JPH0435601Y2 - - Google Patents
Info
- Publication number
- JPH0435601Y2 JPH0435601Y2 JP3453086U JP3453086U JPH0435601Y2 JP H0435601 Y2 JPH0435601 Y2 JP H0435601Y2 JP 3453086 U JP3453086 U JP 3453086U JP 3453086 U JP3453086 U JP 3453086U JP H0435601 Y2 JPH0435601 Y2 JP H0435601Y2
- Authority
- JP
- Japan
- Prior art keywords
- hydraulic cylinder
- pressure
- oil
- chamber
- switching valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000008929 regeneration Effects 0.000 claims description 22
- 238000011069 regeneration method Methods 0.000 claims description 22
- 230000007935 neutral effect Effects 0.000 claims description 7
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 239000003921 oil Substances 0.000 description 52
- 230000001172 regenerating effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 239000010720 hydraulic oil Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Landscapes
- Fluid-Pressure Circuits (AREA)
Description
(産業上の利用分野)
本考案は、油圧シヨベルなどの建設機械、各種
の産業機械等に用いられている油圧シリンダの戻
り油回生回路に関するものである。
(従来の技術)
油圧シヨベルのブーム駆動用油圧シリンダにお
ける駆動回路について従来例を説明すると、第5
図に示すように容量制御部3aを有する可変容量
形油圧ポンプ3およびタンク10とブーム1駆動
用油圧シリンダ2の両油室2a,2bとの間の両
管路l2,l3に、室4a,4b,4cを有する方向
切換弁4を介装し、油圧ポンプ3および方向切換
弁4の制御をするパイロツト圧供給切換弁5を、
パイロツト管路l4,l5,l6および高圧選択弁7で
連結して付設した構造になつており、パイロツト
圧供給切換弁5を矢示方向Aに操作すると、パイ
ロツト油圧源6からの圧油が減圧弁5c、パイロ
ツト管路l4を経てパイロツト圧として供給され、
方向切換弁4が室4aから4cに切換えられると
ともに、高圧選択弁7、パイロツト管路l6を経て
容量制御部3aが容量増加(ポンプ吐出流量の増
加)側へ制御され、油圧ポンプ3の吐出圧油が管
路l2から油圧シリンダ2の油室(ロツド側)2b
に供給され油室2aの作動油は管路l3からタンク
10へ導びかれて、油圧シリンダ2が短縮作動と
なつてブーム1を矢示方向Bに駆動でき、パイロ
ツト圧供給切換弁5を矢示方向A′に操作すると、
油圧シリンダが伸長作動となりブームを矢示方向
B′に駆動できる構造になつている。
前記パイロツト圧供給切換弁5の操作レバー5
aの操作量とパイロツト圧は比例し、一方、パイ
ロツト圧と油圧ポンプの容量(斜板制御)が比例
し、また、パイロツト圧と方向切換弁の操作量が
比例するようになつており、操作レバーにより油
圧シリンダの作動速度が制御される。
(考案が解決しようとする問題点)
従来の前記油圧シリンダ駆動回路は、油圧シリ
ンダによつてブームを下降操作する場合にも、油
圧ポンプから油圧シリンダの油室に圧油を供給し
なければならないので動力損失になつており、ま
た、ブームの降下速度が速すぎた場合に、油圧ポ
ンプから油室シリンダの油室への圧油供給不足に
より負圧が生じ、異常振動、異常音が発生するな
どの問題点がある。
(問題点の解決手段)
本案は、前記のような問題点に対処するための
油圧シリンダの戻り油回生回路であつて、方向切
換弁と油圧シリンダ間の両管路間に、油圧シリン
ダの重量負荷による同負荷側への作動時に切換え
られ同油圧シリンダの重量負荷側油室から負圧側
油室に戻り油の回生作動になつて同負圧側油室へ
の圧油供給を確保してシリンダ作動速度を制御す
る回生制御弁を設け、パイロツト圧供給切換弁の
パイロツト圧出口に設けられ重量負荷側油室の重
量負荷圧で切換えられて方向切換弁を中立とし油
圧ポンプを小容量運転としかつ回生制御弁を回生
作動側に切換えるパイロツト圧切換弁を設けたこ
とにより、油圧シリンダの重量負荷による同負荷
側への作動時に、同油圧シリンダの重量負荷側油
室の戻り作動油を負圧側油室に回生供給して同負
圧側油室の圧油供給を確保しシリンダ作動速度を
制御して、油圧シリンダの駆動性能を高め動力節
減とともに異常振動、異常音の発生を防止して前
記のような問題点を解消している。
(作用)
油圧シリンダの重量負荷による同負荷側への作
動時には、油圧シリンダの重量負荷側油室の重量
負荷圧でパイロツト圧切換弁が切換えられて、同
パイロツト圧切換弁によつてパイロツト圧供給切
換弁からパイロツト圧が切換え供給され、方向切
換弁が中立となり油圧ポンプから油圧シリンダへ
の圧油供給が停止され油圧ポンプが小容量運転に
なるとともに、回生制御弁が切換えられ油圧シリ
ンダの重量負荷側油室内の作動油が絞られて負圧
側油室へ供給され、同負圧側油室への圧油供給が
確保されて、油圧シリンダが戻り油の回生供給に
より所定の作動速度に制御されて作動される。
(実施例)
第1図および第2図に本考案の第1実施例を示
しており、油圧シヨベルのブーム1駆動用油圧シ
リンダ2の駆動回路であつて、容量制御部3aを
有する可変容量形油圧ポンプ3およびタンク10
と油圧シリンダ2の両油室2a,2bとの間の両
管路l2,l3に、室4a,4b,4cを有する方向
切換弁4が介装され、油圧ポンプ3および方向切
換弁4の制御をするパイロツト圧供給切換弁5
を、パイロツト管路l4,l5,l6,l7および高圧選択
弁7で連結して付設した構成になつており、パイ
ロツト圧供給切換弁5を矢示方向Aに操作する
と、パイロツト油圧源6からの圧油が減圧弁5
c、パイロツト管l7,l4を経てパイロツト圧とし
て供給され、方向切換弁4が室4aから4cに切
換えられ、高圧選択弁7、パイロツト管路l6を経
て容量制御部3aが容量増加(ポンプ吐出流量の
増加)側へ制御され、油圧ポンプ3の吐出圧油が
管路l2から油圧シリンダ2の油室2bに供給され
油室2aの作動油は管路l3からタンク10へ導び
かれて、油圧シリンダ2が短縮作動となつてブー
ム1を矢示方向Bに駆動でき、パイロツト圧供給
切換弁5を矢示方向A′に操作すると、油圧シリ
ンダが伸長作動となりブームを矢示方向B′に駆
動する基本的な構成になつている。
パイロツト圧供給切換弁5の操作レバー5aの
操作量とパイロツト圧は比例、パイロツト圧と油
圧ポンプの容量が比例、さらにパイロツト圧と方
向切換弁の操作量が比例関係を有し、操作レバー
により油圧シリンダの作動速度が制御される構造
になつている。
さらに、本考案においては、方向切換弁4と油
圧シリンダ2間の両管路l2,l3間に室9a,9b
を有する回生制御弁9を介装して設けるととも
に、パイロツト圧供給切換弁5の一方のパイロツ
ト出口管路l7にパイロツト圧切換弁8が設けられ
ている。
前記回生制御弁9について詳述すると、室9a
に切換えられている時は、油圧ポンプ3からの吐
出圧油が方向切換弁4で一方の管路l2またはl3に
流通されて油圧シリンダ2へ供給され、油圧シリ
ンダ2内の作動油が他方の管路l3またはl2に流通
されるタンク10へ導びかれる通常の駆動回路を
形成し、室9bに切換えられると回生作動になる
構成になつており、該回生作動は、第2図に示す
ような絞り開口特性を有し、油圧シリンダ2の油
室2aから2bへの開口面積と、室2bからタン
ク10への開口面積との比を選択することによ
り、後記作用説明の原理で油室2b(負圧側油室)
を負圧にすることなくある一定の適切な油圧を確
保し、油室2a(重量負荷側油室)の戻り側作動
油を油室2bへ回生しながら、ブーム1の降下速
度を操作レバー5aで制御するようになつてい
る。さらに、前記パイロツト圧切換弁8について
詳述すると、油圧シリンダ2の油室2a(重量負
荷側油室)側にブーム1の自重による重量負荷が
かかつて所定以上に圧力が立つた際に、同油室2
aの前記圧力が管路l3、パイロツト管路l9を介し
パイロツト圧として作用し、パイロツト切換弁8
が室8b側に切換えられて、方向切換弁4を中立
室4aに切換え、油圧ポンプ3の容量制御部3a
を小容量運転に制御するとともに、回生制御弁9
を回生作動側の室9bに切換え制御する構成にな
つている。
本考案の第1実施例は、前記のような構成にな
つており、パイロツト圧供給切換弁5の操作レバ
ー5aを矢示方向Aに操作すると、パイロツト油
圧源6よりの圧油が減圧弁5c、パイロツト圧出
口管路l7を経てパイロツト圧となり、ブーム1の
自重により油圧シリンダ2の室2a(重量負荷側
油室)に圧力が立つと、該圧力がパイロツト圧と
してパイロツト管路l9を経てパイロツト圧切換弁
8に加わり室8bに切換えられる。
パイロツト圧切換弁8が室8bに切換えられる
と、パイロツト出口管路l7のパイロツト圧は、パ
イロツト管路l8を経て回生制御弁9を室9bに切
換えて同回生制御弁9を回生作動とし、方向切換
弁4へのパイロツト管路l4、油圧ポンプ3の容量
制御部3aへのパイロツト管路l6はタンク10a
へ連結され、方向切換弁4は中立室4aに切換え
られ油圧ポンプ3が小容量運転に制御される。よ
つて、油圧ポンプ3の吐出圧油は油圧シリンダ2
へ供給されず、油圧ポンプ3は動力節減の運転に
なるとともに、回生制御弁9によつて、油圧シリ
ンダ2の室2a(重量負荷側油室)の重量負荷圧
油が管路l3から回生制御弁9の絞り開口作用によ
り管路l2を経て室2b(負荷側油室)へ回生供給
され、室2b内に適切な圧力が確保、保持され負
圧を生じることなく油圧シリンダ2が円滑な短縮
作動となりブーム1が矢示方向Bへ降下されると
ともに、油圧シリンダ2の作動速度、ブーム1の
降下速度は、操作レバー5aの操作による回生制
御弁9の絞り開口面積の調整によつて制御され
る。
前記回生制御弁9の回生原理を第3図によつて
詳述すると、油圧シリンダ2に加わる重量をW、
油圧シリンダの室2aの圧力をPb、同室2bの
圧力をPr、タンク10の圧力をPt、油圧シリン
ダの室2a側受圧面積をAb、同室2b側受圧面
積をAr、室2a、管路l3から管路l2への間の絞り
開口面積をab、管路l2からタンク10への絞り開
口面積をat
(Field of Industrial Application) The present invention relates to a return oil regeneration circuit of a hydraulic cylinder used in construction machines such as hydraulic excavators, various industrial machines, and the like. (Prior Art) To explain a conventional example of a drive circuit in a hydraulic cylinder for driving a boom of a hydraulic excavator, the fifth
As shown in the figure, chambers are provided in both pipes l 2 and l 3 between the variable displacement hydraulic pump 3 having a capacity control section 3a and the tank 10 and both oil chambers 2a and 2b of the hydraulic cylinder 2 for driving the boom 1 . A pilot pressure supply switching valve 5 that controls the hydraulic pump 3 and the directional switching valve 4 is equipped with a directional switching valve 4 having 4a, 4b, and 4c.
The pilot pressure supply switching valve 5 is operated in the direction of the arrow A , and the pressure from the pilot hydraulic pressure source 6 is Oil is supplied as pilot pressure via the pressure reducing valve 5c and the pilot pipe l4 ,
The directional control valve 4 is switched from the chamber 4a to the chamber 4c, and the capacity control unit 3a is controlled to increase the capacity (increase the pump discharge flow rate) via the high pressure selection valve 7 and the pilot pipe l6 , and the discharge of the hydraulic pump 3 is increased. Pressure oil flows from pipe l 2 to oil chamber (rod side) 2b of hydraulic cylinder 2.
The hydraulic oil in the oil chamber 2a is led from the pipe l3 to the tank 10, and the hydraulic cylinder 2 is shortened to drive the boom 1 in the direction of the arrow B, and the pilot pressure supply switching valve 5 is activated. When operated in the direction of arrow A′,
The hydraulic cylinder extends and moves the boom in the direction of the arrow.
It has a structure that allows it to be driven to B'. Operation lever 5 of the pilot pressure supply switching valve 5
The operation amount of a is proportional to the pilot pressure, on the other hand, the pilot pressure and the capacity of the hydraulic pump (swash plate control) are proportional, and the pilot pressure and the operation amount of the directional control valve are proportional. A lever controls the operating speed of the hydraulic cylinder. (Problems to be solved by the invention) In the conventional hydraulic cylinder drive circuit, pressure oil must be supplied from the hydraulic pump to the oil chamber of the hydraulic cylinder even when the boom is lowered by the hydraulic cylinder. This results in power loss, and if the boom descends too quickly, negative pressure will occur due to insufficient supply of pressure oil from the hydraulic pump to the oil chamber of the oil chamber cylinder, resulting in abnormal vibrations and noise. There are other problems. (Means for solving the problem) The present invention is a return oil regeneration circuit for a hydraulic cylinder in order to deal with the above-mentioned problems. When the load moves to the load side, the hydraulic cylinder is switched from the heavy load side oil chamber to the negative pressure side oil chamber and the oil regenerates, ensuring pressure oil supply to the negative pressure side oil chamber and operating the cylinder. A regeneration control valve is provided to control the speed, and it is installed at the pilot pressure outlet of the pilot pressure supply switching valve and is switched by the weight load pressure of the weight load side oil chamber to set the directional control valve to neutral and operate the hydraulic pump at a small capacity, and to regenerate. By installing a pilot pressure switching valve that switches the control valve to the regenerative operation side, when the hydraulic cylinder is operated to the same load side due to a heavy load, the return hydraulic oil from the heavy load side oil chamber of the hydraulic cylinder is transferred to the negative pressure side oil chamber. This system secures the supply of pressure oil to the negative pressure side oil chamber and controls the cylinder operating speed to improve the drive performance of the hydraulic cylinder, reduce power consumption, and prevent abnormal vibrations and abnormal noises, as described above. Problems are resolved. (Function) When the hydraulic cylinder is operated to the load side due to a weight load, the pilot pressure switching valve is switched by the weight load pressure in the oil chamber on the weight load side of the hydraulic cylinder, and the pilot pressure switching valve supplies pilot pressure. The pilot pressure is switched and supplied from the switching valve, the directional switching valve becomes neutral, the supply of pressure oil from the hydraulic pump to the hydraulic cylinder is stopped, the hydraulic pump operates at a small capacity, and the regeneration control valve is switched to reduce the weight load on the hydraulic cylinder. The hydraulic oil in the side oil chamber is throttled and supplied to the negative pressure side oil chamber, the pressure oil supply to the negative pressure side oil chamber is ensured, and the hydraulic cylinder is controlled to a predetermined operating speed by regenerative supply of return oil. activated. (Embodiment) Fig. 1 and Fig. 2 show a first embodiment of the present invention, which is a drive circuit for a hydraulic cylinder 2 for driving a boom 1 of a hydraulic excavator, and is a variable displacement type having a displacement control section 3a. Hydraulic pump 3 and tank 10
A directional control valve 4 having chambers 4a, 4b, 4c is interposed in both pipes l2 , l3 between the hydraulic pump 3 and both oil chambers 2a, 2b of the hydraulic cylinder 2. Pilot pressure supply switching valve 5 that controls
are connected by pilot pipes l 4 , l 5 , l 6 , l 7 and a high pressure selection valve 7, and when the pilot pressure supply switching valve 5 is operated in the direction of arrow A, the pilot oil pressure Pressure oil from source 6 is supplied to pressure reducing valve 5
c, the pilot pressure is supplied via the pilot pipes l7 and l4 , the directional control valve 4 is switched from chamber 4a to 4c, and the capacity control unit 3a increases the capacity via the high pressure selection valve 7 and the pilot pipe l6 . The pressure oil discharged from the hydraulic pump 3 is supplied from the pipe l2 to the oil chamber 2b of the hydraulic cylinder 2, and the hydraulic oil in the oil chamber 2a is guided from the pipe l3 to the tank 10. When the pilot pressure supply switching valve 5 is operated in the direction A', the hydraulic cylinder 2 becomes extended and the boom is moved in the direction indicated by the arrow. The basic configuration is to drive in direction B'. The operating amount of the operating lever 5a of the pilot pressure supply switching valve 5 and the pilot pressure are proportional, the pilot pressure and the capacity of the hydraulic pump are proportional, and the pilot pressure and the operating amount of the directional switching valve are proportional. The structure is such that the operating speed of the cylinder is controlled. Furthermore, in the present invention, the chambers 9a and 9b are provided between the pipes l2 and l3 between the directional control valve 4 and the hydraulic cylinder 2.
A regeneration control valve 9 having a regeneration control valve 9 is interposed therein, and a pilot pressure switching valve 8 is provided in one pilot outlet conduit l7 of the pilot pressure supply switching valve 5. To explain the regeneration control valve 9 in detail, the chamber 9a
When the hydraulic pump 3 is switched to A normal drive circuit is formed which is led to the tank 10 that flows through the other pipe l 3 or l 2 , and when it is switched to the chamber 9b, it becomes a regenerative operation. By selecting the ratio of the opening area from the oil chamber 2a to 2b of the hydraulic cylinder 2 and the opening area from the chamber 2b to the tank 10, the principle of operation described later can be achieved. Oil chamber 2b (negative pressure side oil chamber)
The lowering speed of the boom 1 is controlled by controlling the operating lever 5a while ensuring a certain appropriate oil pressure without creating a negative pressure in the It has come to be controlled by Furthermore, to explain the pilot pressure switching valve 8 in detail, when the weight load due to the dead weight of the boom 1 increases on the oil chamber 2a (heavy load side oil chamber) side of the hydraulic cylinder 2 and the pressure rises above a predetermined level, Oil room 2
The pressure in a acts as a pilot pressure through the pipe l3 and the pilot pipe l9 , and the pilot switching valve 8
is switched to the chamber 8b side, the directional control valve 4 is switched to the neutral chamber 4a, and the displacement control section 3a of the hydraulic pump 3 is switched to the neutral chamber 4a.
is controlled to a small capacity operation, and the regeneration control valve 9
It is configured to switch and control the chamber 9b to the regenerative operation side chamber 9b. The first embodiment of the present invention has the above-mentioned configuration, and when the operating lever 5a of the pilot pressure supply switching valve 5 is operated in the direction of the arrow A, pressure oil from the pilot hydraulic pressure source 6 flows into the pressure reducing valve 5c. , becomes pilot pressure through the pilot pressure outlet pipe l7 , and when pressure builds up in the chamber 2a of the hydraulic cylinder 2 (heavy load side oil chamber) due to the weight of the boom 1, this pressure passes through the pilot pipe l9 as pilot pressure. The pressure is then added to the pilot pressure switching valve 8 and switched to the chamber 8b. When the pilot pressure switching valve 8 is switched to the chamber 8b, the pilot pressure in the pilot outlet pipe l7 is switched to the chamber 9b via the pilot pipe l8 , and the regeneration control valve 9 is set to regenerative operation. , the pilot line l4 to the directional control valve 4 , and the pilot line l6 to the capacity control section 3a of the hydraulic pump 3 are the tank 10a.
The directional control valve 4 is switched to the neutral chamber 4a, and the hydraulic pump 3 is controlled to operate at a small capacity. Therefore, the pressure oil discharged from the hydraulic pump 3 is transferred to the hydraulic cylinder 2.
The hydraulic pump 3 is operated to save power, and the regeneration control valve 9 regenerates the heavy load pressure oil in the chamber 2a (heavy load side oil chamber) of the hydraulic cylinder 2 from the pipe l3. Due to the throttle opening action of the control valve 9, regenerative supply is supplied to the chamber 2b (load-side oil chamber) through the pipe l2 , and an appropriate pressure is secured and maintained in the chamber 2b, allowing the hydraulic cylinder 2 to operate smoothly without generating negative pressure. The boom 1 is lowered in the direction of the arrow B, and the operating speed of the hydraulic cylinder 2 and the lowering speed of the boom 1 are controlled by adjusting the aperture area of the regeneration control valve 9 by operating the operating lever 5a. controlled. The regeneration principle of the regeneration control valve 9 will be explained in detail with reference to FIG. 3. The weight applied to the hydraulic cylinder 2 is expressed as W,
The pressure in the chamber 2a of the hydraulic cylinder is Pb, the pressure in the chamber 2b is Pr, the pressure in the tank 10 is Pt, the pressure receiving area on the chamber 2a side of the hydraulic cylinder is Ab, the pressure receiving area on the chamber 2b side is Ar, chamber 2a, pipe l 3 Let a b be the aperture opening area from conduit l 2 to a t , and a t be the aperture area from conduit l 2 to tank 10.
【式】(C:流量係数、
g:重力加速度、r:油の比重量)とすると、シ
リンダの力のバランスにより
W/Ab+PrAr/Ab=Pb ……(1)
室2a、管路l3から管路l2に通過する流量qbは、
qb=ξab√− ……(2)
管路l2からタンク10にへの流量qtは
qt=ξat√− ……(3)
一方、流量qbと油圧シリンダ2降下速度x・の関
係より
qb=Abx・ ……(4)
流量qtと油圧シリンダ2降下速度x・の関係より
qt=(Ab−Ar)x・ ……(5)
(Ab−Ar)/Ab=Kとすると
qb=qt/K ……(6)
(3)式においてPt≒0とし(6),(2),(3)式より
ab√−=at/K√
∴ ab 2(Pb−Pr)=at 2/K2・Pr
∴ K2ab 2+at 2/K2・Pr=ab 2Pb
Pr=K2ab 2/at 2+K2ab 2Pb ……(7)
(7)式を(1)式に代入して
Pb=W/Ab・K2ab 2+at 2/K3ab 2+at 2 ……(8)
(7)式にてat=Cabととすると(但し、Cは定数)
Pr=K2/C2+K2・Pb ……(9)
同様にして(8)式は
Pb=W/AbK2+C2/K3+C2 ……(10)
(2)式、(4)式、(9)式より
と表わすことができ、(9),(10),(11)式より油圧シ
リンダの室2a,管路l3から管路l2への開口面積
abと管路l2からタンク10への開口面積atとを一
定の比で設定することにより、油圧シリンダ(2)に
加わる重量Wが一定の時は、室2aの圧力Pbが
一定となるので室2bの圧力Prも一定となり、
しかも油圧シリンダ(2)の降下速度x・も開口面積ab
に比例するので、操作レバー5a操作量と油圧シ
リンダ2の降下速度x・は、比例することになる。
一方、油圧シリンダ2の室2aに圧力が立たな
い場合、つまりブーム1の自重を利用できない場
合は、第1図においてパイロツト圧切換弁8は室
8aに切換わり、それに伴なつて回生制御弁9へ
のパイロツト管路l8はパイロツト切換弁8の室8
aよりタンク10aに導びかれるので、回生制御
弁9は室9aに戻つて、パイロツト圧は、パイロ
ツト圧切換弁8の室8aよりパイロツト管路l4に
導かれて方向切換弁4を室4cに切換え、またパ
イロツト管路l6より油圧ポンプ3の容量(斜板)
制御部3aに導かれて油圧ポンプ3の斜板角即ち
容量を増加させ、ポンプ吐出流量が増加される。
(他の実施例)
第4図に本考案の第2実施例を示しており、前
記第1実施例に比べるとパイロツト管路l9に圧力
スイツチ12を設け、電磁切換式パイロツト圧切
換弁8′にした点に特徴を有し、その他の構成に
ついては第1実施例と同様になつており同様な作
用効果が得られる。図中11は電源である。
(考案の効果)
本考案は、前記のような構成になつているの
で、油圧シリンダの重量負荷による同負荷側の作
動時に、パイロツト圧切換弁が切換えられてパイ
ロツト圧供給切換弁からのパイロツト圧が切換え
られ、方向切換弁が中立になつて油圧ポンプの圧
油供給停止とともに同油圧ポンプが小容量運転と
なり、回生制御弁が切換えられて戻り油の回生作
動になつて、油圧シリンダの作動速度が制御さ
れ、その速度は自由に調整でき優れた作動性能を
有している。従つてまた、動力が著しく節減され
るとともに異常振動、異常音の発生が防止される
などの効果がある。[Formula] (C: flow coefficient, g: gravitational acceleration, r: specific weight of oil), then depending on the balance of cylinder force, W/Ab+PrAr/Ab=Pb...(1) From chamber 2a, pipe l3 The flow rate q b passing through the pipe l 2 is q b =ξa b √− ...(2) The flow rate q t from the pipe l 2 to the tank 10 is q t = ξa t √− ......(3) On the other hand, from the relationship between the flow rate q b and the descending speed of the hydraulic cylinder 2 x, q b = Abx... (4) From the relationship between the flow rate q t and the descending speed of the hydraulic cylinder 2, x, q t = (Ab-Ar) x ...(5) If (Ab-Ar)/Ab=K, then q b = q t /K ...(6) If Pt≒0 in equation (3), then from equations (6), (2), and (3), a b √−=a t /K√ ∴ a b 2 (Pb−Pr)=a t 2 /K 2・Pr ∴ K 2 a b 2 +a t 2 /K 2・Pr=a b 2 Pb Pr=K 2 a b 2 /a t 2 +K 2 a b 2 Pb ...(7) Substituting equation (7) into equation (1), Pb=W/Ab・K 2 a b 2 +a t 2 /K 3 a b 2 + a t 2 ...(8) In equation (7), if a t = Ca b (however, C is a constant) Pr = K 2 /C 2 +K 2・Pb ...(9) Similarly Equation (8) is Pb=W/AbK 2 +C 2 /K 3 +C 2 ...(10) From equations (2), (4), and (9) From equations (9), (10), and (11), the opening area from chamber 2a of the hydraulic cylinder and pipe l3 to pipe l2 is
By setting a b and the opening area a t from pipe l 2 to tank 10 at a constant ratio, when the weight W applied to the hydraulic cylinder (2) is constant, the pressure Pb in chamber 2a is constant. Therefore, the pressure Pr in chamber 2b will also be constant,
Moreover, the descending speed x of the hydraulic cylinder (2) is also the opening area a b
Therefore, the operating amount of the operating lever 5a and the descending speed x of the hydraulic cylinder 2 are proportional to each other. On the other hand, when no pressure is built up in the chamber 2a of the hydraulic cylinder 2, that is, when the dead weight of the boom 1 cannot be utilized, the pilot pressure switching valve 8 is switched to the chamber 8a in FIG. The pilot line l 8 to the chamber 8 of the pilot switching valve 8
Since the regenerative control valve 9 returns to the chamber 9a, the pilot pressure is guided from the chamber 8a of the pilot pressure switching valve 8 to the pilot pipe l4, and the directional switching valve 4 is transferred to the chamber 4c. and the capacity of hydraulic pump 3 (swash plate) from pilot line l 6 .
The control unit 3a increases the swash plate angle, that is, the capacity of the hydraulic pump 3, thereby increasing the pump discharge flow rate. (Other Embodiments) FIG. 4 shows a second embodiment of the present invention, which is different from the first embodiment in that a pressure switch 12 is provided in the pilot conduit l9 , and an electromagnetic switching type pilot pressure switching valve 8 is provided. The second embodiment is characterized by the fact that the second embodiment has the same structure as the first embodiment, and the other configurations are the same as those of the first embodiment, and the same effects can be obtained. In the figure, 11 is a power supply. (Effect of the invention) Since the present invention has the above-mentioned configuration, when the hydraulic cylinder is operated on the load side due to a weight load, the pilot pressure switching valve is switched and the pilot pressure from the pilot pressure supply switching valve is reduced. is switched, the directional control valve is set to neutral, the pressure oil supply to the hydraulic pump is stopped, and the hydraulic pump is operated at a small capacity.The regeneration control valve is switched to regenerate return oil, and the operating speed of the hydraulic cylinder is changed. is controlled, its speed can be freely adjusted, and it has excellent operating performance. Therefore, there are also effects such as a significant reduction in power and the prevention of abnormal vibrations and abnormal noises.
第1図は本考案の第1実施例を示すシリンダ駆
動回路図、第2図は回生制御弁の特性図、第3図
は回生制御弁の原理説明図、第4図は第2実施例
のシリンダ駆動回路図、第5図は従来例のシリン
ダ駆動回路図である。
1……油圧シリンダ、2a,2b……油室、3
……油圧ポンプ、4……方向切換弁、5……パイ
ロツト圧供給切換弁、8,8′……パイロツト圧
切換弁、9……回生制御弁、10……タンク、
l1,l2……管路、l3〜l9……パイロツト管路。
Fig. 1 is a cylinder drive circuit diagram showing the first embodiment of the present invention, Fig. 2 is a characteristic diagram of the regeneration control valve, Fig. 3 is a diagram explaining the principle of the regeneration control valve, and Fig. 4 is a diagram of the second embodiment. Cylinder Drive Circuit Diagram FIG. 5 is a cylinder drive circuit diagram of a conventional example. 1... Hydraulic cylinder, 2a, 2b... Oil chamber, 3
... Hydraulic pump, 4 ... Direction switching valve, 5 ... Pilot pressure supply switching valve, 8, 8' ... Pilot pressure switching valve, 9 ... Regeneration control valve, 10 ... Tank,
l 1 , l 2 ... pipes, l 3 to l 9 ... pilot pipes.
Claims (1)
ンダの両油室との間の両管路に方向切換弁を介装
し、前記油圧ポンプの容量制御および前記方向切
換弁の切換制御をするパイロツト圧供給切換弁を
付設した油圧シリンダ駆動回路において、前記方
向切換弁と前記油圧シリンダ間の前記両管路間
に、前記油圧シリンダの重量負荷による同負荷側
への作動時に切換えられ同油圧シリンダの重量負
荷側油室から負圧側油室に戻り油回生作動になつ
て同負圧側油室への圧油供給を確保してシリンダ
作動速度を制御する回生制御弁を設け、前記パイ
ロツト圧供給切換弁のパイロツト圧出口に設けら
れ前記重量負荷側油室の重量負荷圧で切換えられ
て前記方向切換弁を中立とし前記油圧ポンプを小
容量運転としかつ前記回生制御弁を回生作動側に
切換えるパイロツト圧切換弁を設けたことを特徴
とする油圧シリンダの戻り油回生回路。 A variable displacement hydraulic pump and a pilot pressure supply switching system that includes a directional switching valve interposed in both pipelines between a tank and both oil chambers of a hydraulic cylinder, and controls the capacity of the hydraulic pump and the switching of the directional switching valve. In a hydraulic cylinder drive circuit equipped with a valve, a valve is connected between the two pipe lines between the directional control valve and the hydraulic cylinder, and when the hydraulic cylinder is operated to the same load side due to a weight load, the hydraulic cylinder is switched to the weight load side of the hydraulic cylinder. A regeneration control valve is provided that returns from the oil chamber to the negative pressure side oil chamber and enters oil regeneration operation to ensure the supply of pressure oil to the negative pressure side oil chamber and control the cylinder operating speed, and the pilot pressure of the pilot pressure supply switching valve is A pilot pressure switching valve is provided at the outlet and is switched by the weight load pressure of the weight load side oil chamber to set the directional switching valve to neutral, operate the hydraulic pump at a small capacity, and switch the regeneration control valve to the regeneration operating side. A return oil regeneration circuit for a hydraulic cylinder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3453086U JPH0435601Y2 (en) | 1986-03-12 | 1986-03-12 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3453086U JPH0435601Y2 (en) | 1986-03-12 | 1986-03-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62147703U JPS62147703U (en) | 1987-09-18 |
JPH0435601Y2 true JPH0435601Y2 (en) | 1992-08-24 |
Family
ID=30843170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3453086U Expired JPH0435601Y2 (en) | 1986-03-12 | 1986-03-12 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0435601Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3736657B2 (en) * | 1997-04-25 | 2006-01-18 | 株式会社小松製作所 | Hydraulic motor drive system |
JP4973047B2 (en) * | 2006-07-20 | 2012-07-11 | コベルコ建機株式会社 | Hydraulic control circuit for work machines |
-
1986
- 1986-03-12 JP JP3453086U patent/JPH0435601Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS62147703U (en) | 1987-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3992612B2 (en) | Backhoe hydraulic circuit structure | |
JPS6261742B2 (en) | ||
JP2003004003A (en) | Hydraulic control circuit of hydraulic shovel | |
JP2711894B2 (en) | Variable displacement pump controller for hydraulically driven vehicles | |
JPH0435601Y2 (en) | ||
US10927867B2 (en) | Work machine having hydraulics for energy recovery | |
JP2018145984A (en) | Hydraulic transmission for construction machine | |
JPS6255337A (en) | Oil-pressure device for oil-pressure shovel | |
KR102582557B1 (en) | working machine | |
JP4010428B2 (en) | Capacity control device for work vehicle pump | |
JP3554122B2 (en) | Hydraulic circuit device for work machines | |
KR0169880B1 (en) | Boom ascending and revolution velocity control devices of dredger | |
JP2840957B2 (en) | Variable circuit of pump discharge volume in closed center load sensing system | |
JP3060317B2 (en) | Hydraulic motor control circuit | |
JPH04285303A (en) | Hydraulic circuit for improving operability in load sensing system | |
JP2017026085A (en) | Hydraulic control device of work machine | |
JPH0416002Y2 (en) | ||
JPS5985046A (en) | Oil-pressure circuit of oil-pressure shovel | |
JP2749317B2 (en) | Hydraulic drive | |
JPH086837Y2 (en) | Travel speed limit circuit | |
JP2532317Y2 (en) | Travel control device for crawler type vehicles | |
EP0667421A1 (en) | Hydraulic driving device for a construction | |
JPH0747602Y2 (en) | Directional switching valve drive hydraulic circuit | |
JPS58176328A (en) | Oil-pressure circuit for oil-pressure shovel | |
JP3286147B2 (en) | Construction machine hydraulic circuit |