JPH04363141A - Catalyst for catalytic reduction of carbon dioxide and production of methanol using the same - Google Patents

Catalyst for catalytic reduction of carbon dioxide and production of methanol using the same

Info

Publication number
JPH04363141A
JPH04363141A JP3069154A JP6915491A JPH04363141A JP H04363141 A JPH04363141 A JP H04363141A JP 3069154 A JP3069154 A JP 3069154A JP 6915491 A JP6915491 A JP 6915491A JP H04363141 A JPH04363141 A JP H04363141A
Authority
JP
Japan
Prior art keywords
catalyst
methanol
selectivity
copper
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3069154A
Other languages
Japanese (ja)
Other versions
JPH0736893B2 (en
Inventor
Kazuhiro Sayama
和弘 佐山
Hironori Arakawa
裕則 荒川
Kiyomi Okabe
岡部 清美
Kinya Shimomura
欣也 下村
Hiroyuki Hagiwara
萩原 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3069154A priority Critical patent/JPH0736893B2/en
Publication of JPH04363141A publication Critical patent/JPH04363141A/en
Publication of JPH0736893B2 publication Critical patent/JPH0736893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst for catalytic reduction of carbon dioxide and to produce methanol with the catalyst. CONSTITUTION:Copper, zinc oxide and magnesium oxide are supported on titanium dioxide as a carrier. The amt. of the magnesium oxide added is increased, formation of carbon monoxide is selectively inhibited and the selectivity of methanol is enhanced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は二酸化炭素の接触還元用
触媒と、これを用いて二酸化炭素から効率的にメタノー
ルを製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for catalytic reduction of carbon dioxide and a method for efficiently producing methanol from carbon dioxide using the catalyst.

【0002】より詳細には、本発明は二酸化チタン担体
とし、これに銅成分と酸化亜鉛成分および酸化マグネシ
ウム成分を担持した新規な固体触媒と、この触媒の存在
下に次式に示すように二酸化炭素と水素の混合ガスから
効率的にメタノールを製造する方法に関するものである
。 CO2+3H2→CH3OH+H2O
More specifically, the present invention comprises a titanium dioxide carrier, a novel solid catalyst in which a copper component, a zinc oxide component, and a magnesium oxide component are supported, and in the presence of this catalyst, a titanium dioxide carrier as shown in the following formula. The present invention relates to a method for efficiently producing methanol from a mixed gas of carbon and hydrogen. CO2+3H2→CH3OH+H2O

【0003】0003

【従来の技術】メタノールは重要な基礎化学品であり、
世界で年間約2000万トンの需要がある。その合成は
、天然ガスや石油、石炭を水蒸気改質や部分酸化して得
ることができる一酸化炭素と水素の混合ガス(合成ガス
)を原料として、次式のように高温高圧下での触媒反応
により合成され、完成度の高い実用化プロセスとなって
いる。 CO+2H2→CH3OH
[Prior art] Methanol is an important basic chemical;
There is a worldwide demand of approximately 20 million tons per year. Its synthesis uses a mixed gas (synthesis gas) of carbon monoxide and hydrogen, which can be obtained by steam reforming or partial oxidation of natural gas, oil, or coal, as a raw material, using a catalyst under high temperature and high pressure as shown in the following formula. It is synthesized through a reaction, making it a highly complete process for practical use. CO+2H2→CH3OH

【0004】一方、合成ガス以外からのメタノール合成
法に関しては、例えば二酸化炭素と水素からの合成が学
術的見地から基礎研究レベルで検討されているにすぎな
い。
[0004] On the other hand, as for methods of synthesizing methanol from sources other than synthesis gas, synthesis from carbon dioxide and hydrogen, for example, has only been studied at the basic research level from an academic standpoint.

【0005】[0005]

【発明が解決しようとする課題】昨今の世界的な産業経
済活動規模の拡大にともない、地球レベルでの環境破壊
が重要な問題となり、その対応策が世界的に検討され始
めている。なかでも、地球温暖化問題は人類のみならず
、地球そのものにも著しい悪影響を与えることが推定さ
れ、地球温暖化の主要因とされている二酸化炭素の大気
中への排出を防止すべく、その対応策の確立が強く要請
されている。
[Problem to be Solved by the Invention] With the recent expansion of the scale of global industrial and economic activities, environmental destruction on a global level has become an important problem, and countermeasures have begun to be considered worldwide. In particular, the problem of global warming is estimated to have a significant negative impact not only on humanity but also on the earth itself, and efforts are being made to prevent the emission of carbon dioxide into the atmosphere, which is considered the main cause of global warming. There is a strong need to establish countermeasures.

【0006】本発明は二酸化炭素による地球温暖化を防
ぐべく排出二酸化炭素を再資源化し、メタノールに効率
的に変換するための新しい触媒とプロセスを確立するこ
とを目的とし、新規な二酸化炭素の接触還元用触媒と効
率的なメタノール合成の新しい方法を提供するものであ
る。
The purpose of the present invention is to establish a new catalyst and process for recycling exhaust carbon dioxide and efficiently converting it into methanol in order to prevent global warming caused by carbon dioxide. It provides a new method for reducing catalysts and efficient methanol synthesis.

【0007】[0007]

【課題を解決するための手段】前記目的を達成する本発
明の触媒は、二酸化チタンを担体とし、これに銅、酸化
亜鉛および酸化マグネシウムを担持せしめてなるもので
あり、また本発明のメタノールの製造方法は、かかる触
媒の存在下に二酸化炭素を水素ガスにより接触水素化し
てメタノールを製造するものである。特に二酸化チタン
を担体とし、これに銅と酸化亜鉛および酸化マグネシウ
ムを担持した新規な固体触媒を用いることにより、二酸
化炭素の接触水素化による効率的なメタノールへの変換
が可能である。この反応の副生成物として一番問題とな
るのは一酸化炭素であり、この生成を如何に抑えるかが
メタノ−ル選択性向上へのポイントとなる。本発明の触
媒では二酸化チタン担持銅−酸化亜鉛触媒に酸化マグネ
シウムを添加することにより一酸化炭素の生成を抑制し
メタノール選択性を向上させることができる。
[Means for Solving the Problems] The catalyst of the present invention that achieves the above object is made of titanium dioxide as a carrier, on which copper, zinc oxide, and magnesium oxide are supported, and the methanol of the present invention. The production method is to catalytically hydrogenate carbon dioxide with hydrogen gas in the presence of such a catalyst to produce methanol. In particular, by using a novel solid catalyst in which copper, zinc oxide, and magnesium oxide are supported on titanium dioxide as a carrier, it is possible to efficiently convert carbon dioxide into methanol through catalytic hydrogenation. The most problematic by-product of this reaction is carbon monoxide, and the key to improving methanol selectivity is how to suppress its formation. In the catalyst of the present invention, the production of carbon monoxide can be suppressed and the methanol selectivity can be improved by adding magnesium oxide to the copper-zinc oxide catalyst supporting titanium dioxide.

【0008】以下に、本発明を詳細に説明する。まず本
発明の、担体の二酸化チタンと、これに担持された銅、
酸化亜鉛および酸化マグネシウムからなる触媒は、如何
なる物理的な形態を持っていてもよい。すなわち微粉末
、粗粒子、ペレットなどその形態は任意である。また表
面積は0.1〜1000m2/g程度のものでよく、細
孔が存在する場合でも、その大きさや分布が任意のもの
を使用することができる。好ましくは、径1.5mm前
後の粒子に成型したものがよい。
The present invention will be explained in detail below. First, the titanium dioxide of the present invention and the copper supported on it,
The catalyst consisting of zinc oxide and magnesium oxide may have any physical form. That is, the form thereof may be arbitrary, such as fine powder, coarse particles, pellets, etc. Further, the surface area may be about 0.1 to 1000 m2/g, and even if pores are present, any size and distribution of pores can be used. Preferably, it is formed into particles with a diameter of about 1.5 mm.

【0009】銅および酸化亜鉛の担持量は任意であるが
、好ましい銅の担持量は1〜30wt%である。また銅
/酸化亜鉛の比は、モル比で100/1〜1/100で
あり、好ましくは3/1〜1/3の範囲である。酸化マ
グネシウムは10wt%以下で使用する。
[0009] The amount of copper and zinc oxide supported is arbitrary, but the preferred amount of copper supported is 1 to 30 wt%. Further, the molar ratio of copper/zinc oxide is from 100/1 to 1/100, preferably from 3/1 to 1/3. Magnesium oxide is used in an amount of 10 wt% or less.

【0010】かかる本発明の触媒を製造するには、まず
二酸化チタンに銅、亜鉛化合物およびマグネシウム化合
物を担持せしめる。担体の二酸化チタンは、市販品をそ
のまま使用してもよいが、二酸化チタン中の水や不純物
を除去するために予め150〜500℃の間で排気加熱
処理を行うのが好ましい。
In order to produce the catalyst of the present invention, copper, zinc compounds and magnesium compounds are first supported on titanium dioxide. Although a commercially available titanium dioxide carrier may be used as it is, it is preferable to heat the titanium dioxide in advance at a temperature of 150 to 500° C. in order to remove water and impurities.

【0011】亜鉛化合物およびマグネシウム化合物とし
ては、これら金属の硝酸塩、硫酸塩、塩化物などの無機
酸塩や、酢酸塩などの有機酸塩を適宜使用することがで
きるが、硝酸塩や酢酸塩の使用が好ましい。銅の原料と
しても硝酸塩、硫酸塩、塩化物、有機酸塩を使用できる
が、同様に硝酸塩や酢酸塩の使用が好ましい。
As the zinc compound and magnesium compound, inorganic acid salts of these metals such as nitrates, sulfates, and chlorides, and organic acid salts such as acetates can be used as appropriate. is preferred. Although nitrates, sulfates, chlorides, and organic acid salts can be used as raw materials for copper, it is similarly preferable to use nitrates and acetates.

【0012】銅、亜鉛化合物およびマグネシウム化合物
を酸化チタンに担持する方法としては、含浸法や沈澱法
、物理的混合法など任意の方法を採用できる。好ましく
は酸化亜鉛および酸化マグネシウム換算で前記した範囲
の亜鉛化合物およびマグネシウム化合物を含む溶液を含
浸液とする含浸法が使用される。
[0012] As a method for supporting copper, zinc compounds, and magnesium compounds on titanium oxide, any method such as an impregnation method, a precipitation method, or a physical mixing method can be adopted. Preferably, an impregnation method is used in which a solution containing a zinc compound and a magnesium compound in the ranges described above in terms of zinc oxide and magnesium oxide is used as an impregnation liquid.

【0013】次いで銅、亜鉛化合物およびマグネシウム
化合物が担持された酸化チタンを酸素気流中または空気
気流中で焼成する。焼成温度は200〜800℃の間の
温度、好ましくは400〜600℃の間の温度である。 担持された銅および酸化亜鉛前駆体が水素気流下で分解
する触媒は、焼成処理は必ずしも必要ではない。
Next, the titanium oxide on which copper, zinc compounds and magnesium compounds are supported is fired in an oxygen stream or an air stream. The firing temperature is between 200 and 800C, preferably between 400 and 600C. A catalyst in which supported copper and zinc oxide precursors are decomposed under a hydrogen stream does not necessarily require calcination treatment.

【0014】銅と酸化亜鉛および酸化マグネシウムを担
持する順番は、はじめに銅と酸化亜鉛を同時に担持させ
、焼成した後に、マグネシウム化合物を担持せしめて焼
成するのが好ましい。
[0014] Regarding the order in which copper, zinc oxide, and magnesium oxide are supported, it is preferable that copper and zinc oxide are first supported at the same time, and then fired, and then the magnesium compound is supported and fired.

【0015】焼成された触媒は、水素気流中で還元処理
を行う。還元温度は100〜1000℃までの間の温度
であり、好ましくは200〜600℃の間の温度である
。この還元処理によって、反応の活性サイトである銅の
メタルを生成することができる。
The calcined catalyst is subjected to a reduction treatment in a hydrogen stream. The reduction temperature is between 100 and 1000<0>C, preferably between 200 and 600<0>C. Through this reduction treatment, copper metal, which is an active site for the reaction, can be generated.

【0016】次に前記した本発明の触媒を用いるメタノ
ールの製造について述べる。二酸化炭素と水素の混合ガ
スからのメタノール製造反応の形式は任意であり、気相
固定床流通式、気相流動床、液相懸濁床のいずれでもよ
い。使用される触媒は、例えば反応管に充填した後、反
応に先だって水素還元処理を行うことが好ましいが、こ
の処理はなくてもよい。本発明を実施する条件、すなわ
ち炭酸ガスと水素の混合ガスからメタノールを合成する
反応条件として、圧力は常圧〜300kg/cm2、好
ましくは10〜100kg/cm2で、反応温度は10
0〜400℃、好ましくは180〜300℃がよい。C
O2/H2モル比は1/10〜3/1であり、好ましく
は1/4〜1/1を使用する。また、反応ガスの流速は
任意であるが、空間速度としてGHSVが50〜200
00h−1が好ましい。
Next, the production of methanol using the catalyst of the present invention described above will be described. The reaction for producing methanol from a mixed gas of carbon dioxide and hydrogen can be carried out in any manner, and may be a gas phase fixed bed flow system, a gas phase fluidized bed, or a liquid phase suspended bed. It is preferable that the catalyst used is subjected to a hydrogen reduction treatment prior to the reaction, for example after being filled into a reaction tube, but this treatment may be omitted. The conditions for carrying out the present invention, that is, the reaction conditions for synthesizing methanol from a mixed gas of carbon dioxide and hydrogen, are a pressure of normal pressure to 300 kg/cm2, preferably 10 to 100 kg/cm2, and a reaction temperature of 10 kg/cm2.
The temperature is 0 to 400°C, preferably 180 to 300°C. C
The O2/H2 molar ratio is from 1/10 to 3/1, preferably from 1/4 to 1/1. In addition, although the flow rate of the reaction gas is arbitrary, the space velocity of GHSV is 50 to 200.
00h-1 is preferred.

【0017】[0017]

【実施例】以下、本発明の実施例を述べる。[Examples] Examples of the present invention will be described below.

【0018】実施例1 市販の二酸化チタンを200℃で1時間加熱排気した(
この操作は二酸化チタン中の水や不純物を除去するため
である)。室温まで放冷した後、硝酸銅と硝酸亜鉛の混
合水溶液(水量は二酸化チタン重量の半分)を少しずつ
滴下した。この操作は二酸化チタンおよび水溶液を大気
に触れさせないようにして行った。滴下後1時間放置し
た後、120℃までゆっくりと加熱排気して水分を蒸発
させた。
Example 1 Commercially available titanium dioxide was heated and evacuated at 200°C for 1 hour (
This operation is to remove water and impurities from titanium dioxide). After cooling to room temperature, a mixed aqueous solution of copper nitrate and zinc nitrate (the amount of water was half the weight of titanium dioxide) was dropped little by little. This operation was carried out in such a way that titanium dioxide and the aqueous solution were not exposed to the atmosphere. After being left for 1 hour after dropping, the mixture was slowly heated to 120° C. and evacuated to evaporate water.

【0019】次にこれを空気流通下で焼成し、銅および
亜鉛前駆体を分解して酸化物とした。焼成は100℃、
200℃、300℃、400℃をそれぞれ1時間ずつ段
階的に温度を上げていき、その後室温まで放冷した。続
いてこの触媒にマグネシウムを含浸した。すなわち、硝
酸マグネシウム水溶液を均一に滴下した後、100℃で
乾燥させた(硝酸マグネシウムは後に行う水素還元によ
って分解し、酸化マグネシウムになる)。以上、この触
媒を反応管に充填し水素還元処理後反応に用いた。
Next, this was fired under air circulation to decompose the copper and zinc precursors into oxides. Firing at 100℃
The temperature was raised stepwise to 200°C, 300°C, and 400°C for 1 hour each, and then allowed to cool to room temperature. This catalyst was subsequently impregnated with magnesium. That is, after uniformly dropping an aqueous magnesium nitrate solution, it was dried at 100°C (magnesium nitrate is decomposed by the hydrogen reduction performed later and becomes magnesium oxide). As described above, this catalyst was filled into a reaction tube and used for the reaction after hydrogen reduction treatment.

【0020】実施例2 固定床加圧流通式反応装置の反応管にCO2のメタノ−
ルへの変換用触媒として実施例1で製造したチタニア(
TiO2)に銅、酸化亜鉛(銅担持量5wt%,銅/酸
化亜鉛モル比1:1)および酸化マグネシウム1wt%
を担持した触媒を1g充填した。反応に先立って触媒を
350℃で30分水素還元処理した。水素気流中で放冷
した後、室温にて反応ガス(CO2/H2/Ar=30
/60/10,Arは内部標準)に切り替え、反応圧力
30kg/cm2、流速100ml/minで反応を行
った。反応温度220℃でのメタノ−ル生成速度は11
90μmol/g.h、選択率82%であった。副生成
物としてはCOが270μmol/g.h(選択率18
%)、およびごく微量のメタンであった。反応温度24
0℃でのメタノ−ル生成速度は1870μmol/g.
h、選択率73%であり、CO生成速度は690μmo
l/g.h、選択率26%であった。反応温度260℃
でのメタノ−ル生成速度は2430μmol/g.h、
選択率58%であり、CO生成速度は1760μmol
/g.h、選択率41%であった。反応温度280℃で
のメタノ−ル生成速度は2410μmol/g.h、選
択率39%であり、CO生成速度は3760μmol/
g.h、選択率61%であった。
Example 2 CO2 methanol was added to the reaction tube of a fixed bed pressurized flow reactor.
The titania produced in Example 1 as a catalyst for conversion to
TiO2), copper, zinc oxide (copper loading 5wt%, copper/zinc oxide molar ratio 1:1) and magnesium oxide 1wt%
1 g of the catalyst supporting the above was charged. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (CO2/H2/Ar=30
/60/10, Ar is an internal standard), and the reaction was carried out at a reaction pressure of 30 kg/cm2 and a flow rate of 100 ml/min. The methanol production rate at a reaction temperature of 220°C is 11
90μmol/g. h, selectivity was 82%. As a by-product, CO is 270 μmol/g. h (selectivity 18
%), and a very small amount of methane. Reaction temperature 24
The methanol production rate at 0°C is 1870 μmol/g.
h, selectivity is 73%, CO production rate is 690 μmo
l/g. h, selectivity was 26%. Reaction temperature 260℃
The methanol production rate was 2430 μmol/g. h,
Selectivity is 58%, CO production rate is 1760 μmol
/g. h, selectivity was 41%. The methanol production rate at a reaction temperature of 280°C is 2410 μmol/g. h, the selectivity is 39%, and the CO production rate is 3760 μmol/
g. h, selectivity was 61%.

【0021】実施例3 固定床加圧流通式反応装置の反応管にCO2のメタノ−
ルへの変換用触媒としてチタニア(TiO2)に銅、酸
化亜鉛(銅担持量5wt%,銅/酸化亜鉛モル比1:1
)および酸化マグネシウム2wt%を担持した触媒を1
g充填した。反応に先立って触媒を350℃で30分水
素還元処理した。水素気流中で放冷した後、室温にて反
応ガス(CO2/H2/Ar=30/60/10,Ar
は内部標準)に切り替え、反応圧力30kg/cm2、
流速100ml/minで反応を行った。反応温度22
0℃でのメタノ−ル生成速度は1120μmol/g.
h、選択率83%であった。副生成物としてはCOが2
30μmol/g.h(選択率17%)、およびごく微
量のメタンであった。反応温度240℃でのメタノ−ル
生成速度は1600μmol/g.h、選択率75%で
あり、CO生成速度は540μmol/g.h、選択率
25%であった。反応温度260℃でのメタノ−ル生成
速度は2200μmol/g.h、選択率60%であり
、CO生成速度は1440μmol/g.h、選択率4
0%であった。反応温度280℃でのメタノ−ル生成速
度は2390μmol/g.h、選択率42%であり、
CO生成速度は3320μmol/g.h、選択率58
%であった。
Example 3 CO2 methanol was added to the reaction tube of a fixed bed pressurized flow reactor.
Copper and zinc oxide (copper loading amount 5 wt%, copper/zinc oxide molar ratio 1:1) are used as a catalyst for conversion to titania (TiO2).
) and a catalyst supporting 2 wt% of magnesium oxide.
g filled. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (CO2/H2/Ar=30/60/10, Ar
(internal standard), reaction pressure 30 kg/cm2,
The reaction was carried out at a flow rate of 100 ml/min. Reaction temperature 22
The methanol production rate at 0°C is 1120 μmol/g.
h, selectivity was 83%. As a by-product, CO is 2
30μmol/g. h (selectivity 17%), and a very small amount of methane. The methanol production rate at a reaction temperature of 240°C is 1600 μmol/g. h, the selectivity is 75%, and the CO production rate is 540 μmol/g. h, selectivity was 25%. The methanol production rate at a reaction temperature of 260°C is 2200 μmol/g. h, the selectivity is 60%, and the CO production rate is 1440 μmol/g. h, selection rate 4
It was 0%. The methanol production rate at a reaction temperature of 280°C is 2390 μmol/g. h, the selection rate is 42%,
The CO production rate is 3320 μmol/g. h, selectivity 58
%Met.

【0022】実施例4 固定床加圧流通式反応装置の反応管にCO2のメタノ−
ルへの変換用触媒としてチタニア(TiO2)に銅、酸
化亜鉛(銅担持量5wt%,銅/酸化亜鉛モル比1:1
)および酸化マグネシウム3wt%を担持した触媒を1
g充填した。反応に先立って触媒を350℃で30分水
素還元処理した。水素気流中で放冷した後、室温にて反
応ガス(CO2/H2/Ar=30/60/10,Ar
は内部標準)に切り替え、反応圧力30kg/cm2、
流速100ml/minで反応を行った。反応温度22
0℃でのメタノ−ル生成速度は910μmol/g.h
、選択率85%であった。副生成物としてはCOが16
0μmol/g.h(選択率15%)、およびごく微量
のメタンであった。反応温度240℃でのメタノ−ル生
成速度は1540μmol/g.h、選択率77%であ
り、CO生成速度は460μmol/g.h、選択率2
3%であった。反応温度260℃でのメタノ−ル生成速
度は2110μmol/g.h、選択率63%であり、
CO生成速度は1240μmol/g.h、選択率37
%であった。反応温度280℃でのメタノ−ル生成速度
は2220μmol/g.h、選択率45%であり、C
O生成速度は2710μmol/g.h、選択率55%
であった。
Example 4 CO2 methanol was added to the reaction tube of a fixed bed pressurized flow reactor.
Copper and zinc oxide (copper loading amount 5 wt%, copper/zinc oxide molar ratio 1:1) are used as a catalyst for conversion to titania (TiO2).
) and a catalyst supporting 3 wt% of magnesium oxide.
g filled. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (CO2/H2/Ar=30/60/10, Ar
(internal standard), reaction pressure 30 kg/cm2,
The reaction was carried out at a flow rate of 100 ml/min. Reaction temperature 22
The methanol production rate at 0°C is 910 μmol/g. h
, the selectivity was 85%. As a by-product, CO is 16
0 μmol/g. h (selectivity 15%), and a very small amount of methane. The methanol production rate at a reaction temperature of 240°C is 1540 μmol/g. h, the selectivity was 77%, and the CO production rate was 460 μmol/g. h, selection rate 2
It was 3%. The methanol production rate at a reaction temperature of 260°C is 2110 μmol/g. h, selectivity is 63%,
The CO production rate is 1240 μmol/g. h, selection rate 37
%Met. The methanol production rate at a reaction temperature of 280°C is 2220 μmol/g. h, selectivity is 45%, C
The O production rate was 2710 μmol/g. h, selection rate 55%
Met.

【0023】実施例5 固定床加圧流通式反応装置の反応管にCO2のメタノ−
ルへの変換用触媒としてチタニア(TiO2)に銅、酸
化亜鉛(銅担持量5wt%,銅/酸化亜鉛モル比1:1
)および酸化マグネシウム5wt%を担持した触媒を1
g充填した。反応に先立って触媒を350℃で30分水
素還元処理した。水素気流中で放冷した後、室温にて反
応ガス(CO2/H2/Ar=30/60/10,Ar
は内部標準)に切り替え、反応圧力30kg/cm2、
流速100ml/minで反応を行った。反応温度22
0℃でのメタノ−ル生成速度は810μmol/g.h
、選択率93%であった。副生成物としてはCOが60
μmol/g.h(選択率7%)、およびごく微量のメ
タンであった。反応温度240℃でのメタノ−ル生成速
度は1230μmol/g.h、選択率79%であり、
CO生成速度は340μmol/g.h、選択率21%
であった。反応温度260℃でのメタノ−ル生成速度は
1710μmol/g.h、選択率69%であり、CO
生成速度は780μmol/g.h、選択率31%であ
った。反応温度280℃でのメタノ−ル生成速度は21
00μmol/g.h、選択率53%であり、CO生成
速度は1840μmol/g.h、選択率47%であっ
た。
Example 5 CO2 methanol was added to the reaction tube of a fixed bed pressurized flow reactor.
Copper and zinc oxide (copper supported amount: 5 wt%, copper/zinc oxide molar ratio 1:1) are used as a catalyst for conversion to titania (TiO2).
) and a catalyst supporting 5 wt% of magnesium oxide.
g filled. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (CO2/H2/Ar=30/60/10, Ar
(internal standard), reaction pressure 30 kg/cm2,
The reaction was carried out at a flow rate of 100 ml/min. Reaction temperature 22
The methanol production rate at 0°C is 810 μmol/g. h
, the selectivity was 93%. As a by-product, CO is 60
μmol/g. h (selectivity 7%), and a very small amount of methane. The methanol production rate at a reaction temperature of 240°C is 1230 μmol/g. h, the selectivity is 79%,
The CO production rate is 340 μmol/g. h, selection rate 21%
Met. The methanol production rate at a reaction temperature of 260°C was 1710 μmol/g. h, selectivity is 69%, CO
The production rate is 780 μmol/g. h, selectivity was 31%. The methanol production rate at a reaction temperature of 280°C is 21
00 μmol/g. h, the selectivity was 53%, and the CO production rate was 1840 μmol/g. h, selectivity was 47%.

【0024】比較例1 固定床加圧流通式反応装置の反応管にCO2のメタノ−
ルへの変換用触媒としてチタニア(TiO2)に銅、酸
化亜鉛(銅担持量5wt%,銅/酸化亜鉛モル比1:1
)を担持した触媒を1g充填した。反応に先立って触媒
を350℃で30分水素還元処理した。水素気流中で放
冷した後、室温にて反応ガス(CO2/H2/Ar=3
0/60/10,Arは内部標準)に切り替え、反応圧
力30kg/cm2、流速100ml/minで反応を
行った。反応温度220℃でのメタノ−ル生成速度は1
280μmol/g.h、選択率78%であった。副生
成物としてはCOが360μmol/g.h(選択率2
2%)、およびごく微量のメタンであった。反応温度2
40℃でのメタノ−ル生成速度は1800μmol/g
.h、選択率69%であり、CO生成速度は820μm
ol/g.h、選択率31%であった。反応温度260
℃でのメタノ−ル生成速度は2270μmol/g.h
、選択率52%であり、CO生成速度は2080μmo
l/g.h、選択率48%であった。反応温度280℃
でのメタノ−ル生成速度は2250μmol/g.h、
選択率35%であり、CO生成速度は4215μmol
/g.h、選択率65%であった。
Comparative Example 1 CO2 methanol was added to the reaction tube of a fixed bed pressurized flow reactor.
Copper and zinc oxide (copper loading amount 5 wt%, copper/zinc oxide molar ratio 1:1) are used as a catalyst for conversion to titania (TiO2).
) was charged in an amount of 1 g. Prior to the reaction, the catalyst was subjected to hydrogen reduction treatment at 350°C for 30 minutes. After cooling in a hydrogen stream, the reaction gas (CO2/H2/Ar=3
(0/60/10, Ar is an internal standard), and the reaction was carried out at a reaction pressure of 30 kg/cm2 and a flow rate of 100 ml/min. The methanol production rate at a reaction temperature of 220°C is 1
280μmol/g. h, selectivity was 78%. As a by-product, CO is 360 μmol/g. h(selection rate 2
2%) and a very small amount of methane. Reaction temperature 2
Methanol production rate at 40℃ is 1800 μmol/g
.. h, selectivity is 69%, CO production rate is 820 μm
ol/g. h, selectivity was 31%. Reaction temperature 260
The methanol production rate at ℃ is 2270 μmol/g. h
, the selectivity is 52%, and the CO production rate is 2080 μmo
l/g. h, selectivity was 48%. Reaction temperature 280℃
The methanol production rate was 2250 μmol/g. h,
The selectivity is 35% and the CO production rate is 4215 μmol
/g. h, selectivity was 65%.

【0025】前記実施例1〜4および比較例1の結果を
まとめて後記表1に示す。この表1から明らかなとおり
、MgO添加量が増加するにつれてメタノール選択性が
上昇し、CO選択性が低下する。また、MgO添加量一
定の場合に、反応温度の上昇につれてメタノール選択性
が低下し、CO選択性が上昇する。しかしながら、比較
例1(MgO無添加)と比較して、いずれの場合もメタ
ノール選択性は高くCO選択性は低い。
The results of Examples 1 to 4 and Comparative Example 1 are summarized in Table 1 below. As is clear from Table 1, as the amount of MgO added increases, the methanol selectivity increases and the CO selectivity decreases. Further, when the amount of MgO added is constant, methanol selectivity decreases and CO selectivity increases as the reaction temperature increases. However, compared to Comparative Example 1 (no MgO added), methanol selectivity is high in all cases and CO selectivity is low.

【0026】[0026]

【表1】[Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  二酸化チタンを担体とし、これに銅、
酸化亜鉛および酸化マグネシウムを担持せしめてなるこ
とを特徴とする接触水素化用触媒。
Claim 1: Titanium dioxide is used as a carrier, and copper,
A catalyst for catalytic hydrogenation characterized by supporting zinc oxide and magnesium oxide.
【請求項2】  二酸化チタンを担体とし、これに銅、
酸化亜鉛および酸化マグネシウムを担持せしめた触媒の
存在下に二酸化炭素を水素ガスにより接触水素化してメ
タノールを製造する方法。
Claim 2: Titanium dioxide is used as a carrier, and copper,
A method for producing methanol by catalytically hydrogenating carbon dioxide with hydrogen gas in the presence of a catalyst supporting zinc oxide and magnesium oxide.
JP3069154A 1991-03-08 1991-03-08 Catalyst for catalytic reduction of carbon dioxide and method for producing methanol using the same Expired - Lifetime JPH0736893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3069154A JPH0736893B2 (en) 1991-03-08 1991-03-08 Catalyst for catalytic reduction of carbon dioxide and method for producing methanol using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3069154A JPH0736893B2 (en) 1991-03-08 1991-03-08 Catalyst for catalytic reduction of carbon dioxide and method for producing methanol using the same

Publications (2)

Publication Number Publication Date
JPH04363141A true JPH04363141A (en) 1992-12-16
JPH0736893B2 JPH0736893B2 (en) 1995-04-26

Family

ID=13394475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3069154A Expired - Lifetime JPH0736893B2 (en) 1991-03-08 1991-03-08 Catalyst for catalytic reduction of carbon dioxide and method for producing methanol using the same

Country Status (1)

Country Link
JP (1) JPH0736893B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443260B1 (en) * 2001-10-30 2004-08-04 한국화학연구원 Preparation of high efficient photocatalyst for reduction of carbon dioxide to form fuels
JP2017170430A (en) * 2016-03-16 2017-09-28 株式会社東芝 Catalyst for fuel synthesis and fuel synthesis system
CN114029063A (en) * 2021-12-16 2022-02-11 厦门大学 Catalyst for preparing methanol by carbon dioxide hydrogenation and preparation method thereof
CN114950419A (en) * 2022-04-20 2022-08-30 江南大学 Metal catalyst for preparing methanol by carbon dioxide hydrogenation and application thereof
CN115551636A (en) * 2020-04-24 2022-12-30 中国电力株式会社 Carbon dioxide reduction catalyst and carbon dioxide reduction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130547A (en) * 1981-02-06 1982-08-13 Mitsubishi Gas Chem Co Inc Catalyst for methanol synthesis
JPS5867352A (en) * 1981-07-22 1983-04-21 エレクトリツク・パワ−・リサ−チ・インスチテユ−ト・インコ−ポレ−テツド Catalyst for methanol synthesis
JPS6427645A (en) * 1987-06-22 1989-01-30 Ici Plc Catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130547A (en) * 1981-02-06 1982-08-13 Mitsubishi Gas Chem Co Inc Catalyst for methanol synthesis
JPS5867352A (en) * 1981-07-22 1983-04-21 エレクトリツク・パワ−・リサ−チ・インスチテユ−ト・インコ−ポレ−テツド Catalyst for methanol synthesis
JPS6427645A (en) * 1987-06-22 1989-01-30 Ici Plc Catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443260B1 (en) * 2001-10-30 2004-08-04 한국화학연구원 Preparation of high efficient photocatalyst for reduction of carbon dioxide to form fuels
JP2017170430A (en) * 2016-03-16 2017-09-28 株式会社東芝 Catalyst for fuel synthesis and fuel synthesis system
CN115551636A (en) * 2020-04-24 2022-12-30 中国电力株式会社 Carbon dioxide reduction catalyst and carbon dioxide reduction method
CN115551636B (en) * 2020-04-24 2024-04-02 中国电力株式会社 Carbon dioxide reduction catalyst and carbon dioxide reduction method
CN114029063A (en) * 2021-12-16 2022-02-11 厦门大学 Catalyst for preparing methanol by carbon dioxide hydrogenation and preparation method thereof
CN114950419A (en) * 2022-04-20 2022-08-30 江南大学 Metal catalyst for preparing methanol by carbon dioxide hydrogenation and application thereof
CN114950419B (en) * 2022-04-20 2023-10-03 江南大学 Metal catalyst for preparing methanol by carbon dioxide hydrogenation and application thereof

Also Published As

Publication number Publication date
JPH0736893B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
KR101529906B1 (en) Process for operating hts reactor
JP3118565B2 (en) Catalyst for synthesizing methanol and method for synthesizing methanol
KR20180127145A (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
JP2019155227A (en) Co2 methanation catalyst and carbon dioxide reduction method using the same
Habimana et al. Effect of Cu promoter on Ni-based SBA-15 catalysts for partial oxidation of methane to syngas
JPH04363141A (en) Catalyst for catalytic reduction of carbon dioxide and production of methanol using the same
KR102092736B1 (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
JP2003038957A (en) Catalyst for reforming dimethyl ether and method for producing hydrogen containing gas using the same
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP3885139B2 (en) Ethanol steam reforming catalyst, method for producing the same, and method for producing hydrogen
JP3525184B2 (en) Catalyst for producing hydrogen and method for producing hydrogen
JP3086867B2 (en) Catalyst for syngas production and method for syngas production
JP3837520B2 (en) Catalyst for CO shift reaction
KR101570943B1 (en) A perovskite-like catalyst supported on alumina having a bimodal pore structure for combined steam and co_2 reforming reaction with methane and a preparation method thereof
JP2764114B2 (en) Method for producing methanol
JPH0635401B2 (en) Method for producing methanol from carbon dioxide
JP6089894B2 (en) Catalyst for producing synthesis gas and method for producing synthesis gas
JP4203326B2 (en) Operation method of synthesis gas production
JP2017124366A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using catalyst
JP2017001010A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using the catalyst
KR100860538B1 (en) Copper-iron oxide catalyst and decomposition of sulfuric acid using same
JPS6291245A (en) Manufacture of catalyst for inverting synthetic gas
JP4189068B2 (en) Method for producing dimethyl ether from lower hydrocarbon gas
JPH0371174B2 (en)
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term