JPH04365362A - Ceramic-metal based junction - Google Patents

Ceramic-metal based junction

Info

Publication number
JPH04365362A
JPH04365362A JP14151691A JP14151691A JPH04365362A JP H04365362 A JPH04365362 A JP H04365362A JP 14151691 A JP14151691 A JP 14151691A JP 14151691 A JP14151691 A JP 14151691A JP H04365362 A JPH04365362 A JP H04365362A
Authority
JP
Japan
Prior art keywords
metal
ceramic
superplasticity
composite material
matrix composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14151691A
Other languages
Japanese (ja)
Inventor
Miho Koyama
小山 美保
Seiichi Suenaga
誠一 末永
Masako Nakabashi
中橋 昌子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14151691A priority Critical patent/JPH04365362A/en
Publication of JPH04365362A publication Critical patent/JPH04365362A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To dissolve such-problems that cracks are caused in connections and ceramics by a heat stress caused by a temperature change and also provide a ceramic-metal based junction presenting excellent radiation or the like. CONSTITUTION:A metal material 1 (presenting superplasticity) indicating a huge expansion under an operating stress in a specific temperature area, or a metal radical composite material 1 scattering and including ceramic particulates with the metal material (metal) as a radical is connected to a ceramic substrate 2 at a plurality of locations. With the later cooling process, the embodiment is abruptly cooled up to a specific temperature presenting superplasticity to cause a stress on purpose, alternatively it is pressed in the specific temperature area presenting the superplasticity, so that a plastic deformation is caused in the metal material 1 or the metal radical composite material 1 and a ceramic-metal based junction is obtained by mitigating the stress to be caused at cooling.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はセラミックス−金属系接
合体に係り、特に放熱性および耐熱疲労性にすぐれ半導
体装置用の基板に適するセラミックス−金属系接合体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic-metal bonded body, and more particularly to a ceramic-metal bonded body which has excellent heat dissipation properties and thermal fatigue resistance and is suitable for substrates for semiconductor devices.

【0002】0002

【従来の技術】たとえば実装回路装置(ハイブリッドモ
ジュール)などにおいては、パワー半導体素子の高密度
実装化、ハイブリッド化、あるいはインテリジェント化
などが要求されている。このような要求への対応には、
前記実装する半導体素子の駆動によって発生する多量の
熱を如何に効率よく放熱して、半導体素子の温度上昇を
防止ないし低減するかが問題になる。こうしたことから
、前記パワー半導体素子などの実装に、たとえば熱伝導
性の良好なCu層やAl層を、Al2 O 3 のよう
なセラミックス基体面に一体的に配設して構成された放
熱性基板、あるいは熱伝導性および絶縁性を兼備するA
lNやSiC などのセラミックス基板が用いられてい
る。そして、これらの放熱性基板には、搭載・実装され
るパワー半導体素子などと電気的に接続する導電性金属
から成る配線パターンが主面などに、あるいは導電性金
属から成るグランド(接地)層が内層として配置されて
いる。
2. Description of the Related Art For example, in mounted circuit devices (hybrid modules), there is a demand for high-density packaging, hybridization, or intelligence of power semiconductor elements. In response to such requests,
The problem is how to efficiently dissipate the large amount of heat generated by driving the mounted semiconductor element to prevent or reduce the temperature rise of the semiconductor element. For this reason, a heat dissipating substrate configured by integrally disposing a Cu layer or an Al layer with good thermal conductivity on the surface of a ceramic substrate such as Al2O3 is used for mounting the power semiconductor elements. , or A that has both thermal conductivity and insulation properties
Ceramic substrates such as IN and SiC are used. These heat dissipating boards have a wiring pattern made of conductive metal on the main surface that electrically connects to the power semiconductor elements to be mounted or mounted, or a ground layer made of conductive metal. It is placed as an inner layer.

【0003】0003

【発明が解決しようとする課題】しかしながら、上記の
ように構成されている放熱性基板、あるいは放熱性セラ
ミックス基板を、前記パワー半導体素子などの実装に用
いた場合、次のような問題がある。すなわち、セラミッ
クスと導電性金属との熱膨脹係数が、たとえばCu:1
7×10−6/℃に対し、ALN : 4×10−6/
℃と大きく異なるため、接合部の温度変化に伴い接合部
に大きな熱応力が生じ、その接合部もしくはセラミック
ス基体にクラックが発生し易いという問題、換言すると
構成したパワー半導体モジュールが破損するなどの問題
がある。
[Problems to be Solved by the Invention] However, when a heat dissipating substrate or a heat dissipating ceramic substrate constructed as described above is used for mounting the power semiconductor element, etc., the following problems occur. That is, the coefficient of thermal expansion of the ceramic and the conductive metal is, for example, Cu:1.
7×10-6/°C, ALN: 4×10-6/
℃, large thermal stress is generated in the joint due to temperature changes at the joint, and cracks are likely to occur in the joint or the ceramic substrate. In other words, problems such as damage to the configured power semiconductor module. There is.

【0004】前記セラミックスと導電性金属との接合一
体化に伴う熱応力の発生を緩和する手段として、熱膨脹
係数がセラミックスに近いMoや Wを導電性金属とし
て用いることも知られているが、Moや Wはその電気
抵抗がCuに比べて3倍も大きいため、良好な導電性を
要求される場合には適さない。
[0004] As a means to alleviate the thermal stress caused by the integration of the ceramic and conductive metal, it is known to use Mo or W, which has a coefficient of thermal expansion close to that of ceramics, as the conductive metal. Since the electrical resistance of W is three times higher than that of Cu, it is not suitable for cases where good conductivity is required.

【0005】こうした問題を考慮して、良好な導電性を
呈するCu層と熱応力の緩和に効果がある粒子や空孔を
含有させた基材とを複合化する手段も開発されている(
特開昭63−179734 号公報)。この手段は、熱
応力緩和の効果が認められるものの、前記粒子や空孔の
存在により、電気抵抗率の増大、もしくは接合強度の低
下および電気抵抗率の増大を招来するばかりでなく、と
きには接合用のろう材が前記空孔に侵入して、熱応力緩
和の効果を低減ないし喪失してしまうという不都合が認
められる。
[0005] In consideration of these problems, a method has also been developed to combine a Cu layer exhibiting good conductivity with a base material containing particles and pores that are effective in relieving thermal stress (
(Japanese Patent Application Laid-Open No. 63-179734). Although this method is effective in alleviating thermal stress, the presence of the particles and pores not only causes an increase in electrical resistivity or a decrease in bonding strength and an increase in electrical resistivity, but also sometimes causes problems in the bonding process. There is a problem in that the brazing material enters the pores and reduces or loses the thermal stress relaxation effect.

【0006】本発明は上記問題点を解決するためになさ
れたもので、温度変化によって生じる熱応力で、接合部
ないしセラミックスにクラックが生じる問題を解消し、
かつ良好な放熱性などを呈するセラミックス−金属系接
合体の提供を目的とする。
The present invention has been made to solve the above problems, and solves the problem of cracks occurring in joints or ceramics due to thermal stress caused by temperature changes.
The object of the present invention is to provide a ceramic-metal bonded body exhibiting good heat dissipation properties.

【0007】[0007]

【課題を解決するための手段】本発明に係るセラミック
ス−金属系接合体は、所定の温度下での作用応力で超塑
性を呈する金属材料、もしくはこの金属を基としてセラ
ミック微粒子を分散含有する金属基複合材料と、セラミ
ックス基体との接合体であって、前記金属材料もしくは
金属基複合材料とセラミックス基体とが金属材料もしく
は金属基複合材料中の金属の超塑性を利用し熱応力が緩
和されて一体化して成ることを特徴とする。
[Means for Solving the Problems] The ceramic-metal bonded body according to the present invention is a metal material that exhibits superplasticity under applied stress at a predetermined temperature, or a metal based on this metal and containing ceramic fine particles dispersed therein. A bonded body of a matrix composite material and a ceramic substrate, wherein thermal stress is relaxed between the metal material or the metal matrix composite material and the ceramic substrate by utilizing the superplasticity of the metal in the metal material or metal matrix composite material. It is characterized by being integrated.

【0008】すなわち、本発明セラミックス−金属系接
合体は、特定の温度領域の作用応力下で、巨大な伸びを
示す(超塑性を呈する)金属材料の、あるいはこの金属
材料(金属)を基としてセラミック微粒子を分散含有さ
せた金属基複合材料を、セラミックス基体に複数箇所で
接合し、その後の冷却過程において、超塑性を呈する特
定温度まで急却して故意に応力を発生させるか、または
前記超塑性を呈する特定温度領域にて加圧し、前記金属
材料あるいは金属基複合材料にて塑性変形を起こさせて
、冷却時に発生する応力を緩和させた構成を成すもので
ある。つまり、一般に接合温度よりも低温領域にある超
塑性を呈する温度、換言すると冷却過程で呈する超塑性
を利用することを骨子とする。
That is, the ceramic-metal bonded body of the present invention is made of a metal material that exhibits enormous elongation (exhibits superplasticity) under applied stress in a specific temperature range, or is made of a metal material (metal) based on this metal material (metal). A metal matrix composite containing dispersed ceramic fine particles is bonded to a ceramic substrate at multiple locations, and during the subsequent cooling process, the temperature is rapidly raised to a specific temperature at which it exhibits superplasticity to intentionally generate stress. The structure is such that the metal material or metal matrix composite material is pressurized in a specific temperature range exhibiting plasticity to cause plastic deformation, thereby relieving the stress generated during cooling. In other words, the main point is to utilize the temperature at which superplasticity is exhibited, which is generally lower than the bonding temperature, or in other words, the superplasticity exhibited during the cooling process.

【0009】本発明において、所定(特定)温度で超塑
性を呈する金属材料(合金も含む)もしくは金属基複合
材料は、被接合面側における超塑性を呈する金属の組成
比を大にし、段階的に変化させた構成としてもよく、ま
た金属組織はできるだけ微細な結晶粒のものがよい。さ
らに、金属基複合材料においては、超微粒セラミックス
を分散させた構成としておくと、接合時の高温度によっ
て金属結晶粒組織が損なわれることもなくなり、超塑性
を示す温度領域で超塑性変形を起こさせる際、この超塑
性変形の起る温度を低下させ得るので、プロセス的に有
利になる。
In the present invention, the metal material (including alloy) or metal matrix composite material that exhibits superplasticity at a predetermined (specific) temperature is gradually treated by increasing the composition ratio of the metal exhibiting superplasticity on the side to be joined. It is also possible to have a structure changed to, and the metal structure preferably has crystal grains as fine as possible. Furthermore, in metal matrix composite materials, if the ultrafine-grained ceramic is dispersed, the metal grain structure will not be damaged by the high temperatures during bonding, and superplastic deformation will occur in the temperature range where superplasticity occurs. When deforming, the temperature at which this superplastic deformation occurs can be lowered, which is advantageous in terms of process.

【0010】一方、セラミックス基体としては、たとえ
ば AlN、 SiC、BeO など熱伝導性が良好な
もの、あるいは Cu やAlとAl2 O 3 など
のセラミックス絶縁体との積層体などを用い得る。
On the other hand, as the ceramic substrate, a material having good thermal conductivity such as AlN, SiC, BeO, etc., or a laminate of Cu or Al and a ceramic insulator such as Al 2 O 3 can be used.

【0011】[0011]

【作用】本発明に係るセラミックス−金属系接合体にお
いては、セラミックス基体と所定温度で超塑性を示す金
属材料もしくは金属基複合材料との接合において、また
は所定温度で超塑性を示す金属材料もしくは金属基複合
材料を介してのセラミックス基体同士の接合において、
それらの接合部に発生する熱応力が、前記超塑性を示す
金属材料もしくは金属基複合材料の超塑性変形によって
、容易にかつ十分に吸収・緩和されるため、接合部ない
しセラミックス基体にクラックが発生する恐れも全面的
に解消される。つまり、セラミックス基体との熱膨脹差
に起因して発生する熱応力も、容易に吸収・緩和されて
クラックの発生など効果的に防止ないし回避され、加熱
、冷却が繰り返される使用条件でも、破損など起こさず
に熱伝導性基板などとして、常に所要の機能を呈する。
[Function] In the ceramic-metal bonded body according to the present invention, it is possible to bond a ceramic substrate to a metal material or metal matrix composite material that exhibits superplasticity at a predetermined temperature, or a metal material or metal that exhibits superplasticity at a predetermined temperature. When bonding ceramic substrates together via a matrix composite material,
The thermal stress generated at these joints is easily and sufficiently absorbed and alleviated by the superplastic deformation of the metal material or metal matrix composite material exhibiting superplasticity, resulting in cracks in the joints or the ceramic substrate. The fear of doing so is completely eliminated. In other words, the thermal stress that occurs due to the difference in thermal expansion with the ceramic substrate is easily absorbed and relaxed, effectively preventing or avoiding the occurrence of cracks, and even under usage conditions where heating and cooling are repeated, no damage occurs. It always performs the required function as a thermally conductive substrate.

【0012】0012

【実施例】以下図面を参照して本発明の実施例を説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings.

【0013】実施例1 図1は所定温度で超塑性を示す金属材料1としての C
u−Zn  系合金板と、セラミックス基体2としての
Al2 O 3 板との接合体の構成を断面的に示した
ものである。  しかして、前記セラミックス−金属系
接合体は、次のようにして構成されている。すなわち、
 Cu−Zn  系合金板1およびAl2 O 3 板
のそれぞれの被接合面に、ろう材としてのTi−Ag−
Cuを気相成長法でディポジィドする。次いで、 Cu
−Zn系合金板1およびAl2 O 3 板2の被接合
面を対接させて重ね合わせ、780 ℃でろう接した後
、550 ℃まで冷却してこの温度で Cu−Zn  
系合金板1の歪み速度10−2 S−1で塑性変形させ
てから室温間で冷却する。
Example 1 FIG. 1 shows C as a metal material 1 exhibiting superplasticity at a predetermined temperature.
This is a cross-sectional view of the structure of a joined body of a u-Zn alloy plate and an Al2O3 plate serving as a ceramic substrate 2. The ceramic-metal bonded body is constructed as follows. That is,
Ti-Ag- as a brazing material was applied to the surfaces to be joined of the Cu-Zn alloy plate 1 and the Al2O3 plate.
Cu is deposited by vapor phase growth. Next, Cu
- The surfaces to be joined of the Zn-based alloy plate 1 and the Al2O3 plate 2 are brought into contact with each other, overlapped, and brazed at 780°C, then cooled to 550°C and bonded to Cu-Zn at this temperature.
The alloy plate 1 is plastically deformed at a strain rate of 10-2 S-1 and then cooled to room temperature.

【0014】実施例2 図2は所定温度で超塑性を示す金属材料1としての、 
Cu−Zn  系合金を分散・含有するCu板と、セラ
ミックス基体2としてのAlN 板との接合体の構成を
断面的に示したものである。
Example 2 FIG. 2 shows a metal material 1 exhibiting superplasticity at a predetermined temperature.
This is a cross-sectional view of the structure of a joined body of a Cu plate containing a Cu-Zn alloy dispersed therein and an AlN plate serving as a ceramic substrate 2.

【0015】しかして、前記セラミックス−金属系接合
体は、次のようにして構成されている。すなわち、 C
u−Zn  系合金を接合面側に高濃度に分散・含有さ
せた(組成が段階的に変化している)Cu板1および 
AlN板2のそれぞれの被接合面に、ろう材としてのT
i−Ag−Cuを気相成長法でディポジィドする。次い
で、 Cu−Zn  系合金板1およびAl2 O 3
 板の被接合面を対接させて重ね合わせ、780 ℃で
ろう接した後、550 ℃まで冷却してこの温度で C
u−Zn  系合金を分散・含有するCu板1の歪み速
度10−2 S−1で塑性変形させてから室温間で冷却
する。
The ceramic-metal bonded body is constructed as follows. That is, C
Cu plate 1 in which u-Zn alloy is dispersed and contained in high concentration on the joint surface side (composition changes in stages) and
T as a brazing material is applied to each surface of the AlN plate 2 to be joined.
i-Ag-Cu is deposited by vapor phase growth. Next, Cu-Zn alloy plate 1 and Al2O3
The surfaces of the plates to be joined are stacked against each other and brazed at 780°C, then cooled to 550°C and soldered at this temperature.
The Cu plate 1 containing the u-Zn alloy dispersed therein is plastically deformed at a strain rate of 10-2 S-1 and then cooled to room temperature.

【0016】実施例3 図3は所定温度で超塑性を示す金属材料1としての、A
l−Cu−Mg  系合金中に微細粒Al2 O 3 
が分散・含有された金属基複合材料板と、セラミックス
基体2としてのAlN 板との接合体の構成を断面的に
示したものである。
Example 3 FIG. 3 shows A as a metal material 1 exhibiting superplasticity at a predetermined temperature.
Fine grain Al2O3 in l-Cu-Mg alloy
2 is a cross-sectional view showing the structure of a joined body of a metal matrix composite material plate containing dispersed/containing aluminum and an AlN plate serving as a ceramic substrate 2.

【0017】しかして、前記セラミックス−金属系接合
体は、次のようにして構成されている。すなわち、Al
−Cu−Mg  系合金中に微細粒Al2 O 3 が
分散・含有された金属基複合材料板板1および AlN
  板2のそれぞれの被接合面に、ろう材としてのTi
−Ag−Siを気相成長法でディポジィドする。次いで
、前記金属基複合材料板板1およびAl2 O 3 板
の被接合面を対接させて重ね合わせ、560℃でろう接
した後、430℃まで冷却してこの温度でAl−Cu−
Mg系合金中に微細粒Al2 O 3 が分散・含有さ
れた金属基複合材料板板1の歪み速度 1 S−1で塑
性変形させてから室温間で冷却する。
The ceramic-metal bonded body is constructed as follows. That is, Al
-Metal matrix composite material plate 1 and AlN in which fine grains of Al2O3 are dispersed and contained in a Cu-Mg alloy
Ti as a brazing material is applied to each surface of the plate 2 to be joined.
- Deposit Ag-Si by vapor phase growth. Next, the surfaces of the metal matrix composite material plate 1 and the Al2O3 plate to be joined are brought into contact with each other and overlapped, and after being brazed at 560°C, it is cooled to 430°C and Al-Cu-
A metal matrix composite material plate 1 in which fine grains of Al2O3 are dispersed and contained in a Mg-based alloy is plastically deformed at a strain rate of 1 S-1 and then cooled to room temperature.

【0018】実施例4 図4は所定温度で超塑性を示す金属材料1としての、C
u中に微細粒 TiO2 が分散・含有された金属基複
合材料板と、セラミックス基体2としてのAlN 板と
の接合体の構成を断面的に示したものである。
Example 4 FIG. 4 shows C as a metal material 1 exhibiting superplasticity at a predetermined temperature.
This is a cross-sectional view of the structure of a joined body of a metal matrix composite material plate in which fine grains of TiO2 are dispersed and contained in u and an AlN plate serving as a ceramic substrate 2.

【0019】しかして、前記セラミックス−金属系接合
体は、次のようにして構成されている。すなわち、Cu
中に微細粒 TiO2 が分散・含有された金属基複合
材料板1および AlN  板2のそれぞれの被接合面
を対接させて重ね合わせ、1065℃で接合した後、4
70 ℃まで冷却してこの温度でCu中に微細粒 Ti
O2 が分散・含有された金属基複合材料板1の歪み速
度10 S−1で塑性変形させてから室温間で冷却する
The ceramic-metal bonded body is constructed as follows. That is, Cu
The surfaces of the metal matrix composite material plate 1 and the AlN plate 2, in which fine grains of TiO2 are dispersed and contained, are placed one on top of the other, facing each other, and bonded at 1065°C.
Cool to 70 °C, and at this temperature fine grains of Ti are formed in Cu.
The metal matrix composite material plate 1 in which O2 is dispersed and contained is plastically deformed at a strain rate of 10 S-1 and then cooled to room temperature.

【0020】上記でそれぞれ得たセラミックス−金属系
接合体は、いずれも従来のセラミックス−金属系接合体
に比べて良好な接合状態を示し、超塑性を示す金属材料
に塑性変形を施した温度付近と室温との間で、10回熱
疲労試験を行ったところ、剥がれ(接続面の剥離)や、
セラミックス基体にクラックが発生することもなかった
。   なお、本発明に係るセラミックス−金属系接合体は
、上記例示の構成に限定されるものでなく、たとえば図
5および図6にそれぞれ断面的に示すごとく一般的な金
属板3とセラミックス基体との間に、前記所定温度で超
塑性を示す金属材料1もしくは金属基複合材料板1を介
在させ接合一体化した構成としてもよい。そして、図6
の構成において、超塑性を示す金属材料1の組成を、セ
ラミックス基体2との接合界面側の超塑性を示す金属組
成を大にし(巨大な伸びを呈するようにし)、金属板3
との接合界面側を金属板3に近似した組成もしくは同一
な金属相を形成する構成としておくことが望ましい。
[0020] The ceramic-metal bonded bodies obtained above all exhibited a better bonding state than conventional ceramic-metal bonded bodies, and exhibited a bonding condition near the temperature at which plastic deformation was applied to the metal material exhibiting superplasticity. When a thermal fatigue test was performed 10 times between
No cracks occurred in the ceramic substrate. It should be noted that the ceramic-metal bonded body according to the present invention is not limited to the configuration exemplified above, but may be formed by, for example, a general metal plate 3 and a ceramic substrate as shown in cross section in FIGS. 5 and 6, respectively. A structure may be adopted in which a metal material 1 or a metal matrix composite material plate 1 exhibiting superplasticity at the predetermined temperature is interposed between the two and integrally bonded. And Figure 6
In the configuration, the composition of the metal material 1 exhibiting superplasticity is increased so that the metal composition exhibiting superplasticity on the side of the bonding interface with the ceramic substrate 2 is increased (exhibiting enormous elongation), and the metal plate 3
It is desirable that the bonding interface side with the metal plate 3 has a composition similar to that of the metal plate 3 or a configuration in which the same metal phase is formed.

【0021】[0021]

【発明の効果】上記説明したように、本発明に係るセラ
ミックス−金属系接合体は、セラミックス基体と超塑性
を示す金属材料もしくは金属基複合材料、あるいは超塑
性を示す金属材料もしくは金属基複合材料を介して、セ
ラミックス基体と金属板とを接合一体化した構成を成し
ている。しかして、前記接合において超塑性を示す金属
材料もしくは金属基複合材料の、巨大な伸び、換言する
と超塑性を積極的に起こさせ、かつこれを利用して接合
に伴う熱応力の発生が効果的に緩和されている。このた
め、温度変化により生じる熱応力で、接合部あるいはセ
ラミックス基体にクラックが発生する問題(ないしその
恐れ)は全面的に解消・防止され、セラミックス−金属
系接合体として当初の目的・機能を長期間に亘って十分
に保持発揮する。つまり、実装回路装置の放熱性基板な
どとして実用に供した場合、搭載・実装した半導体素子
の放熱に寄与し所定の動作を果たさせる一方、その製造
工程ないし実装回路装置として駆動する過程で破損など
することもない。
[Effects of the Invention] As explained above, the ceramic-metal bonded body according to the present invention is composed of a ceramic substrate and a metal material or metal matrix composite material exhibiting superplasticity, or a metal material or metal matrix composite material exhibiting superplasticity. It has a structure in which the ceramic base and the metal plate are joined and integrated via the . Therefore, it is possible to actively cause a huge elongation, or in other words, superplasticity, of the metal material or metal matrix composite material exhibiting superplasticity during the bonding, and to utilize this to effectively generate thermal stress associated with bonding. has been relaxed. Therefore, the problem (or fear) of cracks occurring in the joint or the ceramic substrate due to thermal stress caused by temperature changes is completely eliminated or prevented, and the original purpose and function of the ceramic-metal joint is maintained. Sufficient retention and performance over a period of time. In other words, when put to practical use as a heat dissipating board for a mounted circuit device, it contributes to the heat dissipation of the mounted/mounted semiconductor element and performs the specified operation, but it is damaged during the manufacturing process or during the process of driving the mounted circuit device. There is nothing to do.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係るセラミックス−金属型接合体の第
1の実施例を示す断面図。
FIG. 1 is a sectional view showing a first embodiment of a ceramic-metal joined body according to the present invention.

【図2】本発明に係るセラミックス−金属型接合体の第
2の実施例を示す断面図。
FIG. 2 is a sectional view showing a second embodiment of the ceramic-metal joined body according to the present invention.

【図3】本発明に係るセラミックス−金属型接合体の第
3の実施例を示す断面図。
FIG. 3 is a sectional view showing a third embodiment of the ceramic-metal joined body according to the present invention.

【図4】本発明に係るセラミックス−金属型接合体の第
4の実施例を示す断面図。
FIG. 4 is a sectional view showing a fourth embodiment of the ceramic-metal joined body according to the present invention.

【図5】本発明に係るセラミックス−金属型接合体の他
の構成例を示す断面図。
FIG. 5 is a sectional view showing another example of the structure of the ceramic-metal joined body according to the present invention.

【図6】本発明に係るセラミックス−金属型接合体のさ
らに他の構成例を示す断面図。
FIG. 6 is a cross-sectional view showing still another example of the structure of the ceramic-metal joined body according to the present invention.

【符号の説明】[Explanation of symbols]

1…超塑性を示す金属材料もしくは金属基複合材料  
  2…セラミックス基体 3…金属板(通常の)
1...Metal material or metal matrix composite material exhibiting superplasticity
2... Ceramic base 3... Metal plate (normal)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  所定の温度下での作用応力で超塑性を
呈する金属材料、もしくはこの金属を基としてセラミッ
ク微粒子を分散含有する金属基複合材料と、セラミック
ス基体との接合体であって、前記金属材料もしくは金属
基複合材料とセラミックス基体とが金属材料もしくは金
属基複合材料中の金属の超塑性を利用し熱応力が緩和さ
れて一体化して成ることを特徴とするセラミックス−金
属系接合体。
1. A joined body of a ceramic substrate and a metal material exhibiting superplasticity under applied stress at a predetermined temperature, or a metal matrix composite material based on this metal and containing ceramic fine particles dispersed therein, comprising: 1. A ceramic-metal bonded body, characterized in that a metal material or metal matrix composite material and a ceramic substrate are integrated by relaxing thermal stress by utilizing the superplasticity of the metal in the metal material or metal matrix composite material.
JP14151691A 1991-06-13 1991-06-13 Ceramic-metal based junction Withdrawn JPH04365362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14151691A JPH04365362A (en) 1991-06-13 1991-06-13 Ceramic-metal based junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14151691A JPH04365362A (en) 1991-06-13 1991-06-13 Ceramic-metal based junction

Publications (1)

Publication Number Publication Date
JPH04365362A true JPH04365362A (en) 1992-12-17

Family

ID=15293788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14151691A Withdrawn JPH04365362A (en) 1991-06-13 1991-06-13 Ceramic-metal based junction

Country Status (1)

Country Link
JP (1) JPH04365362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006957A1 (en) * 1993-09-03 1995-03-09 Kabushiki Kaisha Sekuto Kagaku Radiating plate and cooling method using same
US5413649A (en) * 1993-07-29 1995-05-09 Massachusetts Institute Of Technology Method for enhancing superplasticity in composites

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413649A (en) * 1993-07-29 1995-05-09 Massachusetts Institute Of Technology Method for enhancing superplasticity in composites
WO1995006957A1 (en) * 1993-09-03 1995-03-09 Kabushiki Kaisha Sekuto Kagaku Radiating plate and cooling method using same
AU691517B2 (en) * 1993-09-03 1998-05-21 Suikoh Topline Co., Ltd Radiating plate and cooling method using same
US5762131A (en) * 1993-09-03 1998-06-09 Kabushiki Kaisha Sekuto Kagaku Heat radiating board and method for cooling by using the same
CN1050447C (en) * 1993-09-03 2000-03-15 株式会社世久途化学 Heat insulating plate and heat insulating method using same
KR100353427B1 (en) * 1993-09-03 2002-12-16 가부시키가이샤세쿠토카가쿠 Heat sink and cooling method using it

Similar Documents

Publication Publication Date Title
KR101215695B1 (en) Heat dissipation device and power module
US4556899A (en) Insulated type semiconductor devices
TWI600126B (en) Power module substrate having heatsink, power module having heatsink, and producing method of power module substrate having heatsink
US4081825A (en) Conduction-cooled circuit package
US9807865B2 (en) Substrate for power modules, substrate with heat sink for power modules, and power module
JPH04162756A (en) Semiconductor module
JP2005011922A (en) Double-sided copper clad substrate equipped with heat sink, and semiconductor device using it
US5796049A (en) Electronics mounting plate with heat exchanger and method for manufacturing same
US6534792B1 (en) Microelectronic device structure with metallic interlayer between substrate and die
JPH04192341A (en) Semiconductor device
JPH04365362A (en) Ceramic-metal based junction
JPH08102570A (en) Ceramic circuit board
JPH0496355A (en) Manufacture of semiconductor device
JP4013423B2 (en) Bonded body of ceramic layer and metal conductor layer
KR102064158B1 (en) Heat sink plate
JP3044952B2 (en) Semiconductor chip mounting structure
JP6508182B2 (en) Semiconductor module and method of manufacturing the same
JPH0815189B2 (en) Method for manufacturing semiconductor device
JP2004343035A (en) Heat radiating component, circuit board, and semiconductor device
JPH08222670A (en) Package for mounting semiconductor element
JP2558574B2 (en) Semiconductor device
JP3583019B2 (en) Joint structure of heat dissipation wiring board
CN216389353U (en) Power module with step pad formed on ceramic substrate
JP4667723B2 (en) Power module substrate
JP2005050919A (en) Circuit board and semiconductor device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903