JPH04359404A - Rare earth iron-boron based permanent magnet and manufacture thereof - Google Patents

Rare earth iron-boron based permanent magnet and manufacture thereof

Info

Publication number
JPH04359404A
JPH04359404A JP3161153A JP16115391A JPH04359404A JP H04359404 A JPH04359404 A JP H04359404A JP 3161153 A JP3161153 A JP 3161153A JP 16115391 A JP16115391 A JP 16115391A JP H04359404 A JPH04359404 A JP H04359404A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
weight
earth iron
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3161153A
Other languages
Japanese (ja)
Inventor
Takeshi Matsuzawa
健 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3161153A priority Critical patent/JPH04359404A/en
Publication of JPH04359404A publication Critical patent/JPH04359404A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To provide a rare earth iron based permanent magnet possessing a strong residual magnetic flux density and a strong coercive force, as well as a magnetization curve superior in rectangularity. CONSTITUTION:A rare earth iron-boron based permanent magnet is composed of a sintered body which is prepared by the addition of, parts by weight, 0.01-1.0 zinc oxides and 0.1-2.0 of one or two, or more, types of elements selected from inorganic oxides: namely, Al2O3, SiO2, TiO2, V2O3, Cr2O3, MnO2, Fe2O3, CoO, NiO, CuO2, Ga2O3, GeO2, ZrO2, Nb2O5, MoO3, SnO2, Sb2O5, HfO2, Ta2O5, WO3, and Bi2O3, into 100 parts by weight of rare earth iron-boron alloy expressed by the equation of RxByCozFe100-x-y-zMw, wherein R is a rare earth element, and M represents one or two, or more, types of elements selected from Al, Si, Ti, V, CR, Mn, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Sn, Sb, Hf, Ta, W, and Bi. The factors of the equation are defined, in atomic percent, as 8<=X<=30, 2<=Y<=28, 0<=Z<=20, and 0<=W<=4.0. And the prepartaion method of the above magnet is provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、新規組成を有する希土
類鉄ボロン系永久磁石およびその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth iron boron permanent magnet having a novel composition and a method for manufacturing the same.

【0002】0002

【従来の技術】希土類鉄ボロン系永久磁石は、他の磁石
よりも潜在的な磁気特性が優れており、磁石合金の組成
改良、潤滑剤による合金粉末の配向性の向上、熱処理条
件の最適化等の研究開発の結果、現在、室温で最大エネ
ルギー積40MGOeを超える特性が得られるようにな
った。 しかし、近年、電子機器の小型化、高効率化の要求、ま
たモーター等の極めて大きい逆磁界のかかる用途が増え
、更に高特性、高保磁力を有する磁石材料が求められて
いる。
[Prior Art] Rare earth iron boron permanent magnets have better potential magnetic properties than other magnets, and they can be used to improve the composition of magnet alloys, improve the orientation of alloy powder using lubricants, and optimize heat treatment conditions. As a result of research and development, it has now become possible to obtain properties with a maximum energy product exceeding 40 MGOe at room temperature. However, in recent years, there has been a demand for smaller electronic devices and higher efficiency, and applications such as motors that are subject to extremely large reverse magnetic fields have increased, and magnetic materials with even higher characteristics and higher coercive force are required.

【0003】0003

【発明が解決しようとする課題】その一つに、希土類鉄
ボロン系合金組成のインゴットを粉砕する工程において
、希土類酸化物(Dy2O3,Tb4O7,Ho2O3
,Pr2O3,Nd2O3等) の粉末を原子百分率で
 0.1〜15%混合し、磁界配向成形後焼結したもの
は、保磁力を増大させ、かつ金属として添加するよりも
残留磁束密度の低下を小さく抑えることが可能であると
している(特開昭61−253805号、 同61−2
89605 号参照)。また、R−Fe−B系合金粉末
またはそれと同組成となる混合粉末に2A族に属する元
素の内、少なくとも1種の酸化物粉末を重量%で0.0
5〜1.5 %配合し、混合、成形、焼成および熱処理
を施すことにより著しく保磁力を向上させるとしている
(特開昭62−134906 号参照)。別にR−Fe
−B系或はR−Fe−Co−B 系化合物に、同合金の
融点より低温で軟化または溶融するもの、例えば酸化鉛
、酸化ビスマス、酸化珪素等を1重量%以下添加するこ
とにより保磁力を高めた永久磁石材料を製造出来るとし
ている(特開昭62−151541 号、 同62−1
51542 号参照)。以上述べた公知技術による希土
類磁石の磁気特性は必ずしもバランスの採れたものでな
く、絶対値も更に向上が望まれていた。本発明は、これ
らの点に鑑みなされたもので、その目的は、R−Fe−
B系永久磁石において残留磁気密度、保磁力共に高く、
かつ磁化曲線の角形性が高い永久磁石を提供することに
ある。
[Problems to be Solved by the Invention] One of the problems is that rare earth oxides (Dy2O3, Tb4O7, Ho2O3
, Pr2O3, Nd2O3, etc.) mixed in an atomic percentage of 0.1 to 15% and sintered after magnetic field orientation molding increases the coercive force and reduces the residual magnetic flux density more than adding it as a metal. It is possible to keep it small (Japanese Patent Application Laid-open No. 61-253805, 61-2
(See No. 89605). In addition, 0.0% by weight of an oxide powder of at least one kind of elements belonging to Group 2A is added to the R-Fe-B alloy powder or a mixed powder having the same composition.
It is said that coercive force can be significantly improved by blending 5 to 1.5% and subjecting it to mixing, molding, firing, and heat treatment (see JP-A-62-134906). Separately R-Fe
The coercive force can be increased by adding 1% by weight or less of a substance that softens or melts at a lower temperature than the melting point of the alloy, such as lead oxide, bismuth oxide, silicon oxide, etc., to the -B or R-Fe-Co-B compound. It is said that it is possible to manufacture permanent magnet materials with increased
51542). The magnetic properties of the rare earth magnets according to the known techniques described above are not necessarily well-balanced, and further improvements in absolute values have been desired. The present invention was made in view of these points, and its purpose is to
Both residual magnetic density and coercive force are high in B-series permanent magnets,
Another object of the present invention is to provide a permanent magnet whose magnetization curve has high squareness.

【0004】0004

【課題を解決するための手段】本発明者等は、かかる課
題を解決するため、R−Fe−B系合金組成に対して各
種無機酸化物を添加し、その磁気特性に及ぼす効果を研
究し、諸条件を精査して本発明を完成したもので、イ)
式  RX BYCoZFe100−X−Y−Z−WM
W (式中、Rは希土類元素を、MはAl、Si、Ti
、V、Cr、Mn、Ni、Cu、Zn、Ga、Ge、Z
r、Nb、Mo、Sn、Sb、Hf、Ta、W、Bi 
から選択される1種もしくは2種以上の元素を表し、原
子百分率で8≦X ≦30、 2≦Y ≦28、 0≦
Z≦20、 0≦W ≦4である)で示される希土類鉄
ボロン合金 100重量部に対してロ)酸化亜鉛  0
.01〜1.0 重量部、およびハ)下記の無機酸化物
から選ばれる1種もしくは2種以上  0.1 〜2.
0 重量部を添加してなる焼結体を特徴とする希土類鉄
ボロン系永久磁石。Al2O3、SiO2、TiO2、
V2O3、Cr2O3、MnO2、Fe2O3、CoO
、NiO、CuO2、Ga2O3、GeO2、ZrO2
、Nb2O5、MoO3、SnO2、Sb2O5、Hf
O2、Ta2O5、WO3、Bi2O3 。並びに前記
イ)式  RX BYCoZFe100−X−Y−Z−
W MW で示される希土類鉄ボロン合金粉砕時に、ロ
)酸化亜鉛およびハ)無機酸化物を添加、混合して共粉
砕し、磁界中配向成形後焼結し、次いで熱処理すること
を特徴とする希土類鉄ボロン系永久磁石の製造方法を要
旨とするものである。
[Means for Solving the Problem] In order to solve the problem, the present inventors added various inorganic oxides to the R-Fe-B alloy composition and studied the effects on the magnetic properties. , the present invention was completed after carefully examining various conditions, and a)
Formula RX BYCoZFe100-X-Y-Z-WM
W (wherein, R is a rare earth element, M is Al, Si, Ti
, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Z
r, Nb, Mo, Sn, Sb, Hf, Ta, W, Bi
Represents one or more elements selected from the following in atomic percentage: 8≦X≦30, 2≦Y≦28, 0≦
Z≦20, 0≦W≦4) Rare earth iron boron alloy 100 parts by weight b) Zinc oxide 0
.. 01 to 1.0 parts by weight, and c) one or more selected from the following inorganic oxides: 0.1 to 2.
A rare earth iron boron permanent magnet characterized by a sintered body containing 0 parts by weight. Al2O3, SiO2, TiO2,
V2O3, Cr2O3, MnO2, Fe2O3, CoO
, NiO, CuO2, Ga2O3, GeO2, ZrO2
, Nb2O5, MoO3, SnO2, Sb2O5, Hf
O2, Ta2O5, WO3, Bi2O3. and the above a) formula RX BYCoZFe100-X-Y-Z-
When pulverizing a rare earth iron boron alloy represented by W MW , (b) zinc oxide and (c) an inorganic oxide are added, mixed, co-pulverized, sintered after orientation molding in a magnetic field, and then heat treated. The gist of this paper is a method for manufacturing iron-boron permanent magnets.

【0005】以下、本発明を詳細に説明する。本発明者
等は、R−Fe−B系永久磁石合金に対する無機酸化物
の添加効果を詳細に検討した結果、同合金組成の粉末に
酸化亜鉛および特定の無機酸化物を特定量添加混合する
と、酸化亜鉛単独添加のものに比べて保磁力を増大させ
、かつ角形性を顕著に改善し得る効果のあることを見出
したものである。その基礎合金組成は、Yを含む希土類
元素Rから選択される1種以上、ほう素B、および残部
鉄Feからなり、FeをコバルトCoで置換しても良い
。組成範囲は原子百分率でRは8〜30%、好ましくは
12〜18%、Bは2〜28%、好ましくは5〜9%、
Coは0〜20%および残部Feからなるものである。 ここに希土類元素Rは軽希土類、重希土類を含むもので
、Yを含む La,Ce,Pr,Nd,Pm,Sm,E
u,Gd,Tb,Dy,Ho,Er,Tm,Ybおよび
Luのうち1種以上を選択すれば良いが、Nd,Prが
好ましい。ほう素Bとしては純ほう素またはフェロボロ
ンを、鉄Fe、コバルトCoとしては電解鉄、電解コバ
ルトなどを用いる。Rが8%未満では高い保磁力が得ら
れず、30%を越えると残留磁束密度が低下する。Bが
2%未満では高い保磁力が得られず、28%を越えると
残留磁束密度が大きく低下する。また、FeをCoで置
換すると焼結磁石の耐蝕性が向上するが、20%を越え
ると高い保磁力が得られない。
[0005] The present invention will be explained in detail below. As a result of a detailed study on the effect of adding inorganic oxides to R-Fe-B permanent magnet alloys, the present inventors found that when specific amounts of zinc oxide and specific inorganic oxides are added and mixed into powder of the same alloy composition, It has been discovered that the coercive force can be increased and the squareness can be significantly improved compared to the case where zinc oxide is added alone. The basic alloy composition consists of one or more selected from rare earth elements R including Y, boron B, and the balance iron Fe, and Fe may be replaced with cobalt Co. The composition range is atomic percentage: R is 8 to 30%, preferably 12 to 18%, B is 2 to 28%, preferably 5 to 9%,
Co consists of 0 to 20% and the balance Fe. Here, the rare earth elements R include light rare earths and heavy rare earths, and include Y La, Ce, Pr, Nd, Pm, Sm, E
One or more of u, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu may be selected, but Nd and Pr are preferable. As boron B, pure boron or ferroboron is used, and as iron Fe and cobalt Co, electrolytic iron, electrolytic cobalt, etc. are used. When R is less than 8%, a high coercive force cannot be obtained, and when R exceeds 30%, the residual magnetic flux density decreases. When B is less than 2%, a high coercive force cannot be obtained, and when it exceeds 28%, the residual magnetic flux density is significantly reduced. Further, when Fe is replaced by Co, the corrosion resistance of the sintered magnet is improved, but if it exceeds 20%, high coercive force cannot be obtained.

【0006】次に、本発明の最大の特徴である無機酸化
物の添加は前記基礎合金100 重量部に対し 、酸化
亜鉛を0.01〜1.0 重量部、好ましくは0.01
〜0.5 重量部を、さらに下記の希土類酸化物を除く
無機酸化物類から選択した1種を0.1 〜1.0 重
量部、好ましくは0.1 〜0.5 重量部を、2種以
上を選択した場合の合計量は0.1 〜2.0重量部を
添加すれば良い。Al2O3、SiO2、TiO2、V
2O3、Cr2O3、MnO2、Fe2O3、CoO、
NiO、CuO2、ZnO、Ga2O3、GeO2、Z
rO2、Nb2O5、MoO3、SnO2、Sb2O5
、HfO2、Ta2O5、WO3、Bi2O3 。
Next, the addition of an inorganic oxide, which is the greatest feature of the present invention, is carried out by adding 0.01 to 1.0 parts by weight, preferably 0.01 parts by weight, of zinc oxide to 100 parts by weight of the basic alloy.
~0.5 parts by weight, and further 0.1 to 1.0 parts by weight, preferably 0.1 to 0.5 parts by weight of one selected from the following inorganic oxides excluding rare earth oxides, and 2 parts by weight. When more than one species is selected, the total amount may be 0.1 to 2.0 parts by weight. Al2O3, SiO2, TiO2, V
2O3, Cr2O3, MnO2, Fe2O3, CoO,
NiO, CuO2, ZnO, Ga2O3, GeO2, Z
rO2, Nb2O5, MoO3, SnO2, Sb2O5
, HfO2, Ta2O5, WO3, Bi2O3.

【0007】酸化亜鉛は保磁力発生機構に大きな影響を
及ぼしているRリッチ相に存在するので僅かな添加量で
あっても保磁力を増大させる効果があるが、1.0 重
量部を越えると残留磁束密度や角型性が低下し、保磁力
増加効果が鈍るので上記範囲とした。また、酸化亜鉛と
複合添加する無機酸化物は、焼結時に結晶粒の成長を抑
制して結晶粒径を揃える効果があり、最終的にはボロン
原子の間に化合物を析出させるので角形性が改善される
。添加量が僅かでも角形性改善に充分なな効果があるが
、2.0 重量部を越えると残留磁束密度が低下するの
で、上記範囲とした。
Since zinc oxide exists in the R-rich phase which has a great influence on the coercive force generation mechanism, even a small amount added has the effect of increasing the coercive force, but if it exceeds 1.0 parts by weight, Since the residual magnetic flux density and squareness decrease, and the effect of increasing coercive force becomes dull, it is set in the above range. In addition, the inorganic oxide added in combination with zinc oxide has the effect of suppressing the growth of crystal grains during sintering and uniformizing the crystal grain size, and ultimately precipitates compounds between boron atoms, improving squareness. Improved. Even if the amount added is small, there is a sufficient effect on improving the squareness, but if it exceeds 2.0 parts by weight, the residual magnetic flux density decreases, so the above range was set.

【0008】更に、本発明では、前記基礎合金のFeの
1部を下記の元素Mで置換すれば、無機酸化物の添加効
果を向上し得ることが判った。即ち、組成式  RX 
BYCoZFe100−X−Y−Z−W MW からな
り、式中、Rは希土類元素を、MはAl、Si、Ti、
V、Cr、Mn、Ni、Cu、Zn、Ga、Ge、Zr
、Nb、Mo、Sn、Sb、Hf、Ta、W、Bi か
ら選択される1種もしくは2種以上を表し、原子百分率
で8≦X ≦30、 2≦Y ≦28、 0≦Z ≦2
0、 0≦W ≦4.0 である希土類鉄ボロン合金 
100重量部に対してロ)酸化亜鉛を0.01〜1.0
 重量部、およびハ)無機酸化物から選ばれる1種もし
くは2種以上を0.1 〜2.0 重量部添加して焼結
した希土類鉄ボロン系永久磁石である。ここでFe置換
元素Mの置換量が4.0 原子%を越えると残留磁気密
度が低下し、保磁力増大効果が鈍る。酸化亜鉛及び無機
酸化物の添加効果は前記基礎合金と同様の傾向を示す。
Furthermore, in the present invention, it has been found that the effect of adding an inorganic oxide can be improved by replacing a part of Fe in the basic alloy with the following element M. That is, the composition formula RX
BYCoZFe100-X-Y-Z-W MW, where R is a rare earth element, M is Al, Si, Ti,
V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr
, Nb, Mo, Sn, Sb, Hf, Ta, W, Bi, and represents one or more selected from the group consisting of 8≦X≦30, 2≦Y≦28, 0≦Z≦2 in atomic percentage.
0, rare earth iron boron alloy where 0≦W≦4.0
b) Zinc oxide 0.01 to 1.0 per 100 parts by weight
and c) 0.1 to 2.0 parts by weight of one or more selected from inorganic oxides and sintered therein. Here, if the amount of substitution of the Fe substitution element M exceeds 4.0 atomic %, the residual magnetic density decreases and the coercive force increasing effect becomes dull. The effect of adding zinc oxide and inorganic oxides shows the same tendency as the base alloy.

【0009】次に本発明のR−Fe−B系合金、R−F
e−B−M系合金+ZnO +無機酸化物からなる磁石
の製造方法を述べる。一般的には優れた磁気特性(特に
保磁力、角形性)を得るため、2段階以上の熱処理を施
しているが、本発明のように無機酸化物を添加すれば、
最終段階の熱処理だけで充分であることを見出し、さら
に、通常よりも広範な温度範囲で高い磁気特性が得られ
ることが判った。 先ず、前記R−Fe−B系合金またはR−Fe−B−M
(Fe 置換元素) 系合金原料元素を配合し、溶解・
鋳造してインゴット作製する。これをブラウンミル等で
粗粉砕した後、ボールミル、ジェットミル等により3〜
5μmに微粉砕する。 このものに平均粒径が0.1 〜 100μmのZnO
 および無機酸化物を所定量添加混合する。粗粉に無機
酸化物を添加混合し、その後ボールミルで微粉砕しても
良い。次いで、得られた合金粉末を 10kOeの磁場
中で磁気配向させ、1Ton/cm2 の圧力で成形す
る。この成形体をアルゴン雰囲気中 950〜1,15
0 ℃で 0.5〜10時間焼結する。ここで真空中で
の焼結はZnO が蒸発するので好ましくない。次に磁
気特性を更に向上させるために時効処理として第1段階
は焼結温度以下、好ましくは700 〜 930℃の間
0.5 〜2時間加熱保持し、100 ℃/min 以
上の速度で冷却し、第2段階は450 〜680℃の間
で 0.5〜2時間加熱保持し、20℃/min 以上
の速度で冷却すればよい。ここで第1段階は省略しても
良い。
Next, the R-Fe-B alloy of the present invention, R-F
A method for manufacturing a magnet made of e-B-M alloy + ZnO + inorganic oxide will be described. Generally, in order to obtain excellent magnetic properties (especially coercive force and squareness), two or more stages of heat treatment are performed, but if an inorganic oxide is added as in the present invention,
It has been found that the final heat treatment alone is sufficient, and furthermore, it has been found that high magnetic properties can be obtained over a wider temperature range than usual. First, the R-Fe-B alloy or R-Fe-B-M
(Fe substitution element) The alloy raw material elements are blended, melted and
Cast to make an ingot. After coarsely pulverizing this using a brown mill, etc., it is milled using a ball mill, jet mill, etc.
Finely grind to 5 μm. This material contains ZnO with an average particle size of 0.1 to 100 μm.
and an inorganic oxide are added and mixed in a predetermined amount. The inorganic oxide may be added to and mixed with the coarse powder, and then finely ground using a ball mill. Next, the obtained alloy powder is magnetically oriented in a magnetic field of 10 kOe and compacted at a pressure of 1 ton/cm2. This molded body was placed in an argon atmosphere from 950 to 1,15.
Sinter at 0°C for 0.5-10 hours. Here, sintering in vacuum is not preferred because ZnO evaporates. Next, in order to further improve the magnetic properties, the first stage of aging treatment is heating and holding at a temperature below the sintering temperature, preferably 700 to 930°C, for 0.5 to 2 hours, and cooling at a rate of 100°C/min or more. In the second stage, the temperature may be maintained at 450 to 680°C for 0.5 to 2 hours, followed by cooling at a rate of 20°C/min or more. Here, the first stage may be omitted.

【0010】0010

【実施例】以下、実施例を挙げて本発明の実施態様を具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1)原子百分率でNd 14%、Fe 75.
5%、Co 4%、B 6.5% の合金Nd14Fe
75.5Co4B6.5 をブラウンミルで32メッシ
ュ以下に粉砕した後、この合金粉末100 重量部に対
しZnO を0.3 重量部および無機酸化物Al2O
3、SiO2、TiO2、V2O3、Cr2O3、Mn
O2、Fe2O3、CoO、NiO、CuO2、ZnO
、Ga2O3、GeO2、ZrO2、Nb2O5、Mo
O3、SnO2、Sb2O5、HfO2、Ta2O5、
WO3、Bi2O3 の各1種の添加量を 0.1〜 
1.0重量%の範囲で混合し、ボールミルで微粉砕した
。次いで 10kOeの磁場中で磁気配向させ、1To
n/cm2 の圧力で成形し、アルゴン雰囲気中で1,
080 ℃で1時間焼結した後、 480〜650 ℃
の温度範囲で1段の熱処理を行い、永久磁石を製造した
。得られた希土類鉄ボロン系永久磁石の磁気特性(Br
[KG]、iHc[KOe])を測定し、その結果を図
1〜図10に示した。尚、磁気特性の結果は、上記温度
範囲で得られた最高の値である。
[Examples] Hereinafter, embodiments of the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. (Example 1) Nd 14%, Fe 75.
Alloy Nd14Fe with 5%, Co 4%, B 6.5%
After pulverizing 75.5Co4B6.5 to 32 mesh or less in a brown mill, 0.3 parts by weight of ZnO and inorganic oxide Al2O were added to 100 parts by weight of this alloy powder.
3, SiO2, TiO2, V2O3, Cr2O3, Mn
O2, Fe2O3, CoO, NiO, CuO2, ZnO
, Ga2O3, GeO2, ZrO2, Nb2O5, Mo
O3, SnO2, Sb2O5, HfO2, Ta2O5,
The amount of each of WO3 and Bi2O3 added is 0.1~
The mixture was mixed in a range of 1.0% by weight and pulverized using a ball mill. Then, it was magnetically oriented in a magnetic field of 10 kOe, and 1To
Molding was performed at a pressure of n/cm2, and 1,
After sintering at 080℃ for 1 hour, 480-650℃
A permanent magnet was manufactured by performing one stage of heat treatment in a temperature range of . Magnetic properties of the obtained rare earth iron boron permanent magnet (Br
[KG], iHc [KOe]) were measured, and the results are shown in FIGS. 1 to 10. Note that the results of magnetic properties are the highest values obtained in the above temperature range.

【0011】(実施例2、比較例)原子百分率でNd 
14.0%、Dy 0.5%、Fe 73.5%、Co
 4.0%、B 6.5%、 MとしてAl 1.0%
、Nb 0.5% でFeを置換した合金をブラウンミ
ルで粗粉砕した後、ジェットミルにより3〜10μmに
微粉砕し、ZnO を0.5 重量部および無機酸化物
ZrO2、Ga2O3 、Al2O3 の1種を 0.
3重量部添加混合した。以下実施例1と同様の条件で磁
気配向、成形、焼結の各工程を経て、1段目の熱処理を
 850℃で1時間行い、室温まで冷却したのち、2段
目の熱処理を合金番号2−1は 560℃、同2−2は
 530℃、同2−3は570 ℃で1時間行なった。 作製した各磁石の磁気特性の測定結果を無機酸化物を添
加しなかった試料(比較例合金番号2−4)と共に表1
に示す。また、1段目の熱処理を省略し、2段目のみ行
った結果も表1に併記した。
(Example 2, Comparative Example) Nd in atomic percentage
14.0%, Dy 0.5%, Fe 73.5%, Co
4.0%, B 6.5%, M as Al 1.0%
, an alloy in which Fe was replaced with 0.5% Nb was coarsely ground in a Brown mill, then finely ground to 3 to 10 μm in a jet mill, and 0.5 parts by weight of ZnO and 1 part of the inorganic oxides ZrO2, Ga2O3, and Al2O3 were added. Seeds 0.
3 parts by weight were added and mixed. Following the steps of magnetic orientation, molding, and sintering under the same conditions as in Example 1, the first heat treatment was performed at 850°C for 1 hour, and after cooling to room temperature, the second heat treatment was performed on alloy No. 2. -1 was carried out at 560°C, 2-2 at 530°C, and 2-3 at 570°C for 1 hour. The measurement results of the magnetic properties of each of the produced magnets are shown in Table 1 along with the sample to which no inorganic oxide was added (comparative example alloy number 2-4).
Shown below. Table 1 also shows the results obtained by omitting the first heat treatment and performing only the second heat treatment.

【0012】0012

【表1】[Table 1]

【0013】[0013]

【発明の効果】本発明は、新規組成を有する希土類鉄ボ
ロン系永久磁石とその製造方法に関するもので、磁気特
性として残留磁束密度、保磁力共に高く、かつ磁化曲線
の角形性が良好な希土類鉄ボロン系永久磁石を提供する
ことができ、産業上その利用価値は極めて高い。
[Effects of the Invention] The present invention relates to a rare earth iron boron permanent magnet having a new composition and a method for manufacturing the same. A boron-based permanent magnet can be provided, and its utility value in industry is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1の無機酸化物(Al2O3、SiO2
、TiO2、V2O3、Cr2O3)のBrに及ぼす添
加効果を示す図。
FIG. 1: Inorganic oxides (Al2O3, SiO2
, TiO2, V2O3, Cr2O3) on Br.

【図2】実施例1の無機酸化物(Al2O3、SiO2
、TiO2、V2O3、Cr2O3)のiHc に及ぼ
す添加効果を示す図。
[Figure 2] Inorganic oxides (Al2O3, SiO2
, TiO2, V2O3, Cr2O3) on iHc.

【図3】実施例1の無機酸化物(MnO2、Fe2O3
、CoO、NiO、CuO2) のBrに及ぼす添加効
果を示す図。
[Figure 3] Inorganic oxides (MnO2, Fe2O3) of Example 1
, CoO, NiO, CuO2) on Br.

【図4】実施例1の無機酸化物(MnO2、Fe2O3
、CoO、NiO、CuO2) のiHc に及ぼす添
加効果を示す図。
FIG. 4 Inorganic oxides (MnO2, Fe2O3
, CoO, NiO, CuO2) on iHc.

【図5】実施例1の無機酸化物(Ga2O3、GeO2
、ZrO2) のBrに及ぼす添加効果を示す図。
FIG. 5: Inorganic oxides (Ga2O3, GeO2
, ZrO2) on Br.

【図6】実施例1の無機酸化物(Ga2O3、GeO2
、ZrO2) )のiHc に及ぼす添加効果を示す図
FIG. 6: Inorganic oxides of Example 1 (Ga2O3, GeO2
, ZrO2)) on iHc.

【図7】実施例1の無機酸化物(Nb2O5、MoO3
、SnO2、Sb2O5) のBrに及ぼす添加効果を
示す図。
FIG. 7: Inorganic oxides of Example 1 (Nb2O5, MoO3
, SnO2, Sb2O5) on Br.

【図8】実施例1の無機酸化物(Nb2O5、MoO3
、SnO2、Sb2O5) のiHc に及ぼす添加効
果を示す図。
FIG. 8 Inorganic oxides of Example 1 (Nb2O5, MoO3
, SnO2, Sb2O5) on iHc.

【図9】実施例1の無機酸化物(HfO2、Ta2O5
、WO3、Bi2O3)のBrに及ぼす添加効果を示す
図。
FIG. 9: Inorganic oxides of Example 1 (HfO2, Ta2O5
, WO3, Bi2O3) on Br.

【図10】実施例1の無機酸化物(HfO2、Ta2O
5、WO3、Bi2O3)のiHc に及ぼす添加効果
を示す図。
FIG. 10: Inorganic oxides of Example 1 (HfO2, Ta2O
5, WO3, Bi2O3) on iHc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】イ)式  RX BYCoZFe100−
X−Y−Z−W MW (式中、Rは希土類元素を、M
はAl、Si、Ti、V、Cr、Mn、Ni、Cu、Z
n、Ga、Ge、Zr、Nb、Mo、Sn、Sb、Hf
、Ta、W、Bi から選択される1種もしくは2種以
上の元素を表し、原子百分率で8≦X ≦30、 2≦
Y≦28、 0≦Z ≦20、 0≦W ≦4である)
で示される希土類鉄ボロン合金 100重量部に対して
ロ)酸化亜鉛  0.01〜1.0 重量部、およびハ
)下記の無機酸化物から選ばれる1種もしくは2種以上
  0.1 〜2.0 重量部を添加してなる焼結体を
特徴とする希土類鉄ボロン系永久磁石。Al2O3、S
iO2、TiO2、V2O3、Cr2O3、MnO2、
Fe2O3、CoO、NiO、CuO2、Ga2O3、
GeO2、ZrO2、Nb2O5、MoO3、SnO2
、Sb2O5、HfO2、Ta2O5、WO3、Bi2
O3。
[Claim 1] A) Formula RX BYCoZFe100-
X-Y-Z-W MW (wherein, R is a rare earth element, M
are Al, Si, Ti, V, Cr, Mn, Ni, Cu, Z
n, Ga, Ge, Zr, Nb, Mo, Sn, Sb, Hf
, Ta, W, Bi, represents one or more elements selected from , Ta, W, Bi, 8≦X≦30, 2≦ in atomic percentage
Y≦28, 0≦Z≦20, 0≦W≦4)
b) Zinc oxide 0.01 to 1.0 parts by weight, and C) One or more selected from the following inorganic oxides 0.1 to 2. A rare earth iron boron permanent magnet characterized by a sintered body containing 0 parts by weight. Al2O3,S
iO2, TiO2, V2O3, Cr2O3, MnO2,
Fe2O3, CoO, NiO, CuO2, Ga2O3,
GeO2, ZrO2, Nb2O5, MoO3, SnO2
, Sb2O5, HfO2, Ta2O5, WO3, Bi2
O3.
【請求項2】請求項1に記載のイ)式  RX BYC
oZFe100−X−Y−Z−W MW で示される希
土類鉄ボロン合金粉砕時に、ロ)酸化亜鉛およびハ)無
機酸化物を添加、混合して共粉砕し、磁界中配向成形後
焼結し、次いで熱処理することを特徴とする希土類鉄ボ
ロン系永久磁石の製造方法。
[Claim 2] Formula a) according to Claim 1: RX BYC
oZFe100-X-Y-Z-W When grinding a rare earth iron boron alloy represented by MW, (b) zinc oxide and (c) inorganic oxide are added, mixed and co-pulverized, sintered after orientation molding in a magnetic field, and then A method for producing a rare earth iron boron permanent magnet, which is characterized by heat treatment.
JP3161153A 1991-06-05 1991-06-05 Rare earth iron-boron based permanent magnet and manufacture thereof Pending JPH04359404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3161153A JPH04359404A (en) 1991-06-05 1991-06-05 Rare earth iron-boron based permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3161153A JPH04359404A (en) 1991-06-05 1991-06-05 Rare earth iron-boron based permanent magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04359404A true JPH04359404A (en) 1992-12-11

Family

ID=15729605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3161153A Pending JPH04359404A (en) 1991-06-05 1991-06-05 Rare earth iron-boron based permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04359404A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077453A2 (en) * 1999-08-17 2001-02-21 Sanei Kasei Co., Ltd. Method for preparation of sintered permanent magnet
JP2003022905A (en) * 2001-07-10 2003-01-24 Daido Steel Co Ltd High resistance rare earth magnet and its manufacturing method
JP2005159053A (en) * 2003-11-26 2005-06-16 Tdk Corp Method for manufacturing r-t-b-based permanent magnet
JP2010206045A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Magnet molding and method of making the same
CN103212710A (en) * 2013-05-05 2013-07-24 沈阳中北真空磁电科技有限公司 Manufacturing method of NdFeB rare earth permanent magnetic material
JP5439385B2 (en) * 2008-12-26 2014-03-12 昭和電工株式会社 R-T-B rare earth permanent magnet manufacturing method and motor
CN104051109A (en) * 2014-06-24 2014-09-17 铜陵三佳变压器有限责任公司 Molybdenum-based ferrite core material used for transformer
WO2014156592A1 (en) * 2013-03-25 2014-10-02 インターメタリックス株式会社 Sintered magnet production method
JP2014209547A (en) * 2013-03-28 2014-11-06 Tdk株式会社 Rare earth magnet
CN104269240A (en) * 2014-06-24 2015-01-07 铜陵三佳变压器有限责任公司 Tungsten ferrite core material for transformer
CN107564650A (en) * 2017-09-15 2018-01-09 安徽信息工程学院 A kind of alloy I for permanent-magnet material and preparation method thereof
CN108352234A (en) * 2015-11-19 2018-07-31 阿尔卑斯电气株式会社 Compressed-core and its manufacturing method
CN110202135A (en) * 2019-06-20 2019-09-06 西安交通大学 Nanostructure bimetallic oxide enhances NiAl base high strength at high temperature lubricating composite preparation method
CN110218890A (en) * 2019-06-20 2019-09-10 西安交通大学 Growth in situ solid lubricant enhances nickel-base high-temperature lubricating composite preparation method
CN110444360A (en) * 2019-07-19 2019-11-12 宁波可可磁业股份有限公司 A kind of neodymium iron boron magnetic body and preparation method thereof
CN113262794A (en) * 2020-02-17 2021-08-17 上海迅凯新材料科技有限公司 Supported nickel catalyst, preparation method and application in hydrogenation reaction of 1, 4-butynediol
CN114318152A (en) * 2021-12-30 2022-04-12 武汉理工大学 Composite reinforced iron-based high-temperature alloy and preparation method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077453A3 (en) * 1999-08-17 2001-06-13 Sanei Kasei Co., Ltd. Method for preparation of sintered permanent magnet
EP1077453A2 (en) * 1999-08-17 2001-02-21 Sanei Kasei Co., Ltd. Method for preparation of sintered permanent magnet
JP2003022905A (en) * 2001-07-10 2003-01-24 Daido Steel Co Ltd High resistance rare earth magnet and its manufacturing method
JP2005159053A (en) * 2003-11-26 2005-06-16 Tdk Corp Method for manufacturing r-t-b-based permanent magnet
JP5439385B2 (en) * 2008-12-26 2014-03-12 昭和電工株式会社 R-T-B rare earth permanent magnet manufacturing method and motor
JP2010206045A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Magnet molding and method of making the same
CN105103249A (en) * 2013-03-25 2015-11-25 因太金属株式会社 Sintered magnet production method
WO2014156592A1 (en) * 2013-03-25 2014-10-02 インターメタリックス株式会社 Sintered magnet production method
US10546672B2 (en) 2013-03-28 2020-01-28 Tdk Corporation Rare earth based magnet
JP2014209547A (en) * 2013-03-28 2014-11-06 Tdk株式会社 Rare earth magnet
CN103212710A (en) * 2013-05-05 2013-07-24 沈阳中北真空磁电科技有限公司 Manufacturing method of NdFeB rare earth permanent magnetic material
CN104269240A (en) * 2014-06-24 2015-01-07 铜陵三佳变压器有限责任公司 Tungsten ferrite core material for transformer
CN104051109A (en) * 2014-06-24 2014-09-17 铜陵三佳变压器有限责任公司 Molybdenum-based ferrite core material used for transformer
CN108352234A (en) * 2015-11-19 2018-07-31 阿尔卑斯电气株式会社 Compressed-core and its manufacturing method
CN108352234B (en) * 2015-11-19 2019-10-18 阿尔卑斯阿尔派株式会社 Compressed-core and its manufacturing method
CN107564650A (en) * 2017-09-15 2018-01-09 安徽信息工程学院 A kind of alloy I for permanent-magnet material and preparation method thereof
CN110202135A (en) * 2019-06-20 2019-09-06 西安交通大学 Nanostructure bimetallic oxide enhances NiAl base high strength at high temperature lubricating composite preparation method
CN110218890A (en) * 2019-06-20 2019-09-10 西安交通大学 Growth in situ solid lubricant enhances nickel-base high-temperature lubricating composite preparation method
CN110444360A (en) * 2019-07-19 2019-11-12 宁波可可磁业股份有限公司 A kind of neodymium iron boron magnetic body and preparation method thereof
CN113262794A (en) * 2020-02-17 2021-08-17 上海迅凯新材料科技有限公司 Supported nickel catalyst, preparation method and application in hydrogenation reaction of 1, 4-butynediol
CN113262794B (en) * 2020-02-17 2022-12-27 上海迅凯新材料科技有限公司 Supported nickel catalyst, preparation method and application in hydrogenation reaction of 1, 4-butynediol
CN114318152A (en) * 2021-12-30 2022-04-12 武汉理工大学 Composite reinforced iron-based high-temperature alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
EP0197712A1 (en) Rare earth-iron-boron-based permanent magnet
JPH04359404A (en) Rare earth iron-boron based permanent magnet and manufacture thereof
TW200415656A (en) R-Fe-B sintered magnet
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
EP0216254A1 (en) Permanent magnet
JPS6110209A (en) Permanent magnet
JP3121824B2 (en) Sintered permanent magnet
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP2904571B2 (en) Manufacturing method of rare earth anisotropic sintered permanent magnet
JP4170468B2 (en) permanent magnet
JP3762912B2 (en) R-T-B rare earth permanent magnet
JP2537189B2 (en) permanent magnet
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPH045739B2 (en)
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP2868062B2 (en) Manufacturing method of permanent magnet
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPS6318603A (en) Permanent magnet
JPH06112019A (en) Nitride magnetic material
JP2577373B2 (en) Sintered permanent magnet