforcing agents such as carbon black and silica. By using it, it is possible to obtain stable rubber properties such as strength, elastic modulus and hardness without deteriorating rubber reinforcement.

セルロース微粉体の平均粒子径は100μm以下にあることが好ましく、粒子径が小さいほど粒子の表面積が大きくなり吸水能力が向上して優れた吸水性を発揮し、ゴム組成物と氷上路面との間に発生する水膜の水を瞬時に吸水し水膜を除去し、トレッドゴムと氷上路面との密着効果及び摩擦係数を高めスタッドレスタイヤの氷上性能を向上することができる。   The average particle size of the cellulose fine powder is preferably 100 μm or less, and the smaller the particle size, the larger the surface area of the particles, the better the water absorption capacity and the excellent water absorption, and the better the water absorption between the rubber composition and the road surface on ice. The water film generated in the water can be absorbed instantly to remove the water film, and the adhesion effect between the tread rubber and the road surface on ice and the coefficient of friction can be increased to improve the on-ice performance of the studless tire.

このセルロース微粉体は、粒子径が大きくなるほど吸水能力が低下し所望の氷上性能を発揮することができず、セルロース粒体がやはり異物なってゴム組成物の補強性を損ない、ゴム硬度を上昇し耐摩耗性を低下させる。   As the particle size of the cellulose fine powder increases, the water absorption ability decreases and the desired performance on ice cannot be exhibited. Cellulose granules also become a foreign substance, impairing the reinforcing property of the rubber composition, and increasing the rubber hardness. Reduces wear resistance.

しかし、粒子径があまり小さくなると、粒子径の調整やその取り扱い性が困難となり、粒子径を小さくするほどの吸水能力の向上が期待できないことから、平均粒子径の下限は10μm程度と考えられる。   However, if the particle size is too small, it becomes difficult to adjust the particle size and handleability, and it is not possible to expect an improvement in water absorption capacity as the particle size is reduced. Therefore, the lower limit of the average particle size is considered to be about 10 μm.

また、セルロース微粉体の長径(D1)と短径(D2)との比D1/D2は、D1/D2=1〜20であることが好ましく、より好ましくは1〜10である。D1/D2が20を超えるとセルロース粒子の形態が長尺状化、すなわち細長い繊維状形態となりゴム中でセルロース同士が絡まったり、押し出しやロール加工によって異方性を生じてゴム硬度を上昇させ耐摩耗性を低下し、また混練性や分散性も悪化し好ましくない。従って、吸水性能、ゴム特性、混練性などの観点からD1/D2は1に近いものが好ましい。   Moreover, it is preferable that ratio D1 / D2 of the major axis (D1) and minor axis (D2) of a cellulose fine powder is D1 / D2 = 1-20, More preferably, it is 1-10. When D1 / D2 exceeds 20, the shape of the cellulose particles becomes long, that is, it becomes a long and slender fibrous shape, and the cellulose is entangled in the rubber. Abrasion is reduced, and kneadability and dispersibility are also deteriorated. Accordingly, D1 / D2 is preferably close to 1 from the viewpoint of water absorption performance, rubber properties, kneading properties and the like.

上記セルロース微粉体は、セルロース物質をボールミル等の粉砕器を用いて粉砕した後、ふるいを用いてふるい分けし平均粒子径のものに選別した微粉体が使用できる。ふるいは、例えばJIS Z8801に記載の標準ふるいによって所定の粒子径にふるい分けすることができる。   As the cellulose fine powder, a fine powder obtained by pulverizing a cellulose substance using a pulverizer such as a ball mill, and then sieving it with a sieve to select an average particle size can be used. The sieve can be sieved to a predetermined particle size by a standard sieve described in JIS Z8801, for example.

また、セルロース微粉体のD1とD2は、電子顕微鏡を用いて測定した微粉体の長辺長さと短辺長さのそれぞれの平均値である。   Further, D1 and D2 of the cellulose fine powder are average values of the long side length and the short side length of the fine powder measured using an electron microscope.

上記セルロース微粉体の配合量はゴム成分100重量部に対して、2〜30重量部が好ましい範囲である。   The blending amount of the cellulose fine powder is preferably 2 to 30 parts by weight with respect to 100 parts by weight of the rubber component.

セルロース微粉体は2重量部程度の配合量から吸水性の効果を発現し、2重量部未満では有意な吸水性能を発揮することができない。30重量部を超えるとゴム硬度の上昇と共に耐摩耗性が低下の傾向を示し好ましくない。   The cellulose fine powder exhibits a water-absorbing effect from a blending amount of about 2 parts by weight, and if it is less than 2 parts by weight, significant water absorption performance cannot be exhibited. If it exceeds 30 parts by weight, the rubber hardness increases and the wear resistance tends to decrease, which is not preferable.

また、このセルロース微粉体は天然繊維素に基づいて調整されるもので化学的安定性に優れ、他の配合剤に悪影響を与えることがなく、ゴム強度や弾性などの安定したゴム特性を維持することができ、スタッドレスタイヤのトレッドの摩耗によって空中に飛散しても、人体への悪影響や環境汚染を引き起こすことがない。   In addition, this cellulose fine powder is adjusted based on natural fiber, has excellent chemical stability, does not adversely affect other compounding agents, and maintains stable rubber properties such as rubber strength and elasticity. Even if it is scattered in the air due to the wear of the tread of the studless tire, it does not cause adverse effects on the human body or environmental pollution.

本発明のスタッドレスタイヤゴム組成物には、上記ゴム成分に加えて通常のゴム工業で使用されているカーボンブラックやシリカなどの補強剤や充填剤、軟化剤、可塑剤、加硫剤、加硫促進剤、老化防止剤などの配合薬品類を通常の範囲内で適宜配合し用いることができる。   In addition to the above rubber components, the studless tire rubber composition of the present invention includes reinforcing agents such as carbon black and silica, fillers, softeners, plasticizers, vulcanizing agents, and vulcanization accelerators that are used in the normal rubber industry. Compounding chemicals such as agents and anti-aging agents can be appropriately blended and used within a normal range.

カーボンブラックとしては、スタッドレスタイヤのトレッドゴムの低温性能、耐摩耗性やゴムの補強性などの観点から、窒素吸着比表面積(N SA)が70m /g以上、DBP吸油量が105ml/100g以上であるものが好ましく、さらにはN SAが80〜200m /g、DBP吸油量が110〜150ml/100gであるものが一層好ましく、配合量としてはゴム成分100重量部に対して20〜100重量部の範囲で使用されるのが好ましく、具体的にはSAF,ISAF,HAF級のカーボンブラックが例示される。 Carbon black has a nitrogen adsorption specific surface area (N 2 SA) of 70 m 2 / g or more and a DBP oil absorption of 105 ml / 100 g from the viewpoint of the low temperature performance of the tread rubber of the studless tire, wear resistance and rubber reinforcement. More preferably, N 2 SA is 80 to 200 m 2 / g, DBP oil absorption is 110 to 150 ml / 100 g, and more preferably 20 to 100 parts by weight of rubber component. It is preferably used in the range of 100 parts by weight, and specific examples include SAF, ISAF, and HAF grade carbon black.

上記ゴム組成物は通常のバンバリーミキサーやニーダーなどのゴム用混合機によって混練された後、ゴム用押出機などによりタイヤのトレッド部が形成され、通常のタイヤ成型により未加硫タイヤが作成され、常法に従い加硫された製品タイヤが製造される。   After the rubber composition is kneaded by a rubber mixer such as a normal Banbury mixer or kneader, the tread portion of the tire is formed by a rubber extruder or the like, and an unvulcanized tire is created by normal tire molding, A vulcanized product tire is produced according to conventional methods.

従って、本発明のスタッドレスタイヤゴム組成物をトレッドゴムに適用したスタッドレスタイヤは、トレッドゴムのセルロース微粉体が優れた吸水性を発揮し、トレッドと氷上路面の間の水膜を効果的に除去するので、トレッドゴムと氷上路面との密着効果及び摩擦係数を高めスタッドレスタイヤの氷上性能を向上すると共に耐摩耗性、強度などのタイヤ性能を維持し、氷雪路面と乾燥路面におけるタイヤ性能を両立することができる。   Therefore, in the studless tire in which the studless tire rubber composition of the present invention is applied to the tread rubber, the cellulose fine powder of the tread rubber exhibits excellent water absorption, and the water film between the tread and the road surface on ice is effectively removed. In addition, the adhesion effect between the tread rubber and the road surface on ice and the coefficient of friction are increased to improve the on-ice performance of the studless tire, while maintaining the tire performance such as wear resistance and strength, and to achieve both tire performance on the snowy and dry road surface. it can.

以下に本発明のスタッドレスタイヤゴム組成物の実施例を説明する。   Examples of the studless tire rubber composition of the present invention will be described below.

天然ゴム(NR)50重量部とブタジエンゴム(BR)50重量部とのゴム成分100重量部に対して、カーボンブラック、オイル、及びセルロース微粉体A〜Dと下記に示す共通配合剤を配合(重量部)し、通常の容量20リットルのバンバリーミキサーを用い混練して各実施例及び比較例のスタッドレスタイヤゴム組成物を作成した。   Carbon black, oil, and cellulose fine powders A to D and the following common compounding agents are blended with 100 parts by weight of a rubber component of 50 parts by weight of natural rubber (NR) and 50 parts by weight of butadiene rubber (BR) ( Parts by weight) and kneaded using a normal 20 liter Banbury mixer to prepare studless tire rubber compositions of the examples and comparative examples.

セルロース微粉体A〜Dの平均粒子径は下記の通りである。   The average particle size of the cellulose fine powders A to D is as follows.

[セルロース微粉体]
・セルロース微粉体 A:平均粒子径=80μm
・セルロース微粉体 B:平均粒子径=50μm
・セルロース微粉体 C:平均粒子径=20μm
・セルロース微粉体 D:平均粒子径=130μm
[Cellulose fine powder]
Cellulose fine powder A: Average particle size = 80 μm
Cellulose fine powder B: Average particle size = 50 μm
Cellulose fine powder C: Average particle size = 20 μm
Cellulose fine powder D: Average particle size = 130 μm

セルロース微粉体A〜Dは、パルプをボールミルを用いて粉砕した後、ふるいを用いてふるい分け、所定の平均粒子径の微粉体に選別したものであり、いずれもD1/D2が1〜10の範囲の微粉体が混在したものである。   Cellulose fine powders A to D are obtained by pulverizing pulp using a ball mill and then sieving using a sieve to select fine powders having a predetermined average particle diameter. The fine powder is mixed.

各実施例及び比較例に配合した原料ゴム、共通の各種配合剤と配合量(重量部)は下記に示す通りである。   The raw rubber compounded in each example and comparative example, common various compounding agents, and compounding amount (parts by weight) are as shown below.

[原料ゴム及び共通配合剤]
・天然ゴム(NR):RSS#3(50重量部)
・ブタジエンゴム(BR):JSR(株)製 BR01(50重量部)
・カーボンブラック(C.B):昭和キャボット(株)製 ショウブラックN339(50重量部)
・オイル:芳香族系プロセスオイル(20重量部)
・亜鉛華:3号亜鉛華(2重量部)
・ステアリン酸:工業用ステアリン酸(2重量部)
・ワックス:ミクロクリスタリンワックス(2重量部)
・老化防止剤:大内新興化学工業(株)製 ノクラック6C(2重量部)
・硫黄:5%オイル処理硫黄(1.5重量部)
・加硫促進剤CZ:大内新興化学工業(株)製 ノクセラーCZ(1重量部)
[Raw rubber and common compounding agents]
・ Natural rubber (NR): RSS # 3 (50 parts by weight)
-Butadiene rubber (BR): BR01 (50 parts by weight) manufactured by JSR Corporation
Carbon black (CB): Showa Cabot Co., Ltd. Show Black N339 (50 parts by weight)
・ Oil: Aromatic process oil (20 parts by weight)
・ Zinc flower: No. 3 zinc flower (2 parts by weight)
・ Stearic acid: Industrial stearic acid (2 parts by weight)
・ Wax: Microcrystalline wax (2 parts by weight)
・ Anti-aging agent: Nouchi 6C (2 parts by weight) manufactured by Ouchi Shinsei Chemical Co., Ltd.
・ Sulfur: 5% oil-treated sulfur (1.5 parts by weight)
・ Vulcanization accelerator CZ: Nouchira CZ (1 part by weight) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.

実施例及び比較例の各スタッドレスタイヤゴム組成物を押し出し機を用いてキャップトレッドを作成し、これをキャップトレッドに適用した一般的構造を有するサイズが185/70R14の試験用スタッドレスタイヤを製造し、耐摩耗性及び氷上性能の評価を下記の方法により行った。結果を表1に示す。   A cap tread was prepared by using an extruder for each of the studless tire rubber compositions of Examples and Comparative Examples, and a test studless tire having a general structure in which the cap tread was applied and having a size of 185 / 70R14 was manufactured. Abrasion and performance on ice were evaluated by the following methods. The results are shown in Table 1.

[耐摩耗性]
各試験タイヤ4本を排気量1800ccの前輪駆動式国産乗用車に装着し、一般乾燥路を1万Km走行し、走行後のトレッド残溝深さから摩耗量を求め、比較例1を100とした指数で示した。数値の大きいものほど優れる。
[Abrasion resistance]
Four test tires were mounted on a 1800 cc front-wheel drive domestic passenger car, traveled on a general dry road for 10,000 km, the amount of wear was determined from the tread remaining groove depth after traveling, and Comparative Example 1 was taken as 100. Indicated by an index. The larger the value, the better.

[氷上性能]
各試験タイヤ4本を排気量1800ccの前輪駆動式国産乗用車に装着し、氷上温度−5℃の氷上路面にて、速度40Km/hでタイヤをフルロックしその制動距離を測定した。比較例1を100とした指数で示した。数値の大きいものほど優れる。

Figure 2005029708
[Performance on ice]
Four test tires were mounted on a 1800 cc front-wheel drive domestic passenger car, and the tires were fully locked at a speed of 40 km / h on an icy road surface at an icing temperature of -5 ° C., and the braking distance was measured. It was shown as an index with Comparative Example 1 as 100. The larger the value, the better.
Figure 2005029708

表1に示すように、平均粒子径が100μm以下のセルロース微粉体A,B,Cを配合した実施例1〜4は、いずれも耐摩耗性を従来(比較例1)と同等の性能レベルに維持して氷上性能を向上する。ここで、微粉体の配合量を5重量部から15重量部に増量した実施例2,粒子径を小径化した実施例3、4では氷上性能が格段に向上し、氷上性能はセルロース微粉体の配合量と平均粒子径に大きく影響を受けることが分かり、特に小径化による表面積増の吸水能力向上効果が大きいことがわかる。また、極微粒子化した実施例4では氷上性能の向上が見られなくなり、平均粒子径は20μm程度で十分な効果が得られるものと考えられる。   As shown in Table 1, each of Examples 1 to 4 blended with cellulose fine powders A, B, and C having an average particle size of 100 μm or less has the same wear resistance as that of the conventional (Comparative Example 1) performance level. Maintain and improve performance on ice. Here, Example 2 in which the blending amount of the fine powder was increased from 5 parts by weight to 15 parts by weight, and Examples 3 and 4 in which the particle diameter was reduced greatly improved the performance on ice. It can be seen that the blending amount and the average particle size are greatly affected, and in particular, the effect of improving the water absorption capability by increasing the surface area by reducing the diameter is large. Further, in Example 4 in which ultrafine particles were formed, improvement in performance on ice was not observed, and it is considered that a sufficient effect can be obtained with an average particle diameter of about 20 μm.

セルロース微粉体Aを40重量部配合した比較例2は、充填剤を増量する場合と同様にゴム硬度が上昇し耐摩耗性が低下し、粒子径の大きいセルロース微粉体Dを配合した比較例3は、ゴム組成物中でセルロース同士が絡み合ったり、ゴムに異方性を生じて硬度が上昇し耐摩耗性が大幅に低下する。   In Comparative Example 2 in which 40 parts by weight of cellulose fine powder A was blended, as in the case of increasing the amount of filler, Comparative Example 3 in which rubber hardness was increased and abrasion resistance was decreased, and cellulose fine powder D having a large particle size was blended. In the rubber composition, celluloses are entangled with each other or anisotropy is generated in the rubber to increase the hardness and greatly reduce the wear resistance.

従って、平均粒子径が100μm以下のセルロース微粉体を所定量配合した本発明のスタッドレスタイヤゴム組成物をトレッドに用いたスタッドレスタイヤは、耐摩耗性を従来タイヤと同等レベルに維持し、トレッドゴムと氷上路面との水膜を効果的に除去し氷上性能を向上することができる。   Therefore, the studless tire using the studless tire rubber composition of the present invention containing a predetermined amount of cellulose fine powder having an average particle size of 100 μm or less as the tread maintains the wear resistance at the same level as the conventional tire, and the tread rubber and ice It is possible to effectively remove the water film from the road surface and improve the performance on ice.

なお、本発明のスタッドレスタイヤゴム組成物は、他の氷上性能を向上する手段、例えば発泡ゴムの利用、有機物や無機物の微小粒状体の配合、シリカ配合などと併用することができるのは勿論である。   The studless tire rubber composition of the present invention can be used in combination with other means for improving the performance on ice, for example, use of foamed rubber, blending of organic and inorganic fine particles, blending of silica and the like. .

以上説明したように、本発明によるスタッドレスタイヤゴム組成物は、氷上路面との密着効果及び摩擦係数を高め氷上性能を向上すると共に耐摩耗性、強度などのタイヤ性能を維持し、氷雪路面と乾燥路面におけるタイヤ性能を両立することができ、乗用車用、トラック・バス用などのスタッドレスタイヤのトレッド部を始めとして靴底、マット、床材など各種の防滑用ゴム製品に使用することができる。   As described above, the studless tire rubber composition according to the present invention increases the adhesion effect and friction coefficient with the road surface on ice, improves the performance on ice, and maintains the tire performance such as wear resistance and strength. It can be used for various anti-slip rubber products such as shoe soles, mats, flooring, as well as treads of studless tires for passenger cars, trucks and buses.

Claims (2)

ジエン系ゴムからなるゴム成分100重量部に対して、
平均粒子径が100μm以下のセルロース微粉体を2〜30重量部含んでなる
ことを特徴とするスタッドレスタイヤゴム組成物。
For 100 parts by weight of the rubber component made of diene rubber,
A studless tire rubber composition comprising 2 to 30 parts by weight of fine cellulose powder having an average particle size of 100 μm or less.
前記セルロース微粉体の長径(D1)と短径(D2)との比D1/D2が、1〜20である
ことを特徴とする請求項1に記載のスタッドレスタイヤゴム組成物。
The studless tire rubber composition according to claim 1, wherein a ratio D1 / D2 of a major axis (D1) and a minor axis (D2) of the cellulose fine powder is 1 to 20.
JP2003271652A 2003-07-07 2003-07-07 Studless tire rubber composition Withdrawn JP2005029708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003271652A JP2005029708A (en) 2003-07-07 2003-07-07 Studless tire rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271652A JP2005029708A (en) 2003-07-07 2003-07-07 Studless tire rubber composition

Publications (1)

Publication Number Publication Date
JP2005029708A true JP2005029708A (en) 2005-02-03

Family

ID=34209443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271652A Withdrawn JP2005029708A (en) 2003-07-07 2003-07-07 Studless tire rubber composition

Country Status (1)

Country Link
JP (1) JP2005029708A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176215A (en) * 2005-12-27 2007-07-12 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2007284553A (en) * 2006-04-17 2007-11-01 Sumitomo Rubber Ind Ltd Rubber composition for tire tread
JP2007321093A (en) * 2006-06-02 2007-12-13 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2008037986A (en) * 2006-08-04 2008-02-21 Kohshin Rubber Co Ltd Rubber compound
JP2011513559A (en) * 2008-03-13 2011-04-28 ソシエテ ド テクノロジー ミシュラン Rubber composition for winter tire tread
WO2014036578A1 (en) * 2012-09-06 2014-03-13 Lenzing Ag Molded article containing an elastomer and cellulosic particles
CN111040260A (en) * 2018-10-15 2020-04-21 住友橡胶工业株式会社 Tread rubber composition for studless tire
JP2020063322A (en) * 2018-10-15 2020-04-23 住友ゴム工業株式会社 Tread rubber composition for studless tires

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176215A (en) * 2005-12-27 2007-07-12 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2007284553A (en) * 2006-04-17 2007-11-01 Sumitomo Rubber Ind Ltd Rubber composition for tire tread
JP2007321093A (en) * 2006-06-02 2007-12-13 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2008037986A (en) * 2006-08-04 2008-02-21 Kohshin Rubber Co Ltd Rubber compound
JP2011513559A (en) * 2008-03-13 2011-04-28 ソシエテ ド テクノロジー ミシュラン Rubber composition for winter tire tread
WO2014036578A1 (en) * 2012-09-06 2014-03-13 Lenzing Ag Molded article containing an elastomer and cellulosic particles
AT513306A1 (en) * 2012-09-06 2014-03-15 Chemiefaser Lenzing Ag Shaped body containing an elastomer and cellulosic particles
CN111040260A (en) * 2018-10-15 2020-04-21 住友橡胶工业株式会社 Tread rubber composition for studless tire
JP2020063322A (en) * 2018-10-15 2020-04-23 住友ゴム工業株式会社 Tread rubber composition for studless tires
JP2020063323A (en) * 2018-10-15 2020-04-23 住友ゴム工業株式会社 Tread rubber composition for studless tires
JP7200591B2 (en) 2018-10-15 2023-01-10 住友ゴム工業株式会社 Tread rubber composition for studless tires
JP7210992B2 (en) 2018-10-15 2023-01-24 住友ゴム工業株式会社 Tread rubber composition for studless tires
CN111040260B (en) * 2018-10-15 2023-09-29 住友橡胶工业株式会社 Tread rubber composition for studless tire

Similar Documents

Publication Publication Date Title
JP5436953B2 (en) Rubber composition and pneumatic tire
JP3775413B2 (en) Rubber composition and pneumatic tire
JP4187174B2 (en) Rubber composition for winter tire tread and winter tire
JP5694010B2 (en) Rubber composition for tire
JP5436954B2 (en) Rubber composition and pneumatic tire
JP2007056137A (en) Rubber composition for tread
JP2004059629A (en) Rubber composition and pneumatic tire using it
JP2011012248A (en) Rubber composition for tire
US10472501B2 (en) Rubber composition for tire tread and method for producing the same
JP4976665B2 (en) Rubber composition for tread and pneumatic tire
US9868851B2 (en) Rubber composition for tire tread and pneumatic tire
JP5389527B2 (en) Rubber composition and pneumatic tire
JP2012184361A (en) Rubber composition and pneumatic tire
JP2005029708A (en) Studless tire rubber composition
JP7357841B2 (en) Rubber composition for tires, pneumatic tires using the same, and studless tires
JP3796629B1 (en) Pneumatic tire
JP2009051942A (en) Rubber composition for tire tread and pneumatic tire
JP3763025B1 (en) Method for producing rubber composition for tire
JP4555011B2 (en) Rubber composition for studless tire and studless tire
US8188168B2 (en) Tire rubber composition
JP5356120B2 (en) Rubber composition and pneumatic tire
JP5356116B2 (en) Rubber composition and pneumatic tire
JP2006199832A (en) Tire tread rubber composition
JP5730705B2 (en) Rubber composition for tire tread and pneumatic tire
JP2004339453A (en) Rubber composition for tire and studless tire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003